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Abstract

Soft set theory has many theoretical and practical applications. It was first introduced by Molodtsov in 1999
as a way to represent specific situations including uncertainty. The fundamental building blocks of soft set
theory are soft set operations. Since its debut, several types of soft set operations have been defined and
utilized in diverse contexts. To further the theory, a new soft set operation known as the complementary
extended difference operation is defined in this paper. Its properties are thoroughly discussed, with
particular attention to how it differs from the difference operation in classical sets. Additionally, the
distribution of this operation over other types of soft set operations is examined to determine how this
operation relates to other soft set operations.

Keywords: Soft set, Conditional complements, Complementary extended difference operation.
Yeni Bir Esnek Kiime Islemi: Tiimleyenli Genisletilmis Fark islemi

Ozet

Esnek kiime teorisinin birgok teorik ve pratik uygulamasi vardir. ilk kez 1999 yilinda Molodtsov tarafindan
belirsizlik durumlarini temsil etmenin bir yolu olarak tanitildi. Esnek kiime teorisinin temel yap1 taslari
esnek kiime islemleridir. ilk ¢cikisindan bu yana, cesitli baglamlarda esnek kiime islemlerinin cesitli tiirleri
tanimlanmis ve kullanilmistir. Teoriyi ilerletmek amaciyla bu ¢alismada tiimleyenli genisletilmis fark islemi
olarak isimlendirilen yeni bir esnek kiime islemi tamimlanmstir. Ozellikleri, klasik kiimelerdeki fark islemi
ile kiyaslanarak kapsamli bir sekilde tartisilmigtir. Ayrica, bu islemin diger esnek kiime islemleri ile nasil
bir iligkisi oldugunu belirlemek amaciyla bu islemin diger esnek kiime islemlerine dagilimi da incelenmistir.
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1. Introduction

It might be difficult to remark on and explain some of the events that happen in our lives.
Some terms are ambiguous and change depending on the individual, such as "big bike,"
"quality bag," and "hot weather." Due to the uncertainty, they include, these phrases,
circumstances, and occurrences are frequently arbitrary and contingent on people, places,
and times. Numerous scientific disciplines, including mathematics, are susceptible to
uncertainties. In many scientific disciplines, researchers work to find solutions to
challenging issues, yet they have also encountered modeling uncertainties. Since
uncertainties come in a variety of forms, it has been necessary to eradicate these
uncertainties using ways other than classical procedures—methods that also assess
uncertainty. As a result, scientists have developed a wide range of hypotheses to explain
uncertainty and offer remedies.

Some of the most popular and widely applied mathematical theories for modeling
uncertainty include fuzzy set theory, interval mathematics, statistics, and probability
theory. Among these ideas, Zadeh's fuzzy set theory [1] is one of the most well-known.
Other hypotheses have been required since this hypothesis has some structural flaws. It is
well known that a fuzzy set's membership function defines it. The nature of the
membership function is extremely personalized since it is challenging to design a
membership function for every situation. As a result, a set theory independent of the
membership function's creation has been required. Molodstov [2] introduced the Soft Set
Theory, which has solved the membership function issues. Molodstov has introduced soft
set theory into several mathematical fields. Soft set theory has been effectively applied in
the fields of operations research, game theory, probability, measurement theory,
continuously differentiable functions, Riemann's integration, and Perron's integration.

Since studies on soft algebraic structures and soft decision-making techniques depend on
soft set operations, soft set operations form the foundation of soft set theory. Maji et al. [3]
initiated the influential research on soft set operations in this area. Pei and Miao [4]
suggested a definition of soft subset that is more often accepted than the definition
provided by Maji et al. [5]. Soft set operations fall into two categories: restricted and
extended operations [3, 5-9].

A novel form of soft set operation was proposed by Eren and Calisici [10] and later on, by
Sezgin and Calisic1 [11], who enhanced the work of Eren and Calisic1 [10] by examining the
characteristics of the soft binary piecewise difference operation and contrasting it with the
difference operation in classical sets. Aybek [12] extended the study of novel binary set
operations by Cagman [13] and Sezgin et al. [14] to soft sets. Furthermore, several
researchers [15-29] have presented novel types of soft set operations that differ from the
restricted and extended forms of soft set operations. [30-43] are some additional
applications of soft sets with relation to algebraic structures that we can refer to.

One of the most crucial mathematical problems in algebra is to categorize algebraic
structures by examining the characteristics of the operation specified on a set. To
conceptually contribute to the literature on soft sets, we provide a new class of soft set
operations in this paper, which we name complementary extended difference operations,
and we go into great detail about its properties. We try to find the analogies that of the
difference operation in classical sets. The distribution of complementary extended
difference operations over other types of soft set operations, such as restricted and
extended soft set operations and soft binary piecewise operations, is examined to ascertain
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the relationship between the operation and other soft set operations. Many intriguing
results are obtained.

2. Preliminaries

Definition 2.1. [2] Let E be the parameter set, U be the universal set, P(U) be the power
setof U, and M C E. A pair (F, M) is called a soft set over U. Here, F is a function given by
F:M — P(U).

Sg(U) denotes the set of all the soft sets over U throughout this paper. Let M be a fixed
subset of E, then the set of all soft sets over U with M is indicated by S,,(U). In other words,
in the collection Sy (U), only soft sets with the parameter set M are included, while in the
collection S (U), soft sets over U with any parameter set can be included.

Definition 2.2. [5, 7] Let (F, M) be a soft set over U.Forall v € M, if F(v) = @, then the soft
set (F, M) is called a null soft set with respect to A, indicated by @,,. Forall v € M,if F(v) =
U, then the soft set (F, M) is called a whole soft set with respect to M, indicated by Uy,. The
relative whole soft set Uy with respect to E is called the absolute soft set over U. A soft set
with an empty parameter set is indicated by @, called as empty soft set, and @ is the only
soft set with an empty parameter set.

Definition 2.3. [4] For two soft sets and (F, M) and (G,Y), we say that (F, M) is a soft
subset of (G,Y), and it is indicated by (F,M) € (G,Y),if M €Y and F(v) € G(v), for all
v € M. Two soft sets (F, M) and (G,Y) are said to be soft equal if (F, M) is a soft subset of
(G,Y) and (G,Y) is a soft subset of (F, M).

Definition 2.4. [5] The relative complement of a soft set (F, M), indicated by (F, M)", is
defined by (F,M)" = (F",M), where F": M - P(U) is a mapping given by (F,M)" =
U\F (v), for all v € M. From now on, U\F (v) = [F(v)]’ will be designated by F’(v) for the
sake of designation.

Cagman [13] defined two new complements as inclusive and exclusive complements. +
and 6 denote inclusive and exclusive complements, respectively. Let M and N be two sets.
Then, these binary operations are defined as follows: M + N = M'UN, MON=M'NN". Sezgin
et al. [14] analyzed the relations between these two operations and also defined three new
binary operations and examined their relations with each other. Let M and N be two sets.
Then, M * N = M'UN',MyN= M'NnN,and MAN = M UN'".

Let ® denoten,U,\, A (symmetric difference), 4,y, 8, +,* Then, all the types of soft set
operations can be given with the following generalized forms:

Definition 2.5. [5-9, 12] Let (F, M), (G,Y) € Sg(U). The restricted ® operation of (F, M)
and (G,Y) is the soft set (H,Z) denoted by (F,M) ®g (G,Y) = (H,Z), where Z=M NY #
@,and H(v) =F (v) ® G (v), for all v€ Z Here, if Z=MNY= @, then (F,M) ®y (G,Y) = By .

Definition 2.6. [3-5, 8-9, 12] Let (F, M), (G,Y) € Sg(U). The extended ® operation (F, M)
and (G,Y) is the soft set (H, Z), indicated by (F, M) ®.(G, Y) = (H, Z), where Z=M U Y, and
forallv € Z,
F(v), v EM\Y
H(v) = G(v), v EY\M
Fw)®Gew), veMnY
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Definition 2.7. [16-18]
Let (F,M),(G,Y) € Sg(U). The complementary extended ® operation (F, M) and (G,Y) is
*

the soft set (H, Z), indicated by (F, M) ® (G, Y)=(H, Z), whereZ=M U Y,and forall v € Z,
&

F'(v), VEM-Y
Hw) = G'(v), vEY -M
Fw)®G6w), veEMNY

Definition 2.8. [10-11,15,28] Let (F, M), (G,Y) € Sg(U). The soft binary piecewise ® of
(F,M) and (G,Y) is the soft set (H, M), indicated by (F, M)®(G, Y) = (H, M), where for all
vVEM,

_ F(v), v EM\Y
H) = {F(v) ®G6w), veEMNY

Definition 2.9. [20-26,29] Let (F,M),(G,Y) € Sz . The complementary soft binary
*

piecewise ® of (F,M) and (G,Y) is the soft set (H, M), indicated by (F,M)~(G,Y) =
®

(H, M), where forallv € M,

_ F'(v), v € M\Y
Hw) = {F(v) ®GW), veEMNnY

Definition 2.10. [44] Let X be a set, " x " be a binary operation on X, and O be an element
of the set X. Then, X is called a BCI-algebra if the following conditions are satisfied for the
triple (X; %, 0),

BCI-7 ((a* 9) * (5% 2)) * (zx 9) =0

BCI-2 (% (x p)) x p=0

BCI-3 ox =0

BCI-4 »* p=0and px »=0implies 3=p

for all 7; 9, z€ X. If a BCl-algebra satisfies the following additional condition, it is called a
BCK-algebra:

BCK-5 O0* »=0.
If there exists an element 7 € Xsuch that »*7=0for every > € X, then X is called a bounded
BCK algebra. An element > € Xis called an involution for a BCK algebra if it satisfies the
condition 7#+(Z* ¥) =»: For the possible future graph applications and network analysis as

regards soft sets, we refer to Pant et al. [44] which is motivated by the divisibility of
determinants.

3. Complementary Extended Difference Operation

In this section, the algebraic properties of the soft set operation called the complementary
extended difference operation are examined comparatively with the properties of the

93



Sezgin, Akbulut and Demir / Usak Universitesi Fen ve Doga Bilimleri Dergisi 90-114 2024 (2)

difference operation in classical sets. It is investigated which algebraic structure these
operations constitute in the collection of soft sets with a fixed parameter set, and
distributive rules are examined to see the relationships of this operation with other
operations, and similar results to the distributions in classical sets are obtained.

Definition 3.1. Let (F, T) and (G, Z) be two soft sets over U. The complementary extended
*
difference operation of (F,T) and (G, Z) is the soft set (H, C), indicated by (F, T)\ (G,2) =
&
(H,C),where C =T UZ% andforallg € C,

F'(w), o € T\Z
Hw) =1 G'(v), o € Z\T
F(w)\G(w), w€TNZ

Example 3.2. Let E ={e,,e,,e5,e,} be the parameter set, 7={e;, e;} and Z ={e,, e3, e,} be
two subsets of E and U={h,,h,,h3,h,,hs} be the universal set.

Assume that (F,T)= {( e, { hyhs})) ,( es { hy , h, , hs })}, and
(G, 2) ={(e; {hyi,hs,hs}),(es,{hy,hs,hs}),(es {hs,hs})} be soft sets over U. Let

(F, T)\*E(G, 7) = (H,T U Z), where
F'(w), o €T\Z
Hw)={ G'(v), o € Z\T
F()\G(w), w€TNZ

forall € 7UZ Hence, H(e,) =F1(e,)= {hy,h3,h,}, H(e,) =Ge,)= {h,,h3}, H(le,) =Gey)=
{hy , hphh} , and H( e; ) = F ( e)\G(es ) ={hyhs} . Thus,
(F, T)\E(G' Z)={(ey, {hy h3, hy}), (e2.{h2.h3}), (€3, {1, hs}), (€4, { 1Ry hu )}

Theorem 3.3.
*
1) \ is closed in Sg (U).
€
Proof: ik :Sg()xSg(U) = Sg(U)
&
%
((F,1),(6,2) > (F.T)\ (G,2) = (HTUZ)
Similarly,
*
\8"5T(U)XST(U) - Sr(U)
*
((F.1),(6,) = (F,T){ (6,T) =(HTUT)
That is, when Tis a fixed subset of the set £ (F,T) and (G, T') are elements of S+ (U), then
sois (KT) \ (G 7) Namely, ST(U) is closed under the operation \ as well.
&

Proof: Firstly, let's consider the left hand side (LHS). Suppose that (F, T)\*E(G, Z)=(85TVZ

), where
F'(®), o € T\Z
S(w)=9 G(w), o € Z\T
F(o)\G(w), w€TNZ
forall weTUZ Let (SJTUZ)\*E(H,M) = (L(TUZ)UM)), where
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H(w),  w€M\(TUM)

S'(w), w € (T UZ)\M
L(w) =
S\H(w), we(TUZnM

for all we(TUZ)UM. Thus,

F(w), Wwe(M\EDD\M=TnZnM
G(w) we@E\D\WM=T'nZn M’
F'(w) UG (w) we(TNED\M=TNnZnNM
L(w)=3 H'(w), weM\(TUE=T'NnZnM
F'(w) N H'(w), we(M\BD)NM=TnZnM
G'(w) N H'(w), weE\THDNM=T'NnZnM

[FF()UG(@]nH(®W) we(TNZDHnNM=TNZNM
*
Now, let's consider the right hand side (RHS). Suppose that (GZ)\ (HM)= (RZUM),
&

where
G'(®), o € Z\M
R(w) =1 H'(»), o € M\Z
G\H(w), weZnM

for all weZUM. Let (F,T) < (RZUM) =(N,(TU(ZUM)), where
£

F'(w), o eT\(ZUM)
N ={ R'(w), ® € (ZUM)\T
Gw\H(w), 9eTn(ZUM)

for all weTU(ZUM). Thus,

F(w), weT\ZUM)=TnZnM

G(w) weEMN\T =T NEZnM

H(w), we(M\I\T=T'NnZnM

N(w)= G'(w) U H(w), weEZNMN\T=T'NnZnM
F () NG (w), WweTN@EM) =TNnZnM

F (w) n H(w), weTN(M\Z)=TNZNM

F (\[G ()\H(w)], weTN@ENM)=TNZNM

*
Itis seen that (L, (7TUZ)UM) # (N, TU(ZUM)). That is, in the set S; (U), \ is not associative.
€

3)[(F, T\ (6 DI (H.T) # (F, )y [(GDI (H,7)]

Proof: Since [F (@)\G (@)\\H(@)#F (w)\[C ((y)\H((g)],\* is not associative in the set
&
St(U), where Tis a fixed subset of £

) (.1 (6 D)% (6.2 (F,1)
Proof: Let (F, T)\*E(G,Z) = (HTUZ), where
F'(w), w€T\Z
H(g)=4§ G'(0), o € Z\T
F(o)\G(w), w€TNZ
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for all weTUZ Let (G.Z) \* (F,T) = (S, ZUT), where
&
G'(®), o € Z\T
S(w)y=4 F'(o), o € T\Z
G\F(w), weZnT
for all @€ZU T Thus, (F, T)\* (G,Z)qt(G)Z)\* (F,T).1f ZNT= 0, then (F, T)\* (GZ)=(GZ
& & &

* * * *
W (F,T). It is also obvious that (F,T)\ (G,T) # (G,T)\, (F,T) . Thereby, is
\e \e \e \e

commutative neither in Sz (U) nor in S;(U).

5) (F,T) \*E (F,T) = 0;
Proof: Let (F, T)\*E(F, T) = (H,T)where Hw) =F (w)NF'(w) = @, for all weT, Thus,

*

(H,D= Q7. That is,\ is not idempotent in Sg(U).
&

6) (ED\ 07 = (F.T)
Proof: Let 3, = ($7T) and (F, T)\*S(S, T) = (H,T). Then, S() = @ and H(w) =F (&)
S'"(w) =F(w)N U =F(w), for all weT. Thus, (H,T) = (F,T).

*

That is, in S (U), the right identity element of \ is the soft set @;.
€

7)0r\ (F.T) = 0,

Proof: Let @; = (S,T)and (S, T)\* (F,T) = (H,T). Then, S(w) =@ and Hw) =S(w)N
F'(w)= 0 N F'(w) = 0, for all weT. Therefore, (H,T) = @.

*

That is, the left absorbing element of\ in S;(U) is the soft set @;.
€

8) (F, T)\*S% =(F,T)"
Proof: Let 9, =(S,®) and (F, T) \*5(5' ©)=(H,TU 0). Then,

F,((l)), w € T\@ =T
Hw) =1 S'(w), WeP\T=0
Fo)\S(w), 0ed\T=0

for all weT. Thus, H(w) = F'(w), for all weT. Hence, (H,T) = (F,T)".
*
9) @@ \E(F, T) = (F, T)r

Proof: Let 9, = (5, 0) and (S, @)\* (F,T) = (H, 0UT), where

S'(w), wed\T=0
Hw)={ F(w), weT\@=T
SWI\F(w), we dnT=0

for all weT. Thus, H(w) = F'(w), for all weT. Thereby, (H,T) = (F,T)".
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10) (F,T), Us = 0
Proof: Let Uy = (L,E) and (F, T)\* (L,E)=(HTUE). Then, L(w) =U, and

F'(w), WeT\E=20
H(w) =4 L'(0), WeE\T=T
F()\L(w), weTNE=T

for all weE. Hence,

F'(w), @weT\E=0
Hw)=y 6  @eE\T=T
?, weTNE=T

for all w€E. Thereby, H(w) = @, for all w€eE. Consequently, (H,E) = @.

11) (F, T)\*SUT =0,

Proof: Let Uy = (K,T) and (F, T)\* (K,T)=(K,T). Then, K(w) =U and H(w)=F (w)N
K'(w) =F(w)N @ = @, for all weT. Therefore, (K,T) = 0.

12) UT\*S (F,T) = (F,T)"

Proof: Let Uy = (K,T) and (X, T)\*S(F, T) = (H,T). Then, K(w)=U and H(w) = {w)N
F'(w)=U N F'(y)= F'(w), for all weT. Thus, (H,T) = (F,T)".

13) (F,T) \*S(F, )" = (F,T)

Proof: Let (F,T)" = (HT) and (F, T)\*S(H, T) = (L,T). Then, Hw)= F'(w) and L(w) =F
()N H' (@) =F(w)NF(w) =F(w), for all weT. Thus, (L, T) = (F,T).

That s, in Sg(U), the complement of every element is its own right identity for \e
&

14) (F, T)T\*E (F,T) =(F,T)"
Proof: Let (F,T)" = (H,T) and (H, T)\* (F,T) = (L,T). Then, Hw)= F'(w) and Tw)

=Hw)N F'(w)= F'()N F'(w)= F'(w), for all weT. Thus, (L,T) = (F,T)".

*
That s, in S (U), the complement of every element is its own left absorbing element for \o
&

15) [(F.T) \ (GD))= (F,T) +. (G2)
Proof: Let (F,T) \*S(GIZ) = (H TU2,where

F'(w), o € T\Z
Hw)={ G'(v), o € Z\T
Fw)\G(w), w€TNZ

forall weT U Z. Let (H, T2 = (K TUZ), where
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F(w), w €T\Z
K(w) = G(w), w €Z\T
F()uG(w), w€TNZ

forall weT U Z.Thus, (KTUZ) = (F,T) +. (G2).

16) (F, T)\*E(G, T) = Uy & (F,T) = Uy and (G, T) = 0;

Proof: Let (F, T)\* (G,T) = (K, T) and (K T)= Uy. Then, K(w)=F ()N G'(w) =U, for all

weTeF(w)=Uand G(w) =l forally e T © F(w)=Uand G (w) = 9, for all weT e
(F,T) =Urand (GT)= Or.

17) 0; € (F.T)\ (G, 8, € (F.T)\ (G2, and 0, E (6B \ (F.T), 0, € (G (D).
Moreover, (F,T) \*S(G,Z) € Upyzand (G,Z)\*S(F, TYE Uzyr

18) (F,T) \*E(G, T) E(GT)rand (F, T)\*S(G, T)E (F,T)

Proof: Let (F,T) \* (F,T) = (H,T), where H(w) =F (w) NG{w), for all weT. Since H(w) =
&

F(w) N G'(w) € F(w) and H(w) = F(w) N G'(w) € G'(w), forall €T, the rest of the proof
is obvious.

19) If (F,T) € (G, T), then (H2) \*S(G, T E(HZ) \*E(F, T) and (F, T) \*g(H, 2 EGT)
NGz
Proof: Let (F,T) € (G,T). Then, F(w)SG (w) and G'(w)S F'(w), for all weT. Let (H,Z)
\*S(G, TY=(X,ZUT), where
F'(w), w€T\Z
Y(w)={ G(w), o € Z\T
F()\G(w), w€TNZ

for all 9€ZU T, Let (H.2) \*S(F, T) = (W,ZUT), where

H'(®), o € Z\T
W) =1 F(w), o € T\Z
Hw\F(®), weZnT

for all weZUT. If weZ\ T, then Hw)= H'(w) €S H'(v)=Ww). If weT\ Z thenw)=
G'(w) € F'(9) =Mw), and if 9eZNT, then H@)= H(w) N G’ (u)) € H(y)NF' (@)= Maw).
Therefore, {w)< M w), for all weZ UT. Consequently, (HZ)\ (G, T) C(HZ)\ (F,T).

Similarly, one can show thatif (F,T) € (G, T), then (F,T) \ (H, 2 E(G,T) \ (H, 2).
£ &

20) If (H, Z) \* G,T) € (H,2) \* (F,T), then (F,T) € (G,T) needs not be true. Similarly, if
& &
(F,T) \* (H,2) € (G,T) \* (H,%), then (F,T) € (G,T) needs not be true.
& €

Proof: Let E={e, e, ,e3,e4,6s5,€¢} be the parameter set, 7={e,,e;} and Z={e,,e;, es} be the
subsets of £ and U={hy,h,, h3,h,, hs} be the universal and (F,T), (G,T), and (H, Z) be the
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soft sets over Uas follows: (F,T) = {(ey,U), (e5,U)}, (G,T) ={(ey, {hq, h;}), (s, {hs, hy})},
and (H,Z) ={( e,0), (e3,0), (es,{hs})}. Let (H2) \*g (GD) = (L, ZUT), where
L(e;) =H(e,) NG’(e1)= @, L(e3) =H(e3) N G'(e3)= @, and L(es)=H' = {hy,h,, h3,h,}, for all
© € ZUT={ey, e;,e5}. Thereby, (H,2) | (G,T) ={(e1,8), (e2,0), (e5, {hyhy, hyhi})}

Let (H, %) \* (F, T) = (W,Z2UT), where W(e,) =H (e;)NF'(e;) =@, Me3) =H(e3) N
F'(e3) = @,and M(es) = H'(es)= {hy,h,, hs,h,), forally € ZUT = {e;, e5,es}). Thus, (H, Z)
\(F.T) =((1,0), (e3,0), (eshyhy, hyh,}). Hence, (H,Z) \ (G,T) € (H,2)\ (F.T), but
(F,T) is not a soft subset of (G, T).

Similarly, one can show that (F,T) \*E(H, Z) € (G, T) \*E(H, Z) does not imply that (F,T)
€ (G, T) by taking (F,T) = {(ey,U), (e5,U)}, (G,T) ={(ey, {h1,h:}), (es, {hs, hy})}, and
(H' Z) ={( €1, U)' (83,U), (65,{h5})}.

21) If (F,T) € (G,T) and (K,T) € (L, T), then (F, T)\*S (LT) € (G,T)\*E(K, T) and

(K, T)\*E(G, T E (L, T)\*E (F,T)

Proof: Let (F,T) € (G,T) and (K,T) € (L,T), Then, F(w) € G () and K(w) SL(w), for
all o € T. Thereby, G'(w) € F'(w) and L'(w) € K'(w), for all oy € 7. Hence, F (w) N
L'(w) €G(w)NnK' (u)) and A(w) NG (u)) cCIL(w)NF (u)) for all w € 7. Consequently,

(F, T)\ (L,T) € (G, T)\ (K,T) and (K, T)\ (G, T)E (L, T)\ (F,T)

22) (F, T)\*g(G, T) = (F,T) r:;(G,T)r
Proof: Let (F,T) r1((}, T) = (H,T),where H{w)=F(w) N G'(w)=F(W)\G(w), for all weT.
Thereby, (H,T) = (F, T)\Z(G,T).

In classical sets 7€ Z < 7T\ Z= 0, as an analogy we have:

23) (F,T) € (G,T) & (F, T)\* G, T) =0,

Proof: Let (F,T) € (G,T) and (F, T)\* (G, T) = (HT). Then, F(9)SGC (w) and H(w) =F
(w)\G(w), for all weT. Since F (w)<SG(w), it implies that H(w)=Fw)\G(w) = @, for all
we€T. Therefore (H,7)= @r. Conversely, let (F, T)\>‘< (G, T) =0@;.Then, F(x)\G(w) =0

and so F(w)E G(w), for all weT. Thereby, (F,T) € (G, T).

In classical sets, 7\(7\%) =TNZ. As an analogy we have:
*
*
n

Proof: Let (F,T)\r(G, %) = (KT NZ) and (F,T) \*g (KTNZE) = (STU(TNZ) = (ST).
Then, K(w) =F(0®)\G (w), forall y eT'N Z, and
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K'(o), 9e(TNZ)\T =0

F'(0), W eT\(TNZ)=T\Z
S(w) =
Fo)\K(w), weTn(TNZ)=TNZ

forall y € T U (T N Z). Thereby,

_{ F'(w), weT\Z
SO = {5 (NP NG (@], weTnz
Therefore
_(F'(w), weT\Z
() _{F(u))nG(u)), weTNZ

*

Consequently, (S7) =(ET) ~ (GZ).
n

In classical sets, 7\( T NZ)= T \Z. As an analogy we have:
25) (F, T\ [(F.T) g (G.Z) = (F.T) N 6.%)
Proof: Let (F,T) N, (G,2) =(K T NZ) and (F,T)\*‘E (KTNZ)=(S,TU(TNZ) =(SD.
Then, K(w) =FAw)NG(w), forally € T NZ, and
F'(@), 9 eT\(TNZ)=T\Z
S(w) =

K'(w), we(TNZ)\T=90
F(\K(w), weTN(TNZ)=TNZ

forally € T U (T N Z). Thus,

_( Fl(9), o € T\Z
S() = {F (\[F(@W)NG(®)], weTNZ
Thereby,
S(w) = {F’(u)). o € T\Z
YEUFW\GW),  weTnz

*

Therefore, (5,7) = (F,T)~ (G, Z).
\

In classical sets, if T N Z = @, then 7\Z =T. As an analogy, we have:
* *
26) If (F,T) n (G, T) = @r, then (F, T)\ (G,TY=(F,T)
& &

Proof: Let (F,T) , (G,T) = (K,T) = 8;. Then, K(¢) = )N G (&) = @ for all weT.
Let (F, T)\* (GT) = (LT, where L(w) =F (@) \G (w), for all weT. Since F(w)NG (w) =0,
this implies that L(@) =F (@) \G (@) =F(w). Thereby, (L,7) = (F,T).

In classical sets, (7\Z)N Z = @. As an analogy, we have:

27) [(F,T)\ (6. T)]  (6D)= 07

Proof: Let (ET)\ (GT) = (KT), and (K,T) y (6,T) = (L,T). Then, K(&) =F (9)\G (&)
and L(w) =K(@)NG (@) = [F(\G(w)|NG(w) = @, for all weT. Thereby, (L, T) = @;.
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In classical sets smce (N\DHN Z2=0, thus (I\% \Z=T\Z As as an analogy, we have:
28) [(F,T)\ (G, T)]\ (6D =(F.T)y (G.T)
Proof: Let (F, T)\ (G,T) =(K,T) and (K, T)\E(G, T) = (L, T). Then, K(w) =F (x)\ G (w)

and [(@) =K(@) \G (@) = [F (@) \C (D]\C (0) =F (9) \G (@), for all €T Thereby,
(LT)=(FT)H (G

In classical sets, (7\Z)N (Z\ 7) = @. As an analogy, we have:

29) [(F.T)\ (6.1  [(6D)\ (F.T)] = 8

Proof: Let (F, T)\*S(G, T = (K,T), (G, T)\*S(F, Ty = (L,T), and (K, T) ;E(L, T = (5,T),
Then, K(@) =F(9)\G(w), L(®w) =G(w) \F(w), and S) =K(@)NL(®) = [F(9) \G(@)]N
[G (W) \F(w)] = 9, for all weT. Therefore, (S,T) = Dr.

In classical sets, since (T\2A)N (Z\7) = @, (\AD\(Z\7) =7\ Z As an analogy, we have:

30) [(F,T)\ (6. 1] p [(G.TH_(F.T)] = (F,T) (G.T)

Proof: Let (ET)\*E(G,T) = (K, T), (G, T)\*S(F, T) = (L, T), and (K, T) ;s(L, T) = (5,T).
Then, K@) =F (&) \G (), Lo) =G (9) \F (@), and S(o) =KW\ L(») = [\ G )]\
[G)\F w)]= F(w)\G(w), for all ®eT. Thereby, (S,T) = (F, T)\E(G, T).

In classical sets (T\Z)n (TnZ) @.As an analogy we have:
31) [(F, T)\ G D] IET) f 61)] =
Proof: Let (E.T) \*8(61 T)= (K,T), (F,T) ng(G,T): (L,T),and (K7) ;g(L,T):(S 7). Then,

K@) =F()\G(w), {y=F(9)NG(w),and o) =K @)NL(w) =[F(0) \C(@)]N [F(o)NG
(w)] = 0, for all weT. Thereby, (S,T)= O.

In classical sets, since (T\2N (TN2)= @, (T\AH\(TNZ= T\Z. As an analogy, we have:
32) [(F,T)\ (6D [(FT) (6,1 =) (G.T)

Proof: Let (F, T)\*E(G, T) = (K,T), (F,T) r;:(G, T) = (L, T),and (K, T)\*E(L, 7) = (ST). Then,
K@) =F (@)\C (@), Uy) =F (@) N G(w) and @) = K(@l\L(@) =[Aw)\ G(W)]\
[A )N G(@)]|=F @)\ (w), for all weT. Therefore, (57)= (F, T)\s (G,T).

In classical sets, T N (Z\ 7) = @. As an analogy, we have:

33) (F.1)  [(G.T)\ (F.T)] =0,

Proof: Let (G, T)\*S(F, TY=(KT) and (F,T) n*s(l(i T)= (L, T). Then, K(w)=G (&)\F (®)
and L(w)=F(w) NK(@) =F ()N [G(w) \F(w)] = @, for all weT. Thereby, (L,T) = O;.

In c1a551cal sets, smce n (Z\T)= 0, T\(Z\7)= T. As an analogy, we have:

34) (F,T), (G T)\ (F, D] =(F, T,

Proof: Let(G, T)\S(F, T) =(K,T) and (F, T)\*g (K,T) = (L T).Then, K(w) =G (w)\F(w) and
L) =F(9) \K(@) =F (@) \ [G () \F(®)] =F (@), for all w€T. Thus, (L,7) = (F,T).
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In classical sets, 7= (7\AU(7NZ). As an analogy, we have:
35) (F,T) = [(F,T)\ (G, D]y [(F.T)n (G T)]
Proof: Let (F, T)\* G, T) = (K,T), (F,T)r:e(G, T) = (L,T), and (K,T) |, (LT) = (ST).

Then, (@) =F (w)\ G (), (w) =F (v) NG (w), and Sw) =K@)VLi(w) = (F(9) \C
(WHU(F(w) NG (w)) =F(w), for all weT. Thereby, (S,7) = (F,T).

In classical sets, 7UZ (T\Z)UZ VE'T UZ= (Z\Y)U T. As an analogy, we have:

36) ( F, T)U (G,T) =[(F, T)\ G, D]y (G T) and ( F, T)U (G, T)=
(@, T)\ (F,Dly (FY)

Proof: Let (F, T)\E(G, T)=(K,T) and (K, T)JE(G,T) = (L,T). Then, K(®) =F (w)\C (),

and ng) =K(@) VG (@) = (F(9\G () VG () =F(@)UG(w), for all weT Thus, (L, 7)=
F,T)y, (G.T).

In classical sets TUZ = (T\Z)U(Z \7)U(T N Z) As an analogy we have:
37) (F, T)U G,2) = [(F, T)\ CRIATRIC Z)\ (7, Dy, [(F, T)n (6, 2)]
Proof: Let (F, T)\S(G,Z) =(HTU2), (G, Z)\S(F, T) = (K,TUZ), and (F, T)r;:(G,Z)=(.ST

UZ). Then,
F'(w), o € T\Z
Hw)={ G'(v), o € Z\T
F(o)\G(w), w€TNZ
G'(w), o € Z\T
Kw)=4 Fl(w), weT\Z
G\F(w), weZnT
and
F'(®), o € T\Z
S(w) = G'(w), o € Z\T
Fl)nG(w), w€TNZ

*
forall weTUZ Let (HTVZ) , (KZUT) = (M TUZ), where
&

H'(w), we(TUD\(ZUT)=0¢
M(w) = K'(w), Wwe(EZUND\(TVZ) =0
Hw)\K(w), ge(TUZNEUT)=TUZ

for all ¢weTUZ Therefore,
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F'(9) U G'(®),

we (T\Z) N (Z\T) =0

F'(9) U F'(w), w € (T\Z) N (T\Z) = T\Z

F'(w) U [G(p)\F(w)], we(MBDNENT) =0

G'(9) U G'(w), w € (Z\T) N (Z\T) = Z\T
M(g) ={ ¢ @V F'(w), we(BE\T)N(T\Z) =0

G'(w) U [G()\F(w)],
[F(\G(w)] VG (w),
[F(p)\G(w)] U F'(w),
[F(x)\G () U [G()\F ()],

we (Z\T) N (T\Z) = 0

we(TNZ)NET) =0
we(TNZ)N(T\Z) =0

we(TnNZ)NEZNT)=TNZ

Thereby,
F'(w), o €T\Z
M(w) = G'(w), ® € Z\T
[F (NG U [G)\F(w)], wETNZ

forall we7UZ. Let (M TUZ) |,

M'(w),
W(w) = S'(w),
M(w\S(w),

for all weTUZ Hence,

(S TUZ) = (W,TuZ,where

we(T UD\(ZUT)=9
we@UT\(TUZ) =0
we(TUZ)NEUT)=TUZ

F'() UF'(w), o€ (T\Z) N (T\2) =T\Z
F'(w) U G'(w), 9 e (T\Z)N(Z\T) =9
F'(@) V[G(w) nG(w)], 9e(M\Z)N((TNZ) =0
G'(w) UF'(w), 9e(Z\T)N(T\Z) =9
W) ={ 6@V, o € (Z\T) N (Z\T) = Z\T
G'(W) V[F(w) NnG(w)], 9e@\TH)N{TNE) =0
[F(\G(@)] U [G()\F ()] U F'(w), 9e(TNZ)N(T\Z) =9
[F(\G(@)] U [G()\F ()] VU G'(w), 9e(TNZ)NE\T)=0
[F(D\G(@)] U [G()\F ()] U [F(w) N G(w)], weTnHNTNEH=TNZ
Therefore,
F'(®), o € T\Z
W(w) = G'(w), o € Z\T
FluG(w), w€eTNZ

%
forall ¢€7UZ. Therefore, (W,7UZ) = (F,T) , (G, %).
&

*
Theorem 3.4. (ST(U),\ , @7) is a BCK-algebra whose all elements are involution.

£
Proof: Let (F,T), (G,T),(H,T) € S;(U). Thereby,

BCL1{[(F,T) | (G, R IR T) (H, T)]}\ [(H.T)\ (G.T)]=

Indeed, let (F,T) \ “ (G, T)=(W,T), (F,T) \ *(H,T) =(M, T), and (W, T)\ (M, T) = (L, T).
Then, M) =F(w)\C (@), M(®w) =F (®) \H(®) and L(®) = M@) \M(®) = [F(D)\C(®)]
\ [F(@)\H(®)], for all weT.
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Let (H, T)\* (G,T) = (S, T)and (L, T)\* (S,T) = (X, T). Then, S(w) =H(w)\ G () and X&)
=L(w) \S(@) = [F () \C (D] \ [F () \H )]\ [H{w) \C(9)]) =, for all w€eT. Hence,
XD)]=0r.

BCI-2 [(F, T)\*E[(F, T)\*s(G,T)]] \*g((;, T) = ;. Indeed, let (F,T) \*S(G, T) = (K7) and
(F, T)\*S(K' T) = (MT). Then, K@) = A@)\ K w) and M(w) =F (9)\K(w) =F (o) \[F
(W\G ()] =F ()NG (), for all weT. Let (/"/,7)\*5(617) = (L, T). Then, L(w) =M(®) \G
() =[F(@)NG ()] \C(w) = B, for all weT. Therefore, (L, T) = @;.

BCI-3 By Theorem 3.3 (5), (F,T) \*S(F, T) =0,

BCI-4 By Theorem 3.3 (24), (F,T) \* (G,T) =0y = (F,T) € (G,T) and (G,T) \*E(F, T) =
0 =(G,T) E(F,T). Thereby, (F,T)=(G,T).

BCK-5 By Theorem 3.3 (7), Q)T\*S(F, T) =0,

Hence, (S7(0) ,\*s, @7) is a BCK-algebra. By Theorem 3.4 (11), (F, T)\*‘S Ur =@ for all (F
,T) €Sy (U). Hence, (Sr (D), \*8 , @r ) is a bounded BCK-algebra. Moreover, since
UT\*S[UT\*E (F,T)] =(F,T) for all (£T) € S;(U), (As by Theorem 3.3 (12), UT\*E(E T) =
(ET)",and so UT\*g (F,T)" = (£T), each element of S;(0) is an involution.

Theorem 3.5. Let (F,T),(G,Z) and (H,M) be soft sets over U. The complementary

extended difference operation has the following distributions over other soft set
operations:

Theorem 3.5.1 Let (F,T),(G,Z) and (H, M) be soft sets over U. The complementary
extended difference operation has the following distributions over restricted soft set
operations:

i) LHS Distribution

1) If TN(ZAM) = 0, then (F, T) \ [(6,7) Up (LM)] = [(ET)\ (G.B)] Ng [(ET)\ (HM)]

Proof: Let’s first handle the RHS. Let (G,2) Uz (HM) = (M, Z NM), where M(w) =G
(w)UH(w) for all weZNM. Let (£, 7)\*8(M,ZDM) = (N,TU(ZNM)), where
F'(w), @ eT\(Zn M)
Nw)={ M (w), weEZNMN\T
Fw)\M(w), weTn(EZNM)

for all weTU(ZNM). Therefore,
F'(@), w e T\(ZN M)
Nw)=4{ G'(w)nH(w), we(ZnMN\T
F (o)\[G (w)UH(w)], oeTn(ZnM)
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*
Now consider the RHS. Let (£ T)\ (G,2) =(M,TUZ),where
&

F'(w), o € T\Z
M) ={ G'(v), o €Z\T
F(o)\G(w), w€eTNZ

for all weTUZ Let (£T) \*S(H,M) = (KTUM), where
F'(w), oeT\M
K(w)={ H'(w), o € M\T
F(o)\H(w), weTnM

forall weTUM. Let (M, TUZ2)NR(K,TUM)=(W,(TUAHN(TUM)), where W @)=M(x)NKw),
for all we(TUZ)N(TUM). Hence,

F'(w) N F'(w), we(M\BD)NT\M)=TNZnNM
F'(9) N H'(w), we (T\Z)NM\T)=90
F'(w) N [F (o)\H(w)], we(MBDNTNM)=TNZNM
G' () NF'(w), we@E\T)NT \M)=0
W(w) = G'(w) N H'(w), we@E\T)NMT)=T' NZNM
G'() N [F ()\H(w)], we@EDNNTNM) =0
[F ()\G ()] N F'(0), weTNnHDNT\M)=TNnZNM'
[F (\G ()] N H'(w), we(TNE)NM\T) =0
[F (@\G ()] N [F (p)\H(w)], we(TNEHNTNM)=TNZNM
Therefore,
F'(w), weTNZnM
@, weTNZnNM
W(w) ={ &'@NH ), weT'NZNM
) weTnZnM
[F()\G (@] N [F(o)\H(w)], weTNZNM

Here, when considering the 7\(ZNM) in the function A, since 7\(ZNM) =T\(ZnM)' if an
element is in the complement of Z NA, it is either in Z\ M or in M\ Z or in (ZUM)'.
Therefore, if @ € T\(Z N M), then weTNZNM' or w eTNZ'NM or we TNZ N M'. Hence,
N=Wunder the condition 7TNZ'NM=TNZNM' = @. It is obvious that the condition 7nZ
'NnM=TnZnNM' = @ is equivalent to the condition 7n(ZAM) = @.

2)If T0(ZM) = 0, then (F,T) \ [(G,2) Ng(HLM)] = [(F,T)\ (6, )] Uy [(F,T) (M)

ii) RHS Distributions:

DIf TnZNM' = 8, then [(ET) Up(G2)]\ (HM=[(ET)\ (HM)] Up [(G2)\ (HM)]
Proof: Let’s first handle the LHS. Let (£, T) Uz (G2 = (R TNZ), where R(w) =F(®)VUG(w),
for all weTNZ Let (RTNZ) (S(H,M) = (L(TNZ)UM), where
R'(w), e (TNZE)\M
Lw)=4 H'(w), weM\(TNZ)
R()\H(w), we(TNnZNM
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for all we(7nZ)UM. Hence,
F'(w) N G'(w), we(TNZ)\M
L(w) = H'(w), weM\(TNZ)
[F(@)UG@I\H©®), weTnDnM

Now consider the RHS, ie, [(F,T){g (HM)] Ui [(GD i: (HM)]. Let (ET
) {ks(H, M) =(STUM), where

R'(w), weT\M
S(wy=1 H' (), ®eM\T
Fw\H(w), oeTnM

for all 9eTUM Let (G.2) (E(H,M) = (KZUM), where
G'(w), W €Z\M
Kw)=4 H(w), weM\Z
Fo)\H(w), weZnM

for all weZ UM. Let (5T UZ ) Ug (KZ UM) = (W,(T UZ )N(Z UM)), where M w)
=S(w)UK(w), for all we(TUZ)N(ZUM). Hence,

F'(®) U G'(w), we(T\M)NEM)=TnZnM'

F'(9) UH' (), @ € (T\M) N (M\Z) = ®

F'(0) U [G(0)\H(w)], we(T\M)NENM)=0

H'(9) VG (w), e (M\T)Nn (B\M) = ¢

W(w) =4 H'@UH ), weM\T)N(M\Z)=T'nZnNM
H'(w) U [G (w)\H(w)], we(M\DNENM)=T' NZNM

[F ()\H(s)] U 6" (w), we(TNM)NE\M) =0

[F (p)\H(w)] U H'(w), we(TNM)NM\E=TNZNM

[F (\H (@] U [G (x)\H (0)], 9e(TnNM)NEZnM)=TNnZnM

Therefore,

F'(9) U G'(w), weTNZNM'
H'(g), weT' nZnNM
W(w) ={ H' @ VG )\H®)] weT'NZNM
[F (w)\H(®)] U H'(®9), weTNZnNM

[F (@)\H(@)] U [¢ (9)\H(®)], weTNEZNM

Here, when considering the M\ (7N Z) in the function Z, since M\(7TNZ)=Mn(TNZ)" ifan
element is in the complement of 7N Z it is either in 7\ Zorin A Zorin (7U Z)". Thus, if @ €
M\(T N Z), thenw EMNTNZ'or wEMNZNT or weM NT'NZ'. Therefore, N=Tunder the
condition 7TnZnNM' = @.

2) If (TAZ) N\M=TnZNM' = 0, then [(F,T) nR(G,Z)]C (HM) = [(F, T): (HM)]Ng [(GZ
& &
*
) \e (HM)]
Theorem 3.5.2. Let (F,T),(G,%), and (H, M) be soft sets over U. The complementary

extended difference operation has the following distributions over extended soft set
operations:
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i) LHS Distributions

1) If T0(ZAM) = 0, then (F,T)\ (6 N(HM)] = [(F.T) \ (GAV: [(F.T)\ (HM)]

&€

Proof: Let’s consider first the LHS. Let (G, 2) N, (H,M) = (R ZUM), where
G(w), weZ\M
R(®)={ H(w), weM\Z
GW\H(w), weZnM
for all weZUM. Let (RZUM) = (N,(TU(ZUM)), where
F'(9), weT\(ZUM)
N(w) = {

R'(w), w € (ZUM\T
F(@)\R(®), weTn(ZUM)

for all weTU(ZUM). Hence,

F'(w), weT\EUM)=TnZnM'
G'(w), we(E\M\T=T'NZnM
H'(w), e M\E\T=T'nZnM
N(w) = { @' @) VH (), weEZNMN\T=T' NZNM
F (w\G (w), WweTNEM)=TNZNM'
F (w)\H(w), weTNM\E)=TNZNM
[F ()\[G (w) N H(w)], weTNENM)=TNZNM

*
Let’s consider the RHS. Let (F, T) \ (GZ%)=(KTuZ),where
&

F'(w), o € T\Z
K(w)={ G(w), o € Z\T
F(o)\G(w), w€eTNZ

for all weTUZ Let (F,T) :g(th) = (S TUM), where
F'(w), w €T\M
S(w)=4 H'(w), o € M\T
F(w)\H(w), w€TNM

for all weTUM. Let (K, TUZ) U (S, TUM) = (L(TUAHU(TUM)), where
K(w), w e (TUA\(TUM)

Lw) =] S @ e (TUM\(T UZ)

K@)uS(w), oe(TuZ)n(TuM)

for all @we(7UZ)U(7UM). Hence,

G'(w), weT' NZNM'

H'(®), weT'NZnM

F'(w), weTNEnM

L(w) = F'(w) U H'(w), weTNZENM
G'(w) VU H (w), weT'NZNM

[F (\G(w)] VU F'(w), weTNZNM'

[F ()\G ()] U [F (0)\H(w)], weTNZNM
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It is observed that N=L, where TnZn M' =TnZ'nM= @.Itis obvious that the condition 7
NZ'NnM=TNZNM' = @is equivalent to the condition 7Tn(ZAM) = @.

2)If Tn(AAM), then (F,T) \ [(GZ) V(M) = [(ET)\ (GDIN: [(ET)\ (HM)]
ii) RHS Distributions
1 IE TNZNM' = 0, then [(£T) 0, (G2 (HM) = [(ED)\ (M 0 [(GE) \ (HM)]

Proof: First let’s consider the LHS. Let (£ T) N (G Z) = (R TUZ), where
F(w), o €T\Z
R(w) = G(w), o € Z\T
F@NnG(w), weTNZ

for all weTUZ Let (RTUZ) { (H,M) = (N,(TUZ)UM), where
&

R'(w), we (T UE)\M
N(w) =4 H'(w), e M\(T UZ)
R()\H(w), we(T VZ)NM

for all we(7UZ)UM. Hence,

F'(w), we(MZD\M=TnZnM

G'(w), we@E\D\M=T'NZnM'

F'(w) U G'(0), we(TNZ2D)\M=TNZNM
Ma= H'(), weM\(TUZ)=T'nZnNM
F (w)\H(w), we(T\DNM=TNZnNM
G(w)\H(w), we(E\T)NM=T'NnZnM
[F (@) NG (w)\H(w), weTNENM)=TNZNM

Consider the RHS. Let (F, T) < (HM) = (K, TUM), where
&
F'(w), w €T\M
K@) ={ H'(w), o € M\T
F(w)\H(w), ®w€TNM

for all 9eTUM. Let (G,Z) {S(H,M) — (S, ZUM), where
G'(w), W € Z\M
S(wy=1 H'(w), o € M\Z
GW\H(»), weZnM

for all weZUM. Let (K,TUM) N (SZUM) = (L(TUM)U(ZUM)), where
K(w), o e (TUM)\(EZUM)

L(w) = S(w), w € (ZUM\(T VM)
K@) nS(w), oe(TuM)n(ZuM)

for all we(7TUM)U(ZUM). Hence,
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F'(w), weTNnzZ nM
G'(w), weT'NZN M’
F'(w) N G'(w), weTNZNM
L(w) = { H'(®), weT'NZNM
F (w)\H(w), weTNZnNM
G()\H(w), weT' NZNM
[F (w) NG (w)\H(w), weTNZNM

It is observed that N= L, where TnZNnM= Q.

2) F (TAZ)M =T nZnM=0, then [(ET ) U, (G2)] {k (HM) = [(ET

)\, (MU [(G2) (HM)]

Theorem 3.5.3. Let (F,T),(G,%), and (H, M) be soft sets over U. The complementary
extended difference operation has the following distributions over soft binary piecewise

operations:

i) LHS Distributions
IF T(ZAM) = 0, then (F,T)\ [(6.2) [ (BM)] = [(ET)\ (GD)] JI(ET)\ (HM)]

Proof: Firstlet’s consider the LHS. Let (G %) ; (HM) = (RZ), where

[ G(w), W e Z\M
R(‘g)‘{a(@)nﬁ(@). weZnM

for all weZ Let (F,T) { (RZ) = (N,TUZ), where
&
F'(w), o €T\Z
N() =4 R'(«9), o € Z\T
F()\R(w), w€TNZ
for all we7UZ Hence,

F'(w), 0eT\Z
G'(w), weEMN\T =T NEZnM
L(w) = { G @ VH ), weEZENMN\T=T' NZNM
F (w)\G (w), WweTNEM)=TNZnM
F (w)\[G () N H(w)], weTNEZNM)=TNZNM

Consider the RHS. Let (F,T) {‘8 (G 2) = (KTUZ), where
F'(w), o €T\Z
K@) ={ G'(w), o € Z\T
. F(w)\G(w), w€e€TNZ
forall weTUZ (F,T) \ (HM) = (5 TUM), where
F'(w), o € T\M
S(w)=9 H(w), o € M\T
F(w)\H(w), w€TNM
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for all 9eTUM. Let (KTUZ) [ (STUM) = (L(TUHU(TUM)), where

( K(w), e (TUD\T UM)
L) ‘{K(u;)usag), weTUZ)n(TUM)

for all we(TUZU(TUM). Hence,

F'(9),we(N\H\(TUM) = 0
G'(@),9e(2\D\(TUM) =T'nZnM'
F(o)\G(0),9e(TNA\(TUM) = 0
F'(@)UF'(0),9e(\)N(T\M) =TNZ' n M’
L(w)=| F'(9)UH'(0),we(N\HN(M|T) = 0
| F(@UIF(@\H )], 9e(N\HN(TNM) =TNZ'NM
G'(@)UF'(0),9(2\)N(T\M) = ¢
G'(@)UH'(9),0e(2\DNMT) =T nZnM
G ()V[F (\H( )] ws(Z\IN(TNM) = 0
[F()\G(D)]VF (@), 0e(TNZ) N(T\M) =TNZOM’
[F()\G ()] UH' (@), we(TNHN(MT) = @
[F(D\G ()] V[F(D\H@)]ws(TNnAN(TNM) =TNZNM

Hence,
G'(0), weT'NZNM
F'(w), weTNZnM
F'(9 U H'(w), weTNnZNM
L(®) =4 ¢'(w) U H'(w), weT' NZAM
G (w) U F'(w), weTNZNM'
[F ()\G ()] VU [F (w)\H(w)] weTNZNM

Here, if we consider 7\ Z in the function A, since 7\ Z= 7ThZ” if an element is in the
complement of Z the element is either in M\Zor in (MUZ)." Thus, if we 7T\ Z then €T
NMNZ' or weTNM'NZ". Therefore, N=L, where TNZ'NM=TNZNM' = @. It is obvious
that the condition TnZ'nM=TNZnNM' = @ is equivalent to the condition 7n(ZAM) = @.

2)If TN(ZM) = 0, then (F,T) \ [(GZ) |, (HM)] = [(ET)\ (GD] SI(ET)\ (M)
ii) RHS Distributions:
If MZM) = 0, then [(F, T, (G2 (M) =[(ET) \ (M) J1(G2)\_ (HM)]
Proof: Let's first consider the LHS. Let (£ 7T) G (GZ)=(RT), where
_(F(o), ©eT\Z
R(“’)_{F(u))uG(w) weTNZ
for all weT, Let (R T) ik (H.M) = (N,TUM), where
R'(w), o €T\M
N)={ H'(w), o € M\T
R(w)\H(w), w€TNM
for all ®weTUM. Hence,

110



Sezgin, Akbulut and Demir / Usak Universitesi Fen ve Doga Bilimleri Dergisi 90-114 2024 (2)

F'(w), weTnzZ nM
F'(w) N G'(w), weTNZNM
N(w) = H'(®), w e M\T
F (o)\H(w) weTnzZnM
[F (w) UG (w)\H(®) weTNZNM

*
Now consider the RHS. Let (F, T) \ (HM) = (K, TUM), where
&

F'(®), o € T\M
K(w)={ H'(w), o € M\T
F(w)\H(w), w€TNM

for all weTUM Let (G.2) < (HM) = (S, ZUM), where
£

G'(w), w € Z\M
S(w)=9 H(w), o€ M\Z
GW\H(w), weZnM

for all weZUM. Let (K TUM) [ (52UM)=(L(TUM) U(ZUM)), where
L( )={K(U))r w e (TUMN\EZUM)
PR (@) US(w), 9 e (TUM)N(ZUM)

for all we( TUM)U(ZUM). Thereby,

F'(@),0e(\M\(ZUM) =TNZ' n M’
H'(w),9e(M\T)\(ZUM) =
F()\H(w),ws(TNM)\(ZUM) = @

F'(w) UG'(0),we( \M)N(AM) =TnZnM’

U w)=F'(@)UH'(0),0s( \M)N(M\2) = @

| F'(U[G()\H( )], we(T\M)N(ZNM) = @

H'(@)UG' (w),we(M\T)N(AM) = @
H' (@)UH(@),we(M\T)N(M\2) =T'nZ'nM
H'(@)U[G()\H(@)], we(M\DN(ZNM) =T'NnZNM
[F(D\H ) ]VGC (0),we(TNM)N(AM) = @
[F()\H(@)]UH' (), we(TNM)N(M\2Z) =TNZ'nM

| [FO\H@)IV[G(D\H @)L os(TAMN(ZNM) =TnZnM

for all we(7UM)U(ZUM). Thus,

F'(w), weTnZ nM
F'(0) U G'(w), weTNZnM'
H'(), weT'nZNM
L(@) =1 H'(w), weT' NZNM
H'(®), weTNZNM
[F ())\H ()] U [F (0)\H(w)] weTNZNM

Here, if we consider M\ T'in the function N, since M\ 7=M N T, then if an element is in the
complement of 7, then it is either in 2\ Tor in (ZU T)'. Thus, N=L, where TNZ'nM=TNZ
NM' = @. It is obvious that the condition 7NZ'NM=TNZNM' = @ is equivalent to the
condition 7N(ZAM) = @.
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2) IFCTAM)NZ = @, then [(F,T), (G \_(HM) = [(F.T) \ (HM] [ [(GZ)\ (HM)]

4, Conclusion

The most essential building component of soft set theory for its advancement in both
theoretical and practical domains is soft set operations. Numerous restricted and
expanded operations have been introduced since the theory's 1999 introduction. The
complementary extended difference operation is a novel soft set operation that is
proposed and its algebraic properties are studied in this study. We address the
distributions of complementary extended difference operations over other different kinds
of soft set operations. We believe that this work contributes to the literature of both
classical algebra and soft set theory as the ideas associated with soft set operations are as
important for soft sets as fundamental operations from classical set theory. Specifically,
studying the algebraic structures of soft sets in relation to new soft set operations gives us
a thorough understanding of their application as well as new examples of algebraic
structures. Many types of complemented extended soft set operations may be examined in
future studies together with their distributions and characteristics to find out what
algebraic structures are formed in the classes of soft sets with a fixed parameter set or over
the universe.
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