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Özet. Dağılım parametreli sistemler için optimal kontrol teorisinde kullanışlı olan,
Lebesgue regüler noktalarının bazı sonuçları ispatlanmıştır.
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Abstract. Some corollaries of Lebesgue’s regular points which are useful in the theory of
optimal control for distributed parameter systems are proved.
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1. Introduction

In recent years, stimulated by some problems in fluid dynamics and differential

equations, a great interest has arisen in spaces with variable exponents and in the

extension of the results of classical Harmonic Analysis to the variable exponent

setting. The mathematical applications of these problems have been carried out by

the variational integrals with non-standard growth [1, 7].

Let p : Ω → [1,∞) be a measurable bounded function which is called the variable

exponent on Ω ∈ Rn, and write p+ = supt∈Ω p(t) and p− = inft∈Ω p(t). The variable

exponent Lebesgue space Lp(·)(Ω) consists of all measurable functions f : Ω → R
such that the modular

I(f) :=

ˆ

Ω

|f(t)|p(t)dt

is finite. If p+ <∞, then

‖f‖p(·) = inf

{
λ > 0 : I

(
f

λ

)
≤ 1

}
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defines a Luxemburg norm on Lp(·)(Ω). This makes Lp(·)(Ω) a Banach space. If p is

a constant function, then the variable exponent Lebesgue space Lp(·)(Ω) coincides

with the classical Lebesgue space. The basic properties of these spaces can be found

in [3, 4, 8].

Proposition 1. [3, 8] Let p be a measurable function such that 1 < p− ≤ p(t) ≤
p+ <∞, and Ω be a measurable set in Rn. Then,

‖f‖Lp(·)(Ω) > 1 =⇒ ‖f‖p
−

Lp(·)(Ω) ≤ I(f) ≤ ‖f‖p
+

Lp(·)(Ω),

‖f‖Lp(·)(Ω) < 1 =⇒ ‖f‖p
+

Lp(·)(Ω) ≤ I(f) ≤ ‖f‖p
−

Lp(·)(Ω).

Let

Ω ≡ (a, b) ≡ {t ∈ Rn : ai < ti < bi, i = 1, 2, . . . , n}

be an open parallelepiped in Rn, and

Q(τ, r) ≡
{
t ∈ Rn : τi −

r

2
≤ ti ≤ τi +

r

2
, i = 1, 2, . . . , n

}
be a closed cube with its centre at τ ∈ Ω and its edges parallel to coordinate

axes with their length equal to r > 0. The classical Lebesgue theorem on regular

points accepts various generalizations and may be used in many different applications

including in the calculation of variations of functionals of distributed problems in

the theory of optimization. The non-trivial Lebesgue Theorem 1 on regular points

in variable exponent Lebesgue spaces (see [6]) and its consequences will be used

here to calculate the functional’s variations. Moreover, it may be applied in various

problems of optimal control theory.

2. The Main Results

Theorem 1. (i) Assume that Ω ∈ Rn is a bounded measurable set, f(s, y) : Ω ×
Rl → R is a Carathéodory function (i.e the map y → f(s, y) is continuous

for a.e. s ∈ Ω, while s → f(s, y) is measurable on Ω for all y ∈ Rl), and

the condition |f(s, y)| ≤ a(s) + C|y| holds, where s ∈ Ω, C = const. > 0, and

a(·) ∈ Lp(·)(Ω), i.e. ‖a(·)‖Lp(·)(Ω) ≤ A;

(ii) y0(s) and {yh(s) : h ≡ {τ, r} ∈ Ω× [0,∞)} ∈ Llp(·)(Ω), such that
ˆ

Ω

|yh(·)|p(·)dt ≤ B, ‖yh − y0‖Lı
p(·)(Ω) → 0,
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as r → 0 uniformly for τ ∈ Ω;

(iii) 1 < p− ≤ p(t) ≤ p+ <∞ and f ∈ Lp(·)(Ω).

Then, for almost everywhere,

lim
r→0

1

rn

ˆ

Ωr

|f(t, yh)− f(τ, y0)|p(t)dt = 0, τ ∈ Ω,

uniformly in y0, yh, where Ωr ≡ Ωr(τ) = {t ∈ Ω : t ∈ [τ, τ + r]}, i.e. τ is known as

a Lebesgue point.

Proof. Let {ri}∞i=1 be countable, and dense everywhere in [0,∞). Since f ∈ Lp(·)(Ω)

and p+ < ∞, then |f(t, yh) − ri|p(t) ∈ L1
loc(Ωt) uniformly. Indeed, with fixed i, we

haveˆ

Ωr

|f(t, yh)− ri|p(t)dt ≤ 2p
+−1

ˆ

Ωr

|f(t, yh)− ri|p(t)dt

≤ 2p
+−1

ˆ

Ωr

[
|ri|p(t) + 2p

+−1
(
|a(t)|p(t) + Cp+|yh|p(t)

)]
dt

≤ 2p
+−1

ˆ

Ωr

[
|ri|p

+

+ 2p
+−1

(
|A|p+

+ Cp+|B|p+
)]
dt <∞.

By the Lebesgue theorem, for each i ∈ N, a subset Ei ⊂ Ωr,

(
E =

∞⋃
i=1

Ei

)
of

Lebesque measure zero is available, and with ∀t ∈ Ωr \ E, we obtain

lim
r→0

1

rn

ˆ

Ωr

|f(t, yh)− ri|p(t)dt = |f(τ, yh)− ri|p(τ).

Assume that 0 < ε < 1, 0 < ε1 <
1
4
, 0 < ε2 <

1
4
, and τ ∈ Ωr/E. Choose ri such that

|f(·, yh)− ri|p(·) <
ε1

2p+−1

and

|f(·, y0)− ri|p(·) <
ε2

2p+−1

with all and any y0, yh ∈ Llp(·)(Ω). Thus, we get
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lim
r→0

sup
1

rn

ˆ

Ωr

|f(t, yh)− f(τ, y0)|p(t)dt

≤ 2p
+−1

lim
r→0

sup

 1

rn

ˆ

Ωr

|f(t, yh)− ri|p(t)dt+
1

rn

ˆ

Ωr

|ri − f(τ, y0)|p(t)dt


≤ 2p

+−1(|f(τ, yh)− ri|p(t) + |f(τ, y0)− ri|) ≤ 2p
+−1

( ε1

2p+−1
+

ε2

2p+−1

)
< ε.

The proof of Theorem 1 is complete. �

In the distributed parameters systems and optimal control theories we face the

following problem [2, 5]:

Let Ω ∈ Rn be a bounded measurable set and

{f [m, τ ](·) ∈ Lp(·)(Ω) : m ∈ N, τ ∈ Ω}

be a family of functions satisfying the following condition:

‖f [m, τ ](·)‖Lp(·)(Ω) → 0, as m→ +∞, uniformly in τ ∈ Ω.

Moreover, assume that

Fp[m] (τ) =
1

rnm

ˆ

Ω[m,τ ]

∣∣f [m, τ ](t)
∣∣p(t)dt,

where Ω[m, τ ] ≡ {t ∈ Ω : t ∈ [τ, τ + rm]}, rm → 0 as m→ +∞.

Then, the question is for which subsequence {mk} ⊂ N and set Ω0 ⊂ Ω, meas(Ω0) =

meas(Ω) of Lebesque measure zero

Fp[mk](τ)→ 0∀τ ∈ Ω0 as k → +∞ (1)

will be valid.

Let’s explain why we refer to a subsequence {mk} rather than a whole sequence

{m}. We consider the simple case, i.e. when subintegral functions do not relate to τ

and a family of functions {fm(·) ∈ Lp(·)(Ω) : m ∈ N} such that ‖fm(·)‖Lp(·)(Ω) → 0

as m→ +∞, and

F ∗p [m](τ) =
1

rnm

ˆ

Ω[m,τ ]

|fm(t)|p(t)dt.
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We will show that, in general, convergence F ∗p [m](τ) → 0 for almost all τ ∈ Ω as

k → +∞ may not be true.

Remark 1. Let n = 1, Ω = [0, 1], and define the sets

Qk,j =

[
j − 1

k
,
j

k

)
, Pk,j =

[
j − 1

k
,
j

k
− γk,j

)
,

where γk,j = 1
j2k

for j = 1, . . . , k, k = 2, 3, . . .. Further, let’s assume

Pk =
∞⋃
j=1

Pk,j, k = 2, 3, . . . and Q0 =
∞⋂
k=2

Pk.

Then it is clear that meas(Ω0) > 0. Let ϕk,j be the characteristic function of sets

Qk,j, and

f1(t) = ϕ2,1, f2(t) = ϕ2,2, f3(t) = ϕ3,1 f4(t) = ϕ3,2, f5(t) = ϕ3,3, . . . .

Similarly, let constitute the following sequence

r1 = γ2,1, r2 = γ2,2, r3 = γ3,1, r4 = γ3,2, r5 = γ3,3, . . . .

It is obvious that fm(·) ⊂ Lp(·)[0, 1] and ‖fm(·)‖Lp(·)[0,1] → 0, rm → 0 as m → +∞,
while

F ∗p [m](τ) =
1

rnm

ˆ

Ω[m,τ ]

|fm(t)|p(t)dt 9 0, ∀τ ∈ Ω0 as m→ +∞.

Indeed, if we take τ ∈ Ω0, then τ ∈ Pk for k = 2, 3, . . . , and there exists j = j(k)

such that τ ∈ Pk,j. However, by this construction, if rm = γk,j, then Ω[m, τ ] =

[τ, τ + γk,j] ⊂ Qk,j, and thus fm(t) = ϕk,j(t) = 1 for t ∈ Ω[m, τ ], and eventually

F ∗p [m](τ) = 1. This means the set F ∗p [m](τ) contains a subset F ∗p [ms](τ) = 1. �

We will require the following definitions to obtain the main results.

Definition 1. A system M of measurable sets containing a point ξ ∈ Rn will have a

compaction to the point ξ, if sets are as small in diameter as desired among system’s

sets and regular compaction, and a cube Q(ξ, h) ⊃ e for all and any e ∈ M such

that hn ≤ Lmeas(e), where L is a constant which is invariable with e.

Definition 2. A system {Ω[m, τ ] : m ∈ N, τ ∈ Ω} of measurable sets will have a

regular compaction on a set Ω, provided

(i) τ ∈ Ω[m, τ ] ∀m ∈ N,
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(ii) sup
τ∈Ω

diam Ω[m, τ ]→ 0 with m→ +∞.

Remark 2. It is obvious that the subsystem deriving from the sets system which

have regular compaction on Ω with constant τ ∈ Ω will have compaction to the point

τ. In addition, if the condition of regularity holds we can speak about a uniform and

regular compaction sets system Ω[m, τ ] ≡ {t ∈ Ω : t ∈ [τ, τ + rm]}, rm → 0. It is

obvious that a parallelepiped system will be uniformly and regularly compactable.

It is also clear that the said class will extend further.

Theorem 2. Assume that f(t, y) : Ω × Rl → R is a Carathéodory function and

satisfies the following conditions:

(i) Sets system {G[m, τ ] : m ∈ N, τ ∈ Ω} is uniformly and regularly compactable

on Ω, Ω[m, τ ] ≡ G[m, τ ] ∩ Ω,

(ii) 1 < p−, p+ <∞, {|y[m,h](·)| : m ∈ N, h ∈ G} ⊂ Llp(·)(Ω), and

∃{bm(·) ⊂ Lp(·)(Ω)} such that ‖bm(·)‖Lp(·)(Ω) → 0 as m→ +∞, and

|y[m,h](·)| ≤ bm(·) ∀m ∈ N, h ∈ G for almost all τ ∈ Ω,

(iii) ∀y ∈ Llp(·)(Ω) we will get f(·, y(·)) ∈ Lp(·)(Ω), where

‖f(·, y(·))‖Lp(·)(Ω) → 0, ‖y(·)‖Ll
p(·)(Ω) → 0.

Remark 3. To get the condition (ii), it is sufficient to show the following inequality

holds true

|y[m,h](t)| ≤ bm(t)N
(
‖χΩ[m,τ ]Ψ(t)‖Lp(·)(Ω)

)
, ∀m ∈ N

for almost all τ ∈ Ω, where bm(·) ∈ Lp(·)(Ω) and Ψ(·) ∈ Lp(·)(Ω) are some constant

functions and N(·) : R+ → R is a nondecreasing function such that N(β) → +0

with β → +0.

Proof. [Remark 3] Let’s point out that for all m ∈ N the set Ω[m, τ ] is contained in

some closed ball of radius diam Ω[m, τ ]. Therefore, its measure does not exceed this

ball’s measure, i.e. diam Ω[m, τ ] ≤ C(n)[diam Ω[m, τ ]]n, C(n) = const. > 0. �

Proof. [Theorem 2] This can be obtained immediately from the proof of Theorem

3. �

Lemma 1. Assume S(Ω) is a space of measurable functions for almost everywhere

on Ω, l ∈ N, c(·), d(·) ∈ Sl(Ω)-measurable on Ω, l-vector functions, c(t) ≤ d(t) for

almost all t ∈ Ω such that

c, d ∈ Rl : c ≤ d⇐⇒ cj ≤ dj, j = 1, 2, . . . , l, [c, d] = [c1, d1]× [c2, d2]× . . .× [cl, dl],
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and f(t, y) : Ω × Rl → R is measurable in t ∈ Ω and continuous in y ∈ Rl.

Then the function ϕ(t) ≡ max
y∈[c(t),d(t)]

f(t, y) will be measurable on Ω and there exists

θ(·) ∈ T [c, d] ≡ {y ∈ Sl(Ω) : y(t) ∈ [c(t), d(t)]} such that f(t, θ(·)) = ϕ(t) for

almost all t ∈ Ω.

Proof. The proof can be obtained immediately from [5, Assertion 1.2, p. 326 and

Theorem 1.4, p. 327]. �

Theorem 3. Assume 1 < p− ≤ p(t) ≤ p+ < ∞ and f(t, y) : Ω × Rl → R is a

Carathéodory function and satisfies the following conditions:

(i) ∀y ∈ Llp(·)(Ω) we get f(·, y(·)) ∈ Lp(·)(Ω),

(ii) bm(·) ∈ Lp(·)(Ω), m ∈ N.

Then

‖bm(·)‖Lp(·)(Ω) → 0⇐⇒
ˆ

Ω

|bm(t)|p(t)dt→ 0 with ‖y(·)‖Ll
p(·)(Ω) → 0.

Moreover, for sufficiently large m ∈ N, we have

ϕ(t) ≡ max{f(t, y) : y ∈ Rl, |y| ≤ bm(t)}, (2)

where ϕm(·) ∈ Lp(·)(Ω) and ‖ϕm(·)‖Lp(·)(Ω) → 0 as m→ +∞.

Proof. In view of Lemma 1, for each m ∈ N the function ϕm(t) is measurable on Ω.

Let ε > 0. By the condition (i), there exists a number δ(ε) > 0 such thatˆ

Ω

|f(t, y)|p(t)dt⇐⇒ ‖f(t, y)‖Lp(·)(Ω) < ε, ∃y ∈ Llp(·)(Ω),

ˆ

Ω

|y(t)|p(t)dt⇐⇒ ‖y(·)‖Ll
p(·)(Ω) < δ(ε).

Since ‖bm(·)‖Lp(·)(Ω) → 0 as m → +∞, we can choose a number m∗ = m∗(ε) ∈ N
sufficiently large such that

l‖bm(·)‖Lp(·)(Ω) < δ(ε) with m ≥ m∗.

By Lemma 1, we have

∃ θm(·) ∈ Sl(Ω) : |θm(t)| ≤ bm(t),
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for almost all t ∈ Ω, ϕm(t) = f(t, θm(t)). Thus, if we consider

‖θm(·)‖Ll
p(·)(Ω) = ‖ |θm| ‖Lp(·)(Ω) ≤ l‖bm(·)‖Lp(·)(Ω),

we will get ϕm(·) ∈ Lp(·)(Ω), ‖ϕm(·)‖Lp(·)(Ω) ≤ ε, ∀m ≥ m∗(ε). This implies that (2)

is fulfilled. Therefore, the proof of Theorem 3 is complete. �

Theorem 4. Assume conditions (i), (ii), and (iii) of Theorem 2 hold with p+ <∞.
Then there exists a subsequence mk → +∞ as k → +∞, and a set Ω0 ⊂ Ω with

meas(Ω0) = meas(Ω), such that ∀τ ∈ Ω0 and ∀h ∈ G
1

meas(G[mk, τ ])

ˆ

Ω[mk,τ ]

|f(t, y[mk, h](t))|p(t)dt→ 0 as k → +∞.

Proof. We may assume that f(t, y) ≥ 0 for almost all t ∈ Ω, ∃y ∈ Rl. Set

ϕm ≡ max
y∈[−b(t),b(t)]

l

f(t, y).

Then by (2), we get

f(t, y[m,h](t)) ≤ ϕm(t) ∀h ∈ G, for almost all t ∈ Ω. (3)

By Theorem 3, ϕm(·) ∈ Lp(·)(Ω) for all sufficiently large m ∈ N and

‖ϕm(·)‖Lp(·)(Ω) → 0 as m→ +∞.

Thanks to the Theorem on the Convergence Regulator, a subsequence εk ↘ +0 as

k → +∞ and a function ω(·) ∈ Lp(·)(Ω) can be found so that

|ϕm(t)| ≤ εk ω(t) for almost all t ∈ Ω. (4)

Let’s choose any closed parallelepiped [Ω] ⊃ Ω including all sets G[m, τ ], ∀m ∈ N,

∀τ ∈ Ω along with a set Ω and extend function ω(·) to this parallelepiped with zero.

Then, obviously, ω(·) ∈ Lp(·)(Ω), and directly from (3) and (4) and by contractiveness
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of system {G[m, τ ], m ∈ N, τ ∈ Ω} to the point τ ∈ Ω, it follows that

1

meas(G[mk, τ ])

ˆ

Ω[mk,τ ]

|f(t, y[mk, h](t))|p(t)dt

=
εk

meas(G[mk, τ ])

ˆ

Ω[mk,τ ]

|ω(t)|p(t)dt

=
εk

meas(G[mk, τ ])

ˆ

G[mk,τ ]

|ω(t)|p(t)dt→ 0 · |ω(τ)|p(τ) = 0,

for almost all τ ∈ Ω. Hence, the proof of Theorem 4 is complete. �
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[7] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in

Mathematics, 1748, Springer-Verlag, Berlin, 2000.

[8] X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl. 263

(2001), 424–446.




