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Abstract: This study focuses on collaborative UAV/UGV routing problem in emergency logistics aiming to optimize 

the coordinated delivery efforts of both vehicles during disaster situations. By using a mixed integer model the 

study identifies the best delivery points and assigns specific drones to transport medical supplies to designated 

emergency assembly points. The research methodically assesses how UAV speed, UGV stops and cluster numbers 

affect delivery time. The results show that increasing UAV speeds and reducing stops and clusters generally lead 

to deliveries but achieving the time requires a careful balance due to their complex interactions. The study suggests 

that strategic coordination between UAVs and UGVs can significantly improve the efficiency of emergency logistics 

systems potentially reducing response times in disaster relief and medical supply deliveries. In conclusion the 

model highlights the potential for enhancements, in emergency response capabilities that could help save lives and 

lessen disaster impacts. Future studies should consider adapting the model for conditions and unpredictable 

scenarios to ensure resilience against demands. 
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Introduction 

Natural disasters are increasing day by day around the world. Climate change is one of the primary 

issues contributing to the increase in these disasters. As a result, human life and development are 

negatively affected. Understanding the nature, stages, and components of these disasters is crucial in 

effectively dealing with them. Natural disasters often cause significant losses for people. Delivering aid 

materials to the affected regions is an essential part of disaster relief efforts. However, the post-disaster 

environment is challenging, and traditional ground-based material delivery is severely affected. In 

densely populated cities such as Istanbul, where ground transportation is disrupted, alternative disaster 

logistics plans are necessary. The final stage of delivering aid materials heavily relies on human 

transportation, which is expensive, risky, and reduces the efficiency of modern disaster relief missions. 

In Worldwide, there have been numerous natural disasters that resulted in major loss of life and huge 

financial harm. For instance, the Wenchuan earthquake in China in 2008 caused over 69,000 fatalities 

[1]. Similarly, in Türkiye, two earthquakes in 1999 led to more than 20,000 deaths [2] and an economic 

loss of approximately 9 to 13 billion dollars [3]. The two very large earthquakes of February 2023 in 

southern side of Türkiye caused an estimated $34.2 billion in direct physical damages, the equivalent 

of 4% of the country’s 2021 GDP, according to a World Bank rapid damage assessment report [4]. These 

disasters have had a significant impact on governments, civil society organizations, and communities. 

As a result, the need to develop an effective disaster prevention and relief system has been 

acknowledged world- wide. Countries, including Türkiye, have recognized the importance of having a 

well- functioning disaster coordination center based on experiences gained from past disasters, 
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particularly in the areas of relief supply distribution and maintaining order after a disaster. Emergency 

logistics is a specific type of logistics operation that focuses on the urgent provision of materials, 

personnel, and funding in response to serious disasters [5]. Like regular logistics operations, emergency 

logistics is also concerned with achieving efficiency. However, emergency logistics places greater 

emphasis on achieving logistics benefits through logistics efficiency. In serious disaster situations, it is 

essential to urgently deliver relief materials to the affected area. To ensure that this transportation can 

be carried out regularly, optimizing the route of emergency delivery vehicles is crucial. Through the 

disaster coordination center, the route scheduling of delivery vehicles becomes possible, allowing for 

the distribution of aid materials to assembly areas in the disaster area as quickly as possible, thereby 

significantly reducing pressure on the rescue operation. 

In this study, we tested different scenarios for drone speeds and the number of emergency assembly 

points. Calculations were performed using the Julia programming language and for the visualization, 

Python packages were used. The model clearly shows us that there is an optimal balance between 

assembly point number, UAV speed and number of clusters. The results show that minimal total time 

depends on not only UAV speed, but also cluster and assembly point numbers. This suggests that 

increasing the UAV speed beyond a certain point may result in diminishing returns in terms of 

improving the system’s performance. Overall, the results show that the UAV speed parameter is a 

critical factor in the system’s performance and should be carefully considered when optimizing the 

system. However, we must also consider other parameters to achieve overall system optimization. This 

study shows that significant time savings can be achieved by adjusting the speed of UAVs and the 

number of delivery points. Optimizing these factors can lead to shorter truck travel distances, reduced 

UAV energy consumption, and less UAV circling time. 

2. Literature Review 

2.1. Humanitarian Relief Logistics 

Recently, there has been significant research interest in humanitarian relief logistics and emergency 

logistics planning. Research field can be divided into two categories. The first category concentrates on 

readiness and management activities that occur before a disaster or emergency event. These activities 

involve aspects such as determining facility locations, pre-positioning stocks, and developing 

evacuation plans. The second category focuses on post-disaster or emergency event operations, 

including activities related to resource distribution and transportation of medical and other necessary 

equipment [6]. Understanding these categories helps in identifying the crucial stages in disaster logistics 

where UAV and UGV integration can enhance efficiency and response time. 

Meeting the needs of people after a disaster is a crucial mission for emergency logistics. However, due 

to the sudden and unforeseeable nature of disasters, it is very difficult to meet the needs of all victims 

early on. In a real-time situation, planning for disaster transportation, route planning, and material 

transportation from storage are frequently encountered problems. 

In disaster situation, planning for logistics and human transportation via air trans- port greatly 

improves the quality and efficiency of disaster relief efforts. However, poor post-disaster conditions 

such as seasonal conditions and weather pose serious problems for flight safety, which limits relief 

material transportation operations. As a result, operational tasks with transport aircraft and helicopters 

responsible for logistics become more difficult. With groundbreaking developments in unmanned aerial 

vehicles (UAV) technology today, flight costs have significantly decreased. The use of UAV’s for post- 

disaster material delivery is considered a significant development in emergency logistics because 

UAV’s can easily perform various tasks in disaster areas due to their different load-carrying capacities. 

UAV’s that can operate in a coordinated manner with unmanned ground vehicles (UGV’s) and can be 

coordinated by a disaster coordination center can significantly increase delivery efficiency. 

2.2. Increased Natural Disasters and Challenges 

As the threat of weather-related catastrophes, pandemics, climate change, extreme weather conditions, 

depletion of natural resources, and the expansion of urban areas in disaster-prone regions continues to 
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grow, emergency and humanitarian efforts have significantly risen. Over the past two decades, more 

than 7,000 natural disasters have been documented globally. The number of global disaster events 

between 2000 and 2022 is shown in Fig. 1 [7].  

 

 
Figure 1. Global number of natural disasters events 2000–2022. 

Natural disasters of significant magnitude, such as 2005 Hurricane Katrina in the USA [8], 2012 Japanese 

tsunami [9], 2015 Nepal earthquake [10], and 2023 Maraş earthquake in Türkiye [11], often result in 

emergency logistics challenges. These challenges can limit the effective management of emergency 

resources in affected areas. For instance, 2023 Maraş earthquake in Türkiye caused severe damage to 

infrastructure, which led to fatal delays in search and rescue operations and relief supplies distributions. 

In some cases, inefficient emergency logistics management in the affected area results in fatalities [4]. 

Highlighting the increasing frequency and impact of natural disasters underscores the necessity for 

innovative logistics solutions, such as the integration of UAVs and UGVs to improve disaster response 

efficiency. 

The COVID-19 pandemic has also highlighted the critical role of emergency logistics and supply chain 

management in responding to disasters. As a result, there is growing interest among academic 

researchers and humanitarian logistics practitioners in emergency logistics management to ensure 

adequate provision of emergency and humanitarian assistance during and after a disaster [12]. 

Effective emergency logistics management is critical to the survival of affected individuals and the 

effective management of emergency and humanitarian aid. Logistics plays a crucial role in providing 

relief supplies and transporting beneficiaries to relief centers, such as hospitals. A recent study estimates 

that 73% of spending during humanitarian operations goes into logistics [13]. Therefore, logistics-centric 

disaster risk reduction strategies are vital to vulnerable communities. Emergency logistics differs from 

business logistics in terms of the end goal, dynamics, and variability of the problem. Emergency logistics 

practitioners must deal with highly dynamic and stochastic demand in both volumes and location. 

Unlike business logistics, where downstream members focus on cost and profit, in emergency logistics, 

they focus on survival and immediate medical attention. The lead times in emergency logistics are very 

short and require an efficient logistics and transportation network to support the most crucial at stake, 

i.e., human lives. 
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2.3. Role of UAVs in Disaster Management 

The most important thing to pay attention to in disaster situations is to protect the lives of the disaster 

victims. In this context, the first 72 hours after the disaster are critically important, which means that 

Search and Rescue (SAR)-logistics operations must be carried out quickly and efficiently. According to 

Erdelj [14], UAV’s perform their duties in three stages in disaster management as listed below: 

• Pre-disaster readiness: operations including surveys conducted before the disaster, threshold sensing, 

and Early Warning Systems (EWS) [15], 

• Disaster assessment stage: real-time situational awareness during the disaster and completion of 

damage studies for logistical planning [16],  

• Post-disaster operations: including search and rescue missions, emergency material deliveries, and 

similar operations [17]. 

After the first two stages mentioned above, according to the information obtained from the disaster 

coordination centre, urgent delivery of materials to emergency assembly points is of critical importance 

in disaster response stage. Since the delivery will be done against time, it needs to be organized as 

quickly as possible. There are few studies on logistic planning specifically related to medical supplies 

using autonomous unmanned ground and air vehicles. The ability of UAVs to perform a wide range of 

tasks in disaster scenarios makes them ideal for integration into disaster logistics systems, enhancing 

overall response capabilities. 

2.4. Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP) 

The Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP) to address last-mile 

delivery problems are widely studied in the literature [18], [19], [20], [21], with various variants being 

considered to account for different operational aspects. The increase in online shopping has made fast 

delivery an important issue, and researchers are working to improve last-mile logistics and reduce 

negative externalities. 

While trucks have a high capacity and long working range, they are costly and generate negative 

externalities such as noise and CO2 emissions [22]. Drones, on the other hand, have several advantages, 

such as high travel speed and low operational costs, but they have limited payload capacity and a short 

operating range due to limited energy. Therefore, using drones in tandem with trucks could be an 

efficient way to serve customers. This logistic system can also be used for planned deliveries by 

autonomous ground and air vehicles in case of possible disasters in urban areas with density 

populations [23]. 

According to Raj and Murray [24], there has been increased interest towards last-mile delivery which 

includes the use of combinations of unmanned aerial vehicles (UAV) and unmanned ground vehicles 

(UGV), for instance, the flying sidekick traveling salesman problem (FSTSP) and the traveling salesman 

problem with drone (TSP-D). There are several versions of these problems, some with multiple trucks 

or drones and different objectives such as reducing time or cost. 

One common assumption in the literature [25], [26], [27], [28], [29], [30] about the hybrid UAV/UGV 

delivery model is that UAVs have constant endurance or flight range, independent of their speed or 

payload. Such an assumption leads to the conclusion that increasing or decreasing UAV speed reduces 

the total delivery time or has no effect. In this study, we showed that difference UAV speed difference 

can affect cluster number and total flight time. These studies provide a foundation for understanding 

how to optimize the coordination between UAVs and UGVs, a core component of this research. 

2.5. Real-World Applications and Case Studies 

Ferrandez [31] conducted a study to evaluate the efficacy of incorporating unmanned aerial vehicles in 

delivery networks. The study compared the efficiency of a truck-drone network with a standalone 

delivery system in terms of overall delivery time and energy consumption. The findings indicated that 
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the in- tandem delivery system was more effective than the standalone system, and using multiple 

drones per truck was even more optimal in terms of energy and time savings. 

Major companies like Amazon Prime Air, UPS and DHL are using drone delivery services, and they 

have received permission from the Federal Aviation Administration for commercial drone deliveries 

[32]. Now, Matternet has the Swiss aviation authority’s approval to conduct complete logistics 

operations in different cities using their drones. These drones have the capability of transporting loads 

of up to 2 kilograms and 4 liters over a distance of 20 kilometers [33]. 

A study was conducted by Safaei et al. [5] to create a relief distribution system, and the way resources 

flow is illustrated in Fig 2. This system consists of four layers: suppliers, a central warehouse, a Red 

Crescent (RC) center, transfer depots, and affected areas. The suppliers are responsible for providing 

the relief items that are needed, making them a crucial part of the relief chain. The RC center has an 

initial inventory in their ware- house, and the transfer depots act as a link between the supply and 

distribution points in the network. They receive commodities and plan their distribution to the disaster 

victims. The real-world use cases confirm the advantages of combining aerial vehicles (UAVs) and 

unmanned ground vehicles (UGVs) supporting the viability of our suggested logistics approach. 

 

 
Figure 2. Structure of disaster logistic operation. 

In this study, aid requests received by the disaster coordination center were collected, and the delivery 

of medical kits to emergency assembly points was attempted as quickly as possible using UAV/UGV 

from a transfer depot. In the next section, the details of the routing problem are explained. 

Materials and Methods 

In this section we discuss a problem related to routing for UAV/UGV operations, in emergency logistics. 

This model involves ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) working together 

to streamline delivery tasks during situations. Specifically, it focuses on enhancing the efficiency of 

delivering kits to emergency gathering points by considering factors like UAV flight range, delivery 

order and operational capabilities of both UAVs and UGVs. The subsequent conversation delves into 
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the assumptions that guide our model, which are based on post disaster operational scenarios. It also 

delves into how these assumptions shape the problem-solving approach we take. 

Assumptions: 

Our model is built on assumptions that reflect real world challenges in post disaster logistics; 

• Central Depot: There is a designated depot where all medical supplies and vehicles are located, acting 

as the starting and ending point for delivery routes. 

• UGV Capacity: Each UGV has the capability to carry up to four UAVs, aligning with the capacity of 

sized ground vehicles. 

• UAV Capacity: Each UAV can transport one kit due to current limitations in drone payload capacities. 

• Visits: Each assembly point is attended by either a UAV or a UGV, preventing redundancy in service 

provision and optimizing resource utilization. 

• Predefined Assembly Points: Emergency assembly points are already set, making it easier to plan the 

routes for both drones and ground vehicles. 

• UAV Return Process: UAVs can come back to the ground vehicle at stops for recharging or reloading, 

making operations more flexible. 

• Multiple Deployments at Once: To minimize total flight time, multiple UAVs can be dispatched from 

a single UGV stop simultaneously. 

• Repeated Takeoffs: UAVs may be launched multiple times from the same point if necessary, 

maximizing their usage and efficiency. 

• Operational Constraints: The range of flights and battery life limit how long UAVs can operate based 

on their battery capacity, reflecting world limits. 

• Vehicle Speeds Consideration: The speeds of both ground vehicles (SUGV ) and drones (SUAV ) affect 

delivery times, recognizing their impact on efficiency. 

• Load Capacities Acknowledged: The plan takes into account the carrying capacities of both ground 

vehicles (CUGV ) and drones (CUAV ) for distributing loads effectively. 

These assumptions play a role in shaping the framework of our hybrid UAV/UGV routing challenge, 

where the primary objective is to plan routes that minimize overall delivery time while considering 

vehicle capacities, technological constraints, and the urgent nature of emergency logistics. 

3.1. Defining the Problem 

Based on these assumptions the hybrid UAV/UGV routing challenge aims to optimize the coordination 

between UAVs and UGVs for delivering emergency kits. The main depot serves as a hub for all delivery 

operations with UAVs and UGVs working to follow pre- determined routes efficiently reaching 

emergency assembly points. The aim is to reduce delivery time by addressing the operational 

limitations of UAVs (such as battery life and payload capacity) and UGVs (such as vehicle capacity and 

speed). The model utilizes integer linear programming (MILP) to determine the set of routes taking into 

ac- count how UAV flight capabilities interact with UGV routing while meeting the pressing demand 

for medical supplies in disaster affected areas. 

The following sections provide a representation of this challenge outlining indices, parameters and 

decision variables that capture the intricacies of emergency logistics, in urban settings. 

Table 1. Indices, Parameters, and Decision Variables 

Indices                                   Description    

P Emergency assembly point indices, where P = {1, 2, . . . , pmax} and pmax is the total number of 

assembly points in the urban area. 

Stop indices, where Q = {1, 2, . . . , qmax} and qmax is the total number of stops in the urban area. 

UAV indices, where R = {1, 2, . . . , rmax} and rmax is the total number of UAVs on the UGV. 

 

UAV battery swapping indices, where W = {1, 2, . . . , wmax} and wmax is the total number of 

battery swaps allowed for each UAV. 

 

Q 

R 

W 

 



 

83 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters                                     Description 

N(p,q) A matrix that indicates whether an emergency assembly point p should be delivered from stop 

q, with values “1” for yes and “0” for no. 

The distance from each emergency assembly point p to the stops q in minutes. 

Speed of the UGV in meters per minute. 

Speed of the UAV in meters per minute. 

Maximum carrying capacity of medical kits for the UGV. 

Maximum carrying capacity of medical kits for the UAV. 

Recharging rate of the UAV battery in minutes per percentage of charge. 

 

D(p,q) 

SUGV 

SUAV 

CUGV 

CUAV 

RRUAV 

 

Decision Variables                               Description 

M(p,q,r) A binary decision variable indicating whether UAV r delivers a medical kit to assembly point p 

from stop q. 

A binary decision variable indicating whether UAV r swaps its battery at stop q for the w-th 

time. 

A real-valued variable representing the total time in minutes that UAV r spends delivering and 

charging at stop q. 

A real-valued variable representing the maximum time spent at stop q by any UAV, derived 

from the UAV with the longest delivery and charging time. 

A real-valued variable representing the charging time in minutes for UAV r after delivering to 

emergency assembly point p from stop q. 

 

B(q,r,w) 

 

SD(q,r) 

 

SDM(q) 

 

SE(p,q,r) 

 

3.2. Problem Formulation 

In this section, we explained the proposed objective function and constraints in the model related to the 

problem. 

Constraints: 

• Equation (1) ensures that each medical kit will be delivered by any UAV at any stop. 

             (1) 

• Equation (2) ensures that UAVs only deliver to emergency assembly points within their range at each 

stop. Since the UAV carries a medical kit on the way to delivery, it consumes 150% (60/40) of its 

charging time. Therefore, the distance from the emergency collection point to the stop in terms of time 

must be less than 2.5 times the total flight time of 60 minutes. Since the UAV returns empty on the 

delivery return, it consumes as much charge as it spends time. 

 2,5N(p,q)D(p,q)M(p,q,r) ≤ 60,∀p ∈ P,q ∈ Q,r ∈ R                                               (2) 

• Equation (3) is used to obtain the charging time in minutes for UAV r to deliver to emergency assembly 

point p from stop q within the model, as obtained from equation (2). 

 2.5N(p,q)D(p,q)M(p,q,r) = SE(p,q,r) , ∀p ∈ P,q ∈ Q,r ∈ R      (3) 

• Equation (4) finds the total time in minutes that UAV r spends on delivering and charging from stop 

q. 
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       (4) 

• Equation (5) is used to obtain the total time in minutes that UAVs spend on delivering and charging 

from stop q, where the UAV with the longest charging time is considered. 

 SD(q,r)  ≤ SDM(q) , ∀q ∈ Q,r ∈ R          (5) 

• Equation (6) ensures that each UAV carries no more medical kits than its capacity. 

            (6) 

• Equation (7) ensures that the UGV carries no more medical kits than its capacity. 

            (7) 

• Equation (8) ensures that the number of battery swaps for each UAV does not exceed the maximum 

allowed number of swaps wmax. 

            (8) 

• Equation (9) ensures that the flying range of each UAV does not exceed its maximum flying range after 

a battery swap. 

 (2,5 N(p,q) D(p,q) M(p,q,r) )+(2,5 N(p,q+1) D(p,q+1) M(p,q+1,r) )≤ 60 (1+ B(q,r,1) ),   

 ∀p ∈ P,q ∈ Q,r ∈ R,q < qmax                  (9) 

• Equation (10) ensures that the total flying time of each UAV, including the time spent on deliveries 

and battery swaps, does not exceed the maximum allowed flying time tmax. 

           (10) 

• Equation (11) ensures that the UAVs can only fly from stops visited by the UGV.  VUGV is a binary 

variable that takes the value “1” if the UGV visits stop q and “0” othervise. This ensures that UAVs 

can only fly from stops visited by the UGV. 

 M(p,q,r) ≤ VUGV(q), ∀p ∈ P, q ∈ Q, r ∈ R                (11) 

• Objective Function: 

The UGV and UAV collaborative logistics path optimization model aims to minimize the total 

distribution cost. The objective function is shown in Equation (12), which min- imizes the total time 

spent by the UAV with the longest delivery to emergency assembly point and charging time at each 

stop in minutes. 

                   (12) 

3.3. Solution Methodology 

In this section, we explain the approach we used in our model outlining how we applied clustering, 

routing and optimization algorithms in sequence to create a hybrid UAV/UGV routing plan, for 

emergency logistics. 
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Our research hypothesizes that by combining drones (UAVs) and ground vehicles (UGVs) in emergency 

logistics and applying K Means Clustering, TSP and MILP techniques we can enhance delivery speed 

and efficiency during disasters. Specifically, we propose that using the K Means Clustering method can 

help organize emergency assembly points into groups reducing travel distances for drones. The TSP 

algorithm aims to optimize routes for ground vehicles ensuring they take the paths to reach all cluster 

centers efficiently. Additionally, MILP is expected to assign delivery tasks to drones in a manner that 

maximizes their capabilities and flying range while minimizing delivery time. We believe this hybrid 

strategy will surpass single vehicle approaches – such as using drones or only ground vehicles – in 

terms of speed and resource management. This is because the combined system leverages on the 

strengths of both vehicle types; the agility of drones and the capacity/range of ground vehicles. 

Ultimately this integrated approach offers a more effective solution for emergency logistics, in disaster 

scenarios. 

3.3.1. Clustering 

In the first step of our solution strategy, we divide the area into clusters to optimize how UAVs are 

deployed from UGVs. We utilize the K Means Clustering algorithm because of its effectiveness, in 

grouping data points (such as emergency assembly points) into a number of clusters denoted as k, based 

on their proximity. This stage is crucial for simplifying operations by segmenting delivery points which 

helps minimize UAV travel distances and ensures coverage within their limits. 

Reasoning Behind the Algorithm Choice; We opt for K Means due to its straightforwardness and 

efficiency in creating groupings that support the routing phase by assigning cluster centers as stops for 

UGVs we can strategically position them to launch UAVs thus improving delivery efficiency. 

Operational Process; Following the methodology proposed by Ferrandez et al. [31], the K Means 

algorithm assigns emergency assembly points to the cluster center and updates these centers until 

convergence is achieved. This iterative process plays a role, in pinpointing optimal UAV launch sites 

that fall within flight ranges. 

3.3.2. Routing  

After we define the cluster centers, we figure out how to guide the UGVs to these centers by using the 

Traveling Salesman Problem (TSP). This known optimization challenge aims to find the route that visits 

each location once and then returns to the starting point, which is perfect, for planning out UGV paths 

between cluster centers. 

Reason for Choice; We opt for TSP because it directly helps optimize routes ensuring that UGVs take 

the path through planned stops. This way we can minimize travel times. Contribute to reducing 

delivery times effectively. 

3.3.3. Optimization 

The last stage of our approach involves utilizing Mixed Integer Linear Programming (MILP) to outline 

the delivery tasks assigned to UAVs from each UGV location. MILP enables the representation of 

decision variables, like which UAV’s responsible for delivering to each assembly point within a set of 

linear constraints (e.g., UAV capacity, flight range). 

Implementation Detail: This phase determines the distribution of delivery assignments to UAVs 

stationed on a UGV considering factors such as battery life and payload capacity. The goal is to ensure 

that every emergency assembly point receives service in the time while considering the operational 

limitations of the UAVs. 

Integration Insight: MILP complements the clustering and routing stages by offering a optimized 

allocation of delivery tasks effectively connecting strategic planning with tactical execution, in the 

hybrid UAV/UGV routing framework. 

3.3.4. Combined Methodology 

Our methodology combines the advantages of K Means clustering, TSP routing and MILP optimization 

to tackle the logistics involved in emergency deliveries. This integrated strategy not simplifies 
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procedures but also guarantees that deliveries are carried out within the boundaries and capabilities of 

the hybrid UAV/UGV system ultimately aiming to reduce total delivery time and enhance 

responsiveness during emergencies. 

 

3.3.5. Flowchart 

To explain how our hybrid UAV/UGV routing solution, Fig. 3. shows the process where a UGV and 

four UAVs start from a depot to deliver goods to emergency assembly points from six UGV stops 

landing on the UGV at the stop. 

The flowchart in Fig. 3 shows the steps involved in our approach for emergency logistics using 

UAV/UGV routing. The process begins with generating coordinates for assembly points. Then applying 

the K Means Clustering Algorithm to divide the area into clusters for optimizing UAV deployments 

from UGVs. This clustering method helps simplify operations and reduce travel distances for UAVs. 

Afterward we establish routes for UGVs using the Traveling Salesman Problem (TSP) to find the paths 

between cluster centers. This ensures that UGVs follow routes, saving time on travel. Following route 

planning we use Mixed Integer Linear Programming (MILP) to optimize delivery assignments for 

UAVs by assigning tasks based on constraints, like UAV capacity and flight range. 

Finally, the methodology concludes by examining the outcomes and performance measurements 

assessing how quickly deliveries are made and the overall efficiency to guarantee that the suggested 

logistics solution works well. This thorough method is designed to cut down on delivery time and 

improve responsiveness, in situations. 
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Figure 3. Flowchart of hybrid UAV/UGV routing solution. 

In order to describe our hybrid UAV/UGV routing solution approach, in Fig. 4, UGV and four UAVs 

that left from a central depot deliver to emergency assembly points from six UGV stops, and land on 

the UGV at the next stop. 

 
Figure 4. A sample of hybrid UAV/UGV routing solution. 

The model present in this study is tested on a computer equipped with an Apple M2 Pro processor and 

16 GB RAM. The Julia programming language was used for the calculations, and the Python 

programming language was used for the 3D visualization of the results. 

For Julia calculations: 

• The number of emergency assembly points is defined as 100 and 200, and the coordinates of assembly 

points are generated using the JuliaLang/Random.jl rand function package [34]. 

• The K-means clustering algorithm is used to cluster the assembly points [35]. The maximum number 

of iterations is set to 200. The emergency assembly points are assigned to each cluster based on their 

distance to the centre of each cluster. 

• The time (in minutes) it takes for each assembly point to reach its assigned cluster’s centroid is 

calculated via JuliaStats/Distances.jl distance package [36]. 

• For each cluster, LinearAlgebra package [34] is used to deter- mine the optimal assembly points to be 

delivered by each UAV. 

• The heuristic traveling salesman [37] package is used for the UGV route. 

• The model is solved using the HiGHS optimizer [38]. The objective function is to minimize the total 

time taken to deliver to all emergency assembly points. 

For Python 3D Visualization: 

• matplotlib.pyplot [39] package is used to create the 3D scatter plots and lines, 

• pandas [40] package is used to read in and manipulate the data from the Excel files, 

• glob package is used to get a list of all Excel files in the current working directory. 

4. Results 

In the application, unmanned ground vehicle (UGV) is defined as one, and unmanned aerial vehicle 

(UAV) is defined as four on the UGV. The battery capacity is determined as 40 minutes with the UAV 

payload and 60 minutes without the payload. The flight time is defined as 10 m/min when the UAV is 

loaded and 15 m/min when it is empty. We tested the assembly point parameter at 100 and 200. For 

both scenarios, we changed the UAV speed parameter to 5 m/min, 10 m/min, and 15 m/min, conducting 

a total of 6 different scenarios to analyze their effects on total flight time and cluster number. 
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Total flight time (m/min): 531,34 Total flight time (m/min): 353,8 

Figure 5. (a) Figure 5. (b) 

 

Total flight time (m/min): 307,13 

Figure 5. (c) 

The results show that in Figure 5. (a), (b), (c), the total delivery time decreases significantly from 531 to 

307 as UAV speed increases from 5 m/min to 15 m/min and cluster number and UGV stops decrease. 

This is an expected result since the UAV can cover more distance in a shorter time with higher speed 

than UGV. So, UAVs can deliver the medical kits to emergency assembly points faster. 
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Total flight time (m/min): 820,81 Total flight time (m/min): 649,22 

Figure 6. (a) Figure 6. (b) 

 

Total flight time (m/min): 773,9 

Figure 6. (c) 

 

In Figure 6. (a), (b), (c), however, the pattern is not as straightforward. Although the total delivery time 

still decreases as UAV speed increases from 5 to 10 in figure 6 (a) and (b), it increases again when the 

drone speed is set to 15 in figure 6 (c). Like figure 5, the number of clusters decreases as the UAV speed 

increases. The model clearly shows us that there is an optimal balance between assembly point number, 

UAV speed and number of clusters. In figure 6. (b) result shows that minimal total time depends on not 

only UAV speed, but also cluster and assembly point numbers. 
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Table 2. Results of testing scenarios 

Scenario    Point Number       UAV Speed      Cluster Number  Total Flight Time 

1 100 5 m/min 15 531 m/min 

2 100 10 m/min 6 353 m/min 

3 100 15 m/min 3 307 m/min 

4 200 5 m/min 19 820 m/min 

5 200 10 m/min 6 649 m/min 

6 200 15 m/min 2 773 m/min 

We summarize the model parameters and results for six scenarios in Table 2. In the first three scenarios, 

we defined assembly point number 100. As you can see, increasing the UAV speed from 5 m/min to 10 

m/min resulted in a significant reduction in cluster number and total flight time, while increasing the 

UAV speed further to 15 m/min resulted in a smaller decrease in cluster number and total flight times. 

In the last three scenarios, we defined assembly point number 200. Increasing the UAV speed from 5 

m/min to 10 m/min resulted in a significant reduction in cluster number from 19 to 6, and also a decrease 

in the total flight time from 820 m/min to 649 m/min. This suggests that increasing the UAV speed has 

a large impact on the system’s performance. However, increasing the UAV speed from 10 m/min to 15 

m/min did not result in as large of a reduction in cluster number or total flight time, as the cluster 

number only decreased from 6 to 2, and the total flight time increased slightly from 649 m/min to 773 

m/min. This suggests that increasing the UAV speed beyond a certain point may result in diminishing 

returns in terms of improving the system’s performance. 

Overall, the results show that the UAV speed parameter is a critical factor in the system’s performance 

and should be carefully considered when optimizing the system. We must consider other parameters 

for achieving overall system optimization. 

In scenario 5, we obtained the best solution. The total emergency assembly points located at the stops, 

the farthest assembly point from any stop, the total time spent at the stops, the time spent by the ground 

vehicle and the total time is presented in Table 3. The coordinates of the emergency assembly point and 

the assignments of the UAVs for delivery are presented in Table 5. 

Table 3. Test results of scenario 5 

Stops       Assembly Points at Stop    Farthest Point at Stop   Total Time at Stop       

1 28 4.3944 75.4291 

2 41 5.8527 116.0542 

3 47 5.3240 164.7108 

4 32 4.3709 94.1934 

5 30 4.3418 82.6783 

6 22 4.9514 56.8706 

                           Time spent by UGV between stops (min): 59.2853  

                           Total time spent by UAV/UGV (min): 649.2217
 

In Table 5., the first column shows the number of the stop, followed by the number of assembly points 

located at each stop. The third column provides information about the farthest assembly point from the 

stop, measured in minutes. The fourth column presents the total time spent at each stop, measured in 

minutes. The next row provides information about the time spent by the ground vehicle between stops, 

which is measured at 59.28 minutes. Finally, the last row of the table shows the total time spent by both 

the UAV and the ground vehicle, which is measured at 649.22 minutes. We have six stops with varying 

numbers of assembly points. Stop 3 has the highest number of assembly points at 47, while stop 6 has 

the lowest at 22. The farthest assembly point at each stop ranges from 

4.34 minutes to 5.85 minutes. The total time spent at each stop ranges from 56.87 minutes to 164.71 

minutes. Additionally, the table provides information on the time spent by the UGV between stops, 

which is 59.29 minutes, and the total time of UAV/UGV operation, which is 649.22 minutes. 
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The coordinates of the emergency assembly points and the clusters they are assigned to are presented 

in Table 4. As there are a total of 200 assembly points, information on the first 10 and last 10 assembly 

points is provided. 

    Table 4. The coordinates of the emergency assembly points and the assignments of the UAVs. 

AP no X-axis Y-axis Altitude Cluster AP no X-axis Y-axis Altitude Cluster 

1 1044 2301 2 6 – – – – – 

2 960 2326 3 5 – – – – – 

3 1145 2340 7 3 191 945 2367 6 1 

4 1022 2388 6 4 192 998 2382 5 4 

5 1176 2384 7 3 193 974 2389 7 1 

6 1081 2307 2 6 194 914 2383 3 1 

7 1200 2381 3 3 195 1193 2351 2 3 

8 968 2399 6 1 196 925 2306 6 5 

9 1142 2319 6 3 197 1059 2310 7 6 

10 930 2329 5 5 198 928 2383 5 1 

– – – – – 199 1097 2349 1 2 

– – – – – 200 985 2337 5 4 

5. Discussion 

5.1 Comparison with Literature 

Our research shows that combining UAVs and UGVs in routing can speed up deliveries by optimizing 

routes and tasks. This finding is consistent, with the research of Ferrandez et al. [31] who also 

highlighted the efficiency improvements of systems. In contrast to Raj and Murray [24] who 

concentrated on UAVs only our strategy harnesses the strengths of both UAVs and UGVs leading to a 

rounded and flexible system. A notable advantage of our approach is the use of MILP for task 

distribution an element in managing logistical scenarios as noted by Agatz et al. [25]. However it's worth 

noting that our reliance, on linear models may not entirely capture the nature of real world emergencies. 

5.2 Dynamic Process and Future Research 

Acknowledging the nature of disaster situations it is suggested that upcoming studies integrate factors 

to create scenarios effectively. For example, using random variables to model uncertain demand and 

supply conditions could provide deeper insights into system performance under stress. Furthermore 

leveraging data, from disaster responses to enhance our models and create stronger formulas could be 

beneficial. This strategy may aid in connecting frameworks, with real world implementations enhancing 

the systems ability to handle obstacles effectively. 

5.3 Research Limitations 

Although our research offers a method, for managing disaster logistics it does have some drawbacks. 

The primary constraint is the linearization of a dynamic and chaotic process.Real world disasters 

include variables that our existing model doesn't fully consider. Additionally assuming a speed and 

capacity, for UAVs as highlighted in research [25][26] may not always be accurate. It's essential to tackle 

these limitations in studies to create a thorough and adaptable logistics framework. 

Our study highlights the benefits of using UAV/UGV systems to enhance disaster relief logistics. 

Through the integration of K Means Clustering, TSP and MILP techniques we have shown 

improvements, in efficiency. It is crucial to recognize the changing nature of disasters and the 

constraints of our methodology. Moving forward it is important to consider incorporating factors and 

actual field data to strengthen the systems resilience and effectiveness across disaster situations. 

6. Conclusion 

In this study, we suggested a collaborative UAV/UGV routing model with the objective function of total 

cost minimization, which uses multiple drones on a truck to deliver medical kits to emergency assembly 
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points. The main goal of using the cost function is to minimize people’s waiting time for medical kits in 

affected areas. 

The affected area is divided into sub sections by using K-means clustering method and each cluster 

center is defined as UGV stop. Deliveries are made from UGV stops to assembly points via UAVs. UAVs 

can launch multiple times from truck to deliver packages as long as its battery capability for flight range. 

To show how the objective function works in our proposed model, some scenarios are tested, and their 

results are compared with each other. 

Experimental results show that the total delivery time decreases significantly when UAV speed 

increases and cluster number and UGV stops also decrease. This is an expected result since the UAV 

can cover more distance in a shorter time with higher speed than UGV. So, UAVs can deliver the medical 

kits to emergency assembly points faster. However, the pattern is not as straightforward. Although the 

total delivery time still de- creases as UAV speed increases in some scenarios, it increases again when 

the drone speed exceeds a certain speed. The model clearly shows us that there is an optimal balance 

be- tween assembly point number, UAV speed and number of clusters. The results show that minimal 

total time depends on not only UAV speed, but also cluster and assembly point numbers. This suggests 

that increasing the UAV speed beyond a certain point may result in diminishing returns in terms of 

improving the system’s performance. 

Overall, the results show that the UAV speed parameter is a critical factor in the system’s performance 

and should be carefully considered when optimizing the system. We must consider other parameters 

for achieving overall system optimization. 

Future research suggestions are listed here: 

• To enable faster deliveries, autonomous battery replacement station for UAV’s on the UGV’s, 

• Time window and experimental analysis of model, 

• Dynamic take-off and landing on ground vehicle by UAV’s, 

• Delivery scenarios using multiple UAVs and UGVs, 

• Testing scenarios where time minimization is not prioritized by assigning mission- criticality 

factors to flights, 

• Dynamically determining the UAV speed according to the region and flight conditions, 

• Real-time autonomous logistics management system operating in coordination with the 

disaster coordination center. 
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