
     

 

  

 

POLİTEKNİK DERGİSİ  
 
JOURNAL of POLYTECHNIC 
 
 
 
 
 
 
 
ISSN: 1302-0900 (PRINT), ISSN: 2147-9429  (ONLINE) 

URL: http://dergipark.org.tr/politeknik 
 

 
Collision Avoidance for Autonomous 

Unmanned Aerial Vehicles with Dynamic and 

Stationary Obstacles 

Otonom İnsansız Hava Araçları için Dinamik ve 

Sabit Engellerle Çarpışmayı Önleme 

Yazar(lar) (Author(s)): Elif Ece ELMAS1, Mustafa ALKAN2 

 

ORCID1: 0000-0001-9804-0112 

ORCID2: 0000-0002-8503-9697 

 

 

To cite to this article: Elmas E.E., ALKAN M. ,“Collision Avoidance for Autonomous Unmanned Aerial 

Vehicles with Dynamic and Stationary Obstacles”, Journal of Polytechnic, *(*): *, (*). 

 

Bu makaleye şu şekilde atıfta bulunabilirsiniz: Elmas E.E., ALKAN M. ,“Collision Avoidance for 

Autonomous Unmanned Aerial Vehicles with Dynamic and Stationary Obstacles”, Politeknik Dergisi, *(*): 

*, (*). 

  
 
Erişim linki (To link to this article): http://dergipark.org.tr/politeknik/archive 

DOI: 10.2339/politeknik.1474359 

 

http://dergipark.org.tr/politeknik
http://dergipark.org.tr/politeknik/archive


 

 
 

Collision Avoidance for Autonomous Unmanned Aerial Vehicles 

with Dynamic and Stationary Obstacles 

Otonom İnsansız Hava Araçları için Dinamik ve Sabit Engellerle 

Çarpışmayı Önleme 
Highlights 

❖ Dynamic obstacle detection 

❖ Static obstacle detection 

❖ Collision avoidance system in UAVs 

 

Graphical Abstract 

An approach using optical flow and lidar sensors is recommended to avoid dynamic and static obstacles in unmanned 

aerial vehicles. 
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Figure. The block diagram of Collision Avoidance System 

Aim 

It is aimed to ensure safe navigation in unmanned aerial vehicles by avoiding dynamic and static obstacles. 

Design & Methodology 

Simulation tests using MATLAB Simulink show that the proposed obstacle avoidance system works efficiently with the 

real-time use of LiDAR and Optical Flow. 

Originality 

The originality of the study is that the designed system detects dynamic and static objects in UAVs using optical flow 

and lidar sensors and plans an obstacle-free path. 

Findings 

Experiment and simulation results show that the system creates the obstacle-free flight path of the UAV in different 

operating conditions. 

Conclusion 

The study presents a new collision avoidance system that involves the use of LiDAR to detect static obstacles and OF 

to detect dynamic obstacles during flight in an unmanned aerial vehicle. By combining LiDAR's high-resolution 

spatial data with OF's relative motion detection capability, the proposed system enables the detection and avoidance 

of both static and dynamic objects while in motion. 
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 ABSTRACT 

The use of autonomous unmanned aerial vehicles (UAVs) has become one of the most used in many sectors in the 

last few years. This growing reliance on UAVs necessitates advanced navigation systems to ensure their safe and 

efficient operation, particularly in environments dense with both static and dynamic objects. Collision avoidance is a 

fundamental requirement in such scenarios. This study introduces a novel collision avoidance system for an UAV that 

incorporates the use of LiDAR for the identification of stationary and an optical flow (OF) for the identification of 

dynamic obstructions in their path. By fusing LiDAR’s high-resolution spatial data with the relative motion detection 

capability of the OF, proposed system enables detection and avoidance of both static and dynamic objects on-the-fly. 

To evaluate the efficacy of the proposed system, various simulation and experiment were conducted. The results 

indicate that the system successfully avoids either stationary or dynamic obstacles. 

Keywords: LiDAR, Optical flow, UAV, Sensor Fusion, Trajectory Planning, Collision Avoidance. 

Otonom İnsansız Hava Araçları için Dinamik ve Sabit Engellerle 

Çarpışmayı Önleme 

ÖZ 

Otonom insansız hava araçlarının (İHA) kullanımı son yıllarda birçok sektörde çok yaygın kullanım alanı bulmuştur. 

İHA'ların kullanımının artması, özellikle sabit ve dinamik nesnelerle dolu ortamlarda, güvenli ve verimli bir şekilde 

çalışabilmeleri için gelişmiş navigasyon sistemlerini gerektirmektedir. Bu tür senaryolarda çarpışmadan kaçınmak 

temel bir gerekliliktir. Bu çalışma, bir İHA için, yollarındaki dinamik engellerin tanımlanması için sabit ve optik akışın 

(OF) tanımlanması için LiDAR kullanımını içeren yeni bir çarpışma önleme sistemi sunmaktadır. LiDAR'ın yüksek 

çözünürlüklü mekansal verilerini OF'nin göreceli hareket algılama yeteneğiyle birleştirerek önerilen sistem, hareket 

halindeyken hem statik hem de dinamik nesnelerin algılanmasını ve bunlardan kaçınılmasını sağlamaktadır. Önerilen 

sistemin etkinliğini değerlendirmek için çeşitli simülasyon ve deneyler yapılmıştır. Sonuçlar sistemin hem sabit hem 

de dinamik engellerden başarılı bir şekilde kaçındığını göstermektedir. 

Anahtar Kelimeler: LiDAR, Optik akış, İHA, Sensör Füzyonu, Yörünge Planlama, Çarpışma Önleme

1. INTRODUCTION 

The use of autonomous unmanned aerial vehicles 

(UAVs) has become one of the most used in many sectors 

in the last few years. Due to their unique flying 

capabilities, state-of-the-art air-borne drones have 

transformed fields such as precision agriculture, 

infrastructure inspection, search and rescue missions, and 

last-mile deliveries, making them more efficient and 

successful than ever before. Despite all these advances in 

UAV technology, problems with safety and reliability in 

practical operational situations still remain.Among other   

things, one major challenge is connected with an 

avoidance system that must reliably detect every 

potential obstruction posing a hazard to the flight path. 

The main focus of detection sensors with the purpose of 

detecting stationary obstacles belongs to a typical radar 

unit, camera system, and ultrasonic devices in this 

research area. Another challenge, however, is avoiding 

contact with birds, or other flying objects. There are two 

major reasons why this happens first, their movements 

are very unpredictable, making tracking them even 

harder than stationary structures. 

In addition, the dimensions and weight of the UAV, its 

energy consumption, and its computing power impose 
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certain restraints regarding the choice of sensors and 

algorithms that can be used on board, meaning that their 

application is limited. The creation of an environment 

where automated flight would be unsafe in most 

obstruction cases is highly significant to protect lives as 

well as property from hazardous incidents. One approach 

to achieve this goal is by developing systems that are 

computationally efficient and capable of reliably 

avoiding collisions with stationary obstacles like 

buildings or trees as well as moving ones such as 

vehicles. The aim of this study is to address a problem 

that many researchers overlook real-time avoidance of 

dynamic obstacles using stationary UAVs. 

The topic under consideration now relates to a technique 

of creating a drone system that involves LiDAR and 

optical flow algorithms for motion estimation. Through 

this combination, we obtain a system that not only detects 

objects around the UAV but also recognizes possible 

threats ahead. 

One of the applications for these technologies is to detect 

stationary or moving threats, facilitating their avoidance 

and thereby preventing reactive evasion, which usually 

ends up with an attack. In addition, such a system will 

greatly enhance the safety level of unmanned aerial 

vehicle operations, especially in the implementation of 

light or low-powered airplanes. 

There are two main research goals we are trying to 

achieve in this study: 

• Creating a cutting-edge real-time system that enables 

autonomous UAVs to detect obstacles using a LiDAR 

and track motion using an optical flow (OF). 

• Developing an avoidance algorithm that can initiate 

immediate manoeuvres when potential collisions 

with either moving or stationary obstacles are 

predicted. 

2. MATERIAL AND METHOD 

The increasing adoption and integration of UAVs into the 

airspace pose significant challenges in ensuring their safe 

operation without human intervention. Nevertheless, 

remarkable advancements have been achieved in tackling 

these challenges by incorporating cutting-edge 

technologies. The incorporation of Collision Avoidance 

Systems (CAS), Geo-Fencing, AI and ML, Path Planning 

and Optimization, and Sensor-Based CAS has brought 

about a revolutionary improvement in the safety and 

effectiveness of UAV operations [1, 2]. 

The safety of UAV operations in urban areas with a large 

population has been greatly enhanced through the 

implementation of CAS. In the research, Wang et al. [3] 

and others [4, 5] thoroughly discuss the algorithms and 

methods employed in these systems, focusing on the 

crucial role of real-time communication between UAVs 

in avoiding encounters that occur during the mid-air. The 

enactment of pre-programmed no fly areas and 

geographic encouragement is essential to this regard. 

The idea of geo-fencing is derived from the creation of 

virtual boundaries that isolate the behaviour of aerial 

vehicles. This simple and effective method is used to 

prevent UAVs from flying in areas that are restricted. 

However, it does not address the issues caused by 

dynamic obstacles or the avoidance of other unplanned 

aerial vehicles. The commonplace implementation of 

geo-fencing technology in the management of UAVs has 

been observed in the control of security-related areas, this 

is particularly true of areas with a significant security or 

accessibility concerns. In their study, Torens et al. [6] 

investigate the practicality of the geo-fencing principles 

that prohibit UAVs from entering areas with no fly, such 

as airports or military bases. Additionally, Kim and 

Atkins [7] documented the creation of dynamic geo-

fencing, this technology enables immediate updates to 

restrictions based on environmental changes or specific 

event-related necessities. 

The advances in the field of AI and ML have led to the 

creation of complex CAS that are derived from the 

knowledge that is gained through practice. Through the 

analysis of data from previous flights and computer 

simulations, AI can prevent potential collision and 

determine the most effective evasive actions. These 

systems can adapt to different habitats and obstacles, this 

increases their effectiveness over time. However, the 

necessity of large amounts of data and computational 

power may preclude the immediate implementation of 

these ideas on smaller UAVs. Elmas and Alkan [8] stated 

the important elements for the design, simulation and 

implementation of the Unmanned Aerial Vehicle System. 

Günay and Korkut [9], Canpolat Tosun [10] state 

important issues in the fields of drone design and orbit 

control in their studies. 

 The combination of AI and ML in UAV operations has 

led to the development of autonomous flight capabilities, 

this has had the effect of increasing efficiency and safety. 

Wu et al. [11] conducted a comprehensive study that 

employed machine-learning-based methods to predict 

and reduce the probability of human error, ultimately 

decreasing the error rate. Also, Teixeira et al. [12] 

conducted a research study that demonstrates the value of 

deep learning in increasing the capacity of UAVs to 

recognize images, this is important for missions like 

search and rescue or agricultural monitoring. 

The path planning and the optimization are both vital to 

the mission. The procedure of finding the shortest path 

and safest way for a UAV to travel to its intended 

destination while also avoiding obstacles is called path 

planning and optimization. Various algorithms, such as 

A* (A-star), Rapidly-exploring Random Trees (RRT), 

and their variants, are often used for this purpose. These 

algorithms can immediately alter the flight path of the 

UAV, considering any new obstacles or environmental 

changes. However, the computational complexity of 

these algorithms can have a significant impact, 

particularly on the rapid planning of paths in complex 

environments. The safe and efficient flight of UAVs is 

primarily supported by effective path planning and 

optimization. Huang et al. [13] present a cutting-edge 

algorithm that creates paths that are dynamic and take 



 

 

into account environmental variables that are 

unpredictable like erratic weather. Similarly, Chen et al. 

[14] focus on methods that have a balanced duration of 

flight and expenditure of energy; while also maintaining 

safety, this increases the overall effectiveness of UAVs 

in practice. 

2.1. Sensor-Based Collision Avoidance Systems 

One of the CAS for UAVs is the utilization of sensors-

based systems. These systems are primarily dependent on 

the sensors on the UAV that recognize and detect 

obstacles as well as other aircraft, this guarantees the 

safety of the UAV around its intended area. 

The investigation of LiDAR-based mapping and 

localization methods for UAVs in GPS-disabled 

environments has been studied in depth. Notably, 

Christiansen et al. [15] and Youn et al. [16] created a 

system that employs LiDARs and other sensors to 

estimate the state of small air vehicles. Their findings 

demonstrated a remarkable degree of accuracy, this led 

to the development of autonomous flight in complex 

environments. Droeschel et al. and Qian et al. [17, 18] 

also developed a method of combining LiDAR scans, 

RGB-D images, and inertial data on a quadrotor UAV 

and a robotic platform. This method facilitated the 

identification and mapping of a platform without 

necessitating external assistance. Through their 

experiments, they showed that unmanned aerial vehicles 

with LiDAR were capable of flying without supervision. 

The practical application of LiDAR technology to 

recognize obstacles and avoid them on UAVs has been 

studied in greater detail. In their research, Park and Cho 

[19] created a practical method of obtaining information 

regarding obstacles in LiDAR-based point clouds and 

avoiding interactions when using UAVs. Similarly, 

Ramasamy et al. [20] proposed a method that utilizes 3D 

LiDAR data that is separated by distance, the data is then 

classified as obstacles, this method allows humans to be 

automatically travelled through areas that are unfamiliar 

without the use of GPS. These investigations show the 

potential of combining LiDAR with specialized software 

that can be employed to process point clouds in order to 

ensure safe flying around obstacles [21, 22]. 

With their superior spatial resolution and precise 

measurement of distance, LiDAR has become a 

significant component of the detection of obstacles. In 

their research, Alonso-Mora et al. [23] developed a CAS 

that is proactive and employs 3D LiDAR. This 

innovative system visualizes the surrounding 

environment as a series of points that represent obstacles. 

By sampling a space with velocity, the system generates 

potential paths that avoid collisions, this ensures that the 

UAV maintains a safe distance from obstacles. In CAS 

domain, OF methods are similar to LiDAR in that they 

both rely on visual information from cameras to estimate 

the motion of objects [24]. Through the analysis of the 

patterns of motion in pixels between different frames, 

their system was able to differentiate between objects that 

are moving and stationary, this information was then 

used to alter the flight path of the UAV. 

Deng et al. [25] Investigated the creation of a plan for 

regulating UAVs that utilize OF. By analysing the OF 

vectors from a single-lens camera that has a lens with a 

fixed focal length, the system can deduce the distance and 

velocity of objects. This methodology effectively 

demonstrated the capacity of OF in avoiding collisions in 

real time, this was especially true of situations where 

GPS was not accessible. The implementation of OF has 

been facilitated by the addition of machine-learning 

algorithms, this has led to an increase in the capacity to 

avoid and recognize obstacles. Recent research, such as 

the one conducted by Gandhi et al., and Kalidas et al. 

[26,27], have demonstrated a deep learning-based 

method that is successful in predicting and responding to 

the motion of dynamic obstacles. 

The utilization of OF and deep learning aided the creation 

of a system of design-based vision by Cho et al. [28] 

Separate investigation. This system demonstrated the 

capacity to recognize and observe objects moving around 

them, this altered the course of the UAV in order to avoid 

any potential conflicts. The authors demonstrated the 

effectiveness of their approach by conducting both 

theoretical and practical experiments in the real world. 

In their study, Florence et al. [29] developed a system of 

perception that is specifically designed to be used with 

UAVs, this system combines LiDAR point clouds with a 

deep-learning-based approach to OF. Their system has 

the ability to avoid from dynamic objects as well as the 

capacity to create safe flight paths in complex urban 

areas. The successful combination of machine learning 

with sensor fusion is a demonstration of the likely 

benefits of adaptive and intelligent CAS. 

2.2. Horn-Schunck method 
A cornerstone technique in computer vision applications 

is the Horn-Schunck method, which is used to estimate 

OF by addressing the aperture problem through the 

enforcement of a global smoothness constraint. The 

Horn-Schunck method has been recognized for its 

capacity to produce smooth OF fields. This method is 

derived from the assumption that the motion in the image 

plane is typically consistent, this promotes uniformity 

and decreases the probability of anomalous patterns of 

flow [30]. By considering motion as a form of global 

energy, the algorithm attempts to reduce it, which leads 

to a more uniform distribution of flow across two 

dimensional images. 

The minimization of a global energy functional defines 

the flow. This functional is specifically designed for two-

dimensional image sequences and can be described as 

follows: 

𝐸 = ∬[(𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡)2 + 𝛼2(‖∇𝑢‖2 +

‖∇𝑣‖2)] 𝑑𝑥𝑑𝑦                                                 (1) 

where 𝐼𝑥, 𝐼𝑦 and 𝐼𝑡 are the derivatives of the image 

intensity values along the x, y and time dimensions 



 

 

respectively, and the parameter α is a regularization 

constant. 

Increasing α values result in a more uniform flow. 

Minimization of this functional is achieved through 

solving the corresponding multi-dimensional Euler–

Lagrange equations. These are; 

𝜕𝐿

𝜕𝑢
−

𝜕

𝜕𝑥

𝜕𝐿

𝜕𝑢𝑥
−

𝜕

𝜕𝑦

𝜕𝐿

𝜕𝑢𝑦
= 0                                                   (2) 

𝜕𝐿

𝜕𝑣
−

𝜕

𝜕𝑥

𝜕𝐿

𝜕𝑣𝑥
−

𝜕

𝜕𝑦

𝜕𝐿

𝜕𝑣𝑦
= 0                                                   (3) 

Where 𝐿  is the integrand of the energy expression, giving 

𝐼𝑥(𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡) − 𝛼2∆𝑢 = 0                                      (4) 

𝐼𝑦(𝐼𝑥𝑣 + 𝐼𝑦𝑣 + 𝐼𝑡) − 𝛼2∆𝑣 = 0                                    (5) 

where subscripts again denote partial differentiation and 

∆=
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2  denotes the Laplace operator. In practice 

the Laplacian is approximated numerically using finite 

differences, and may be written ∆𝑢(𝑥, 𝑦) = (�̅�(𝑥, 𝑦) −
𝑢(𝑥, 𝑦)) where �̅�(𝑥, 𝑦) is a weighted average of 𝑢 

calculated in a neighbourhood around the pixel at 

location (𝑥, 𝑦) Using this notation the above equation 

system may be written; 

( 𝐼𝑥
2 + 𝛼2)𝑢 + 𝐼𝑥𝐼𝑦𝑣 = 𝛼2�̅� − 𝐼𝑥𝐼𝑡                                        (6) 

𝐼𝑥𝐼𝑦𝑢 + ( 𝐼𝑦
2 + 𝛼2)𝑣 = 𝛼2�̅� − 𝐼𝑦𝐼𝑡                                (7) 

which is linear in 𝑢 and 𝑣 and may be solved for each 

pixel in the image. However, as the solution is contingent 

on the adjacent values of the flow field, it necessitates 

repetition after the neighbouring values are updated. This 

iterative scheme is formulated by employing Cramer's 

rule: 

𝑢𝑘+1 = 𝑢−𝑘 −
𝐼𝑥(𝐼𝑥𝑢𝑘+𝐼𝑦�̅�𝑘+𝐼𝑡)

𝛼2+𝐼𝑥
2+𝐼𝑦

2                                         (8) 

𝑣𝑘+1 = 𝑣−𝑘 −
𝐼𝑦(𝐼𝑥𝑢𝑘+𝐼𝑦�̅�𝑘+𝐼𝑡)

𝛼2+𝐼𝑥
2+𝐼𝑦

2                                           (9) 

where the superscript 𝑘 + 1 denotes the subsequent 

iteration to be calculated, with 𝑘 representing the last 

computed result. Essentially, this is a matrix splitting 

technique akin to the Jacobi method, utilized for the 

extensive, sparse system that emerges when solving for 

all pixels in unison. 

The Horn-Schunck method offers the advantage of 

producing a dense array of flow vectors, effectively 

interpolating the flow information within the inner 

regions of uniform objects from the motion boundaries. 

However, it has the drawback of being more susceptible 

to noise compared to local techniques. 

3. PROPOSED SYSTEM ARCHITECTURE 

To guarantee the safety and effectiveness of autonomous 

UAVs in complex settings, a CAS has been proposed that 

is combined LiDAR, OF, and IMUs to effectively 

navigate through intricate surroundings and avoid 

collisions as shown in Figure 1. The system employs 

sensor fusion technology to combine multiple, carefully 

chosen hardware components that together contribute to 

the overall effectiveness and dependability of the system. 

Among these components are LiDAR and cameras, 

which continuously provide real-time information about 

the UAV's surroundings. 

Additionally, the system has a processor to run algorithm 

to calculate potential crash risks and appropriate 

avoidance actions in real time. It also has a 

communication module to provide effective monitoring 

and control by transferring data between the UAV and 

ground control stations. 

3.1. Detailed Overview of System Hardware 

Components 

The block diagram of the proposed UAV system is 

shown in Figure 1. The system consists of three parts 

Navigation Unit, Communication Module, and Collision 

Avoidance System. The sensors in each unit are crucial 

for enabling the UAV to navigate its surroundings and 

ensure a safe flight. 
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Figure 1. The system block diagram of the proposed UAV system 



 

 

3.1.1. Navigation unit 

The unit comprises three components; 

Global Positioning System (GPS): GPS is one of the 

most vital technologies that help drones achieve accurate 

geographical positioning. In proposed system, the time 

period of the GPS module is 1 s. 

Inertial Measurement Unit (IMU): The IMU provides 

accurate information regarding the UAV's attitude, 

velocity, and acceleration that ensure consistent flight 

and precise guidance. The IMU typically provides 

readings at a higher rate, for example 0.02 s, and the 

average of these values in 1 s has been incorporated into 

the system. 

Digital Compass: The Digital Compass is a modern 

technology that employs magnetometers to detect Earth’s 

magnetic field, determining the direction of the UAV 

from magnetic north. When included in the UAV 

systems, such compasses contribute to the enhancement 

of control systems, making them much more accurate and 

therefore usable for sophisticated and subtle flight 

missions. 

3.1.2. Communication module 

The inclusion of a communication module in the UAV 

facilitates the exchange of data between the UAV and 

ground control stations or neighbouring UAVs. This 

functionality enables remote monitoring and control, as 

well as the implementation of cooperative collision 

avoidance measures. 

3.1.3. Collision avoidance system 

The collision avoidance system is crucial for ensuring the 

UAV's safety and the safety of the environment it 

operates in. It is equipped with an array of sensors 

designed to detect both dynamic (moving) and static 

(stationary) obstacles that may lie in the UAV's path. 

These sensors include a LiDAR and an OF. The block 

diagram of the CAS that contains two components is 

shown in Figure 2. 

LiDAR: To ensure the precise and immediate 

recognition of obstacles near the UAV, a cutting-edge 

LiDAR sensor is employed. This advanced sensor 

produces laser waves and calculates the amount of time 

it takes for the waves to return, this creates a detailed 3D 

representation of the area around it. 

Optical Flow: The OF has a significant impact on the 

motion and orientation of the UAV in relation to its 

surroundings. The Horn-Schunck method is used to 

produce smooth OF fields. By taking a series of pictures 

and analysing the motion of specific features within each 

picture, the OF can deduce the velocity and rotary rate of 

the UAV. 

Figure 2 demonstrates the placement of various sensory 

devices, including cameras, and communication 

antennae, the landing gear, payload spaces, and other 

components that are crucial to the UAV's capacity to 

move, gather information, and maintain communication 

with the ground station. The on-board computer has 

primary purpose is to analyse and interpret a consistent 

series of sensor data to determine the most effective way 

to avoid collisions. 

Optical Flow Sensor

Dynamic Obstacle 
Detection

Flight Control System

Collision Avoidance 
System

LiDAR Sensor

Static Obstacle 
Detection

 

Figure 2. The block diagram of Collision Avoidance 

System 

3.2. Overview of the Autonomous UAV 

The state-of-the-art system comprises an extensive 

collection of software and hardware elements, 

meticulously crafted to fulfil distinct tasks and 

synergistically enhance the system's overall efficiency. 

In Figure 3, a detailed visual representation of the 

autonomous UAV is provided, showcasing both its 

external architecture and the integrated systems that are 

crucial for its operation. 

LiDAR

Camera

GPS

Compass
IMU

 

Figure 3. The comprehensive external representation of 

the autonomous UAV 

The features of the autonomous UAV shown in Figure 3. 

are given in Table 1. 

 



 

 

Table 1. The features of the autonomous UAV 

Product Features 

Wheelbase 630mm 

Sizen(LxWxH) 510x510x255mm 

Weight 5kg 

Brushless DC Motor 700KV 

Carbon Fiber Propellers 155mm 

Working current 30A 

Input voltage 2-4S 

LiPo Battery 11.1 V 4400 mAh 30C 

 

The software encompasses a range of essential 

components, including trajectory planning, obstacle 

detection and classification algorithms, motion 

estimation algorithms, collision avoidance algorithms, 

and the flight control system, as depicted in Figure 4. The 

crucial function of each module is to guarantee the safe 

navigation of UAVs in their environment. 
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Figure 4. Detailed overview of system software components 

 

Flight Control System: The collision avoidance 

algorithm provides collision avoidance manoeuvres to 

the flight control system, which then converts them into 

control commands for the actuators of the UAV. The 

flight control system enables the execution of the desired 

manoeuvres and prevents collisions by adjusting the 

attitude, throttle, and control surfaces. The follow chart 

of the flight control system is shown in Figure 5. 

Trajectory Planning: Once obstacles have been 

detected and classified, the UAV is tasked with devising 

a secure trajectory in order to circumvent any potential 

collisions. To accomplish this, path planning algorithms 

are employed, taking into account the UAV's present 

location, the positions of obstacles, and the UAV's 

dynamic limitations (e.g., top speed and turning radius). 

Collision Avoidance Algorithm: At the heart of the 

system lies the collision avoidance algorithm, which 

serves as its foundation. This algorithm takes into 

account the UAV's estimated motion and the obstacles 

detected, and then generates the necessary collision 

avoidance manoeuvres. Several factors are considered in 

order to determine the most effective method of avoiding  

 

 

obstacles, the distance to obstacles, the speed and agility 

of the UAV, and the nature of the surroundings.   

The collision avoidance algorithm is composed of two 

distinct units; 

Obstacle Detection and Classification Algorithm: This 

algorithm is a software module that utilizes LiDAR to 

detect and categorize obstacles along the path of the 

UAV. It can recognize different types of obstacles such 

as buildings, trees, other aircraft and moving objects. 

Motion Estimation Algorithm: This algorithm uses the 

Optical Flow data to determine the motion and 

orientation of the UAV. It can calculate the velocity and 

angular rates of the UAV by tracking feature points in 

consecutive images. This information plays a crucial role 

in predicting the UAV's future path and identifying any 

potential risks of collision. 
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Figure 5. The flow chart of the flight control system 

4. EXPERIMENTAL EVALUATION 

4.1. Simulation Tests 

MATLAB Simulink was employed to simulate the 

system as given in Figure 6. An extensive simulation tests 

was done using in order to evaluate the efficiency of CAS 

that incorporate LiDAR and OF in real-time. 

4.1.1. Results and performance metrics from 

simulation tests 

Various metrics were employed in order to evaluate the 

performance of the UAVs during the simulation such as 

collision rate, response time and path efficiency. The 

collision rate, which directly measured the system's 

primary goal of avoiding collisions, indicated the 

percentage of flights that involved a UAV coming into 

contact with an obstacle. 

In order to make a comprehensive evaluation, various 

simulation scenarios, some relatively simple and some 

complex, were tried. Some scenarios were relatively 

simple, with few obstacles that made navigation 

straightforward. On the other hand, there were highly 

intricate environments with densely packed and 

unpredictably moving obstacles. 

 

 

 

 

 

Figure 6. Block diagram of the system simulated in MATLAB Simulink 

Throughout these simulations, a UAV successfully 

identified objects of different sizes and locations, 

whether they were stationary or in motion. To fulfil its 

mission, the UAV followed a predetermined path that 

included intermediate waypoints. If the UAV 

encountered an obstacle while following its designated 

course, it utilized its LiDAR sensor to detect and 

recognize the obstacle. Once the obstacle was bypassed, 

the UAV resumed its journey, adhering to the established 

waypoints until the mission was accomplished. Figure 7 



 

 

showcases the quadcopter's ability to detect both 

stationary and mobile obstacles using LiDAR during its 

flight. 

To accurately simulate real-world flight scenarios, 

obstacles of varying sizes have been strategically 

positioned at random locations within the simulation 

environment. 

 

Figure 7. Detection of obstacles with LiDAR during the 

flight of the UAV 

In Figure 8a, the simulation results showcase successful 

navigation along the obstacle-free path by following the 

designated waypoints. On the other hand, Figure 8b 

depicts the path followed when both dynamic obstacles 

were detected using the OF method and stationary 

obstacles were detected using LiDAR. 

 

(a) 

 

(b) 

Figure 8. Detailed simulation results (a) obstacle-free 

path obtained by following the way (b) route followed as 

a result of detecting dynamic and stationary obstacles 

Figures 9a and 9b illustrate the flight paths of the UAV 

in the simulation. The UAV travels from the starting 

point to the target point, covering a distance of 97 m 

while manoeuvring around 3D triangular obstacles. 

Additionally, it follows the intermediate points and 

avoids obstacles represented by red balls, resulting in a 

path length of 108.3612 m. The outcomes of the 

simulation are affected by factors such as the position, 

quantity, and size of the intermediate points, as well as 

the location, size, and number of stationary and dynamic 

obstacles. 

Table 2 provides comprehensive information on the path 

lengths for both cylindrical and triangular obstacles. 

Initially, the round-trip distance from the start to the 

target and back is determined by calculating obstacle-free 

paths. However, this distance may vary as the shortest 

route is determined by navigating through the 

intermediate points. 

 

(a) 

 

(b) 

Figure 9. The results of the route (a) The UAV travels 

from the starting point to the target point (b) The route it 

follows when returning from the target to the starting 

point 

The agility of the UAVs' avoidance manoeuvres when 

faced with obstacles was assessed through response time. 

This metric measured how quickly the UAVs reacted 

upon detecting a potential collision. To evaluate the 

impact of avoidance behaviour on mission efficiency, 

path efficiency was analysed. It examined the deviation 



 

 

from the optimal path taken to avoid obstacles. 

Additionally, the computational load was monitored to 

ensure that the system did not overwhelm the UAVs' on-

board processing capabilities. The simulation tests 

yielded promising results, with a significantly low 

collision rate observed in all scenarios. The UAVs 

displayed rapid response times, especially in dynamic 

environments where obstacle movements were 

unpredictable. While path efficiency was slightly 

compromised in highly complex scenarios, it did not 

undermine the achievement of mission objectives. 

Furthermore, the computational load remained within 

acceptable limits, confirming the system's suitability for 

real-time application. 

Table 2. Path lengths for both cylindrical and triangular 

obstacles 

Distance 
Triangular 

Obstacle 

Cylinder 

Obstacle 

Way Point 

(Start to Target) 

meters 

97 97 

Obstacle Avoidance 

Enable (Start to 

Target) meters 

108.3612 109.1072 

Way Point (Start -

Target -Start) 

meters 

194 194 

Obstacle Avoidance 

(Start -Target- 

Start) meters 

221.7968 222.2466 

Figure 10 shows the difference between the desired and 

current position of the UAV in the X, Y and Z axes, 

respectively, throughout the simulation. Figure 11 shows 

the desired yaw angle values in radians, calculated 

according to the obstacle and waypoints in the X, Y and 

Z axes of the UAV, respectively. 

Upon encountering an obstacle, the UAV undergoes a 

shift in its position, accompanied by a corresponding 

adjustment in the yaw angle, which plays a vital role in 

steering the vehicle. 

By evaluating the distances to both the obstacle and the 

waypoints, the UAV is directed towards its intended 

destination, successfully attaining the designated 

positions and yaw angles at specified intermediate points. 

The manipulation of the yaw angle is crucial for 

executing manoeuvres or adhering to a pre-established 

trajectory. 

 

Figure 10. Position errors in the UAV's X Y Z axes 

 

Figure 11. Desired yaw of the UAV according to 

obstacles and waypoints 

4.2. Experiments 

4.2.1. Setup and execution of real-world tests 

Many experiments were conducted to verify the validity 

of the simulation results and assess the system's 

effectiveness in actual scenarios. The UAVs had LiDAR 

and camera (used by optical flow), both of which were 

used to detect obstacles. 

Several tests were conducted that covered the entire 

spectrum of basic waypoint navigation in areas that were 

devoid of obstacles to intricate manoeuvres around 

objects that were moving. 

The safety protocols were consistently followed, as 

evidenced by the presence of emergency override 

manuals and the constant monitoring of UAV flights by 

observers. 

 

 

 

 

 



 

 

4.2.2. Case study: Avoiding a thrown ball 

To assess the real-world capabilities of a UAV, a 

demanding test was conducted where the objective was 

for the UAV to evade a ball hurled into its trajectory. This 

specific scenario was carefully crafted to replicate the 

presence of an unforeseen and rapidly moving obstacle, 

thereby evaluating the UAV's capacity to swiftly respond 

in real-time. 

While following its predetermined flight path, the UAV 

unexpectedly encountered the ball, which crossed its 

trajectory. The LiDAR and OF swiftly detected the 

presence of the ball, prompting the UAV's collision 

avoidance algorithms to activate. In response, the UAV 

swiftly manoeuvred to evade the ball and ensure a secure 

separation between the two. 

The Horn-Schunck method, known for its effectiveness 

in handling sparse feature sets, has been utilized to 

determine the motion vectors that depict the trajectory 

and velocity of moving objects in frames captured at two 

distinct time points (t0 and t+1).  

The OF result, displayed in Figure 12, illustrates the 

analysis of movement between Frames (a) and (b). This 

visual representation often manifests as a collection of 

arrows or vectors, with each arrow denoting the direction 

and magnitude of motion for specific points or patches 

within the images. The arrow's direction indicates the 

motion's direction, while its length signifies the speed of 

the motion. 

 

     

(a)                                                    (b)                                                    (c) 

Figure 12. The result of the OF from frames (a) First Image at t0 time; (b) Second Image at t+1 time, (c) OF result 

between images 11a and 11b 

 

To assess the real-world capabilities of a UAV, a 

demanding test was conducted where the objective was 

for the UAV to evade a ball hurled into its trajectory. In 

its designated flight path, the unmanned aerial vehicle 

came upon an errant ball that was not supposed to be 

there. The avoidance system in the UAV sprang into 

action, immediately after the LiDAR and the OF 

identified the ball. Thus, the UAV precisely calculated a 

deviation from its route so as not to collide with the ball 

using this input data, ensuring a sufficient distance 

between them. 

In this work, we employed the Horn-Schunck algorithm 

as one of the well-known techniques in solving a sparse 

set of features to estimate motion vectors which are used 

to track moving objects. These motion vectors present the 

direction and speed of each object from two consecutive 

frames (t0 and t+1). The optical flow output in Figure 

12a, obtained by applying the Horn-Schunck algorithm 

on image pair (a) and (b), provides an analysis of 

movement between frames. A typical visual 

representation is composed of a cluster of arrows or 

vectors indicating directions and magnitudes of 

movements in various points or patches within images. 

The direction reveals where a motion was coming from, 

whereas its length indicates how fast it has been. 

 

Employing a method that relies on computers allows for 

a more extensive analysis of the patterns of motion. This 

advanced understanding is aided by the graphical 

representation of OF vectors, these are represented by 

arrows that are colourful red. These arrows have the 

purpose of demonstrating the direction and magnitude of 

the motion of objects, they also provide a means to 

evaluate the motion. The significance of this dual 

representation is significant, as it helps to differentiate 

between different speeds and directions in a particular 

scene, this will allow a more detailed understanding of 

the underlying principles. 

In a series of carefully planned experiments, collision 

avoidance with Unmanned Aerial Vehicles (UAVs) was 

successfully achieved during flight tests carried out on 

courses with different obstacles and in varying weather 

conditions. These experiments aimed to evaluate the 

ability of UAVs to overcome various obstacles and how 

they react in different weather conditions. The results 

highlight the importance of using UAV technology 

effectively in environments where it may encounter 

various challenges. The system is efficient at handling 

both stationary obstacles, such as trees and bridges, and 

mobile ones, including birds and other aerial vehicles. 

However, it's noteworthy that in areas with many 



 

 

obstacles and a lack of visible light, the effectiveness of 

optical flow may be diminished. Despite this, this 

solution provides alternative navigational options in 

inhospitable environments. 

5. CONCLUSION 

This study introduces a novel collision avoidance system 

for an UAV that incorporates the use of LiDAR for the 

identification of stationary and an OF for the 

identification of dynamic obstructions in their path. By 

fusing LiDAR’s high-resolution spatial data with the 

relative motion detection capability of the OF, proposed 

system enables detection and avoidance of both static and 

dynamic objects on-the-fly. To evaluate the efficacy of 

the proposed system, various simulation and experiment 

were conducted. The results indicate that the system 

successfully avoids either stationary or dynamic 

obstacles. 
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