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Convergence estimates for some composition operators

VIJAY GUPTA* AND RUCHI GUPTA

ABSTRACT. There are different methods available in literature to construct a new operator. One of the methods to
construct an operator is the composition method. It is known that Baskakov operators can be achieved by composition
of Post Widder Pn and Szász-Mirakjan Sn operators in that order, which is a discretely defined operator. But when
we consider different order composition namely Sn ◦ Pn, we get another different operator. Here we study such and
we establish some convergence estimates for the composition operators Sn ◦ Pn, along with difference with other
operators. Finally, we found the difference between two compositions by considering numeric values.
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1. SZÁSZ-MIRAKJAN AND POST-WIDDER COMPOSITION

In the last few decades, many new operators have been introduced by the researchers using
different methods, some were generalizations of existing operators while some using generat-
ing functions, we mention here some of the recent studies [2, 3, 4, 6, 7, 9, 14, 18, 22] etc. . Here,
we discuss a composition method to achieve a new operator. The present article is continuation
in series of earlier recent papers [1, 15, 16]. The composition of Post-Widder operators and the
Szász operators, i.e. (Pn ◦ Sn) provide us the Baskakov operators Vn (see [17]) in that order.
But, when we change the order of composition it is not necessary to have same operator. Here,
we discuss reverse order composition. The Szász-Mirakjan operators are given as follows:

(Snf) (x) =

∞∑
k=0

sk(nx)f

(
k

n

)
, x ≥ 0

where sk(nx) = e−nx (nx)k

k! . The Post Widder operator is defined as

(Pnf)(x) =
nn

xnΓ(n)

∫ ∞

0

e−nt/xtn−1f(t)dt, x > 0

and (Pnf)(0) = f(0). Now composition operator An = Sn ◦ Pn is defined by

(Sn ◦ Pnf)(x) =

∞∑
k=1

sk(nx)
n2n

knΓ(n)

∫ ∞

0

e−n
2t/ktn−1f(t)dt.
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In above k ≥ 1 as for k = 0 above is not defined. In order to satisfy normalizer condition, our
operators take the following form:

(Anf)(x) =

∞∑
k=1

sk(nx)
n2n

knΓ(n)

∫ ∞

0

e−n
2t/ktn−1f(t)dt+ s0(nx)f(0)

=

∞∑
k=1

sk(nx)

∫ ∞

0

n2

k
sn−1

(
n2t

k

)
f(t)dt+ s0(nx)f(0)(1.1)

which is a new approximation operator. These operators preserve constant function. In this
article, we discuss some approximation properties of the operators An.

2. MOMENT GENERATING FUNCTION AND MOMENTS

The moment generating functions with the notation expA(t) = eAt are given by

(Sn expA) (x) =e
nx(eA/n−1),

(Pn expA)(x) =

(
1− Ax

n

)−n

,

(Vn expA)(x) =(Pn ◦ Sn expA)(x)

=(Pn expn(eA/n−1)) =
(
1− xe

A
n + x

)−n
which is the moment generating function of the Baskakov operators Vn. But when we take
reverse order composition i.e. Sn ◦ Pn, then moment generating is not achieved in the close
form and we have the same in summation form

(An expA)(x) = (Sn ◦ Pn expA)(x) =
∞∑
k=0

sk(nx)

(
1− Ak

n2

)−n

.

Lemma 2.1. The moments satisfy the representation

(Aner)(x) =

∞∑
k=1

sk(nx)
n2n

knΓ(n)

∫ ∞

0

e−n
2t/ktn+r−1dt

=
Γ(n+ r)

Γ(n)n2r

∞∑
k=1

sk(nx)k
r.

In particular

(Ane1)(x) =

∞∑
k=1

sk(x)
k

n
= x

(Ane2)(x) =
(n+ 1)

n

∞∑
k=1

sk(x)
k2

n2
= x2 +

x(1 + x)

n
+

x

n2

(Ane3)(x) =

(
1 +

3

n
+

2

n2

)[
x3 +

3x2

n
+

x

n2

]
(Ane4)(x) =

(
1 +

6

n
+

11

n2
+

6

n3

)[
x4 +

6x3

n
+

7x2

n2
+

x

n3

]
.

The proof of this lemma follows by using the moments of Szász operators, which can be
obtained from (Sn expA)(x).
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Lemma 2.2. If the central moments are denoted by µn,r(x) = (An(e1−xe0)r)(x), r = 0, 1, 2, ..., then

µn,0(x) =1

µn,1(x) =0

µn,2(x) =
x(1 + x)

n
+

x

n2
.

The proof follows by Lemma 2.1 and linearity of An.

3. APPROXIMATION ESTIMATIONS

Let C̃[0,∞) denotes the space of all real-valued bounded and uniformly continuous func-
tions f on [0,∞) with the norm ||f || = supx∈[0,∞) |f(x)|.

Theorem 3.1. For f ′ ∈ C̃[0,∞) and x ∈ [0,∞), we have

|(Anf)(x)− f(x)| ≤ 2

√
x(1 + x)

n
+

x

n2
ω

(
f ′,

√
x(1 + x)

n
+

x

n2

)
,

where ω (f, δ) is the modulus of continuity of first-order.

Proof. For f ′ ∈ C̃[0,∞) and x, t ∈ [0,∞), we can write

(An(f(u)− f(x)))(x) = f ′(x)(An(u− x))(x) +

(
An

∫ u

x

(f ′(v)− f ′(x))dv

)
(x).

Also, for δ > 0, we have∣∣∣∣∫ u

x

(f ′(v)− f ′(x))dv

∣∣∣∣ ≤ ω(f ′, δ)

(
(u− x)2

δ
+ |u− x|

)
.

Thus using Schwarz inequality and Lemma 2.2, we get

|[(Anf)− f ](x)| ≤ |f ′(x)| · |µn,1(x)|+ ω(f ′, δ)

[√
µn,2(x)

δ
+ 1

]√
µn,2(x),

selecting δ =
√
µn,2(x), the result follows at once. □

Theorem 3.2. For f ∈ CB [0,∞) ( denoting the class of continuous and bounded function on the
interval [0,∞)), there exists a positive constant C, such that

|[(Anf)− f ](x)| ≤ Cω2

(
f,

√
x(1 + x)

n
+

x

n2

)
.

Proof. The operatorsAn preserve linear functions. By Taylor’s expansion, for g ∈ C2
B [0,∞) and

x, t ∈ [0,∞), we have

|[(Ang)− g](x)| =
∣∣∣∣An(∫ t

x

(t− u)g′′(u)du, x

)∣∣∣∣ .
Also, we have |

∫ t
x
(t− u)g′′(u)du| ≤ (t− x)2||g′′||. Therefore by Lemma 2.2, we have∣∣∣∣An(∫ t

x

(t− u)g′′(u)du, x

)∣∣∣∣ ≤ ||g′′||
(
x(1 + x)

n
+

x

n2

)
.

Next

|(Anf)(x)| =
∞∑
k=1

sk(nx)

∫ ∞

0

n2

k
sn−1

(
n2t

k

)
|f(t)|dt+ s0(nx)|f(0)| ≤ ||f ||.
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Thus, we have

|(Anf)(x)− f(x)| = |[(An(f − g))− (f − g)](x)|+ |[(Ang)− g](x)|

≤2∥f − g∥+
(
x(1 + x)

n
+

x

n2

)
∥g′′∥.

Taking the infimum over all g ∈ C2
B [0,∞) and using the inequality

Cω2(f,
√
η) ≥ K2(f, η), η > 0

(see [10]), we get the required result. □

If we denote
B2[0,∞) = {g : |g(x)| ≤ cg(1 + x2),∀x ∈ [0,∞)},

where cg is certain absolute constant that depends on g, but free from x. Let C2[0,∞) =
C[0,∞) ∩ B2[0,∞). For each g ∈ C2[0,∞), the weighted modulus of continuity (see [23]) is
defined as

Ω(g, δ) = sup
|h|<δ,x∈R+

|g(x+ h)− g(x)|
(1 + h2)(1 + x2)

.

Also, C∗
2 [0,∞) denotes the subspace of continuous functions g ∈ B2[0,∞) for which

lim
x→∞

|g(x)|(1 + x2)−1 <∞.

We consider the norm by

||g||2 = sup
0≤x<∞

|g(x)|
(1 + x2)

.

Following Gadjiev [13], we have:

Theorem 3.3. If f ∈ C∗
2 [0,∞) satisfying

lim
n→∞

∥(Anei)− ei∥2 = 0, i = 0, 1, 2,

then we have
lim
n→∞

∥(Anf)− f∥2 = 0.

Proof. To prove the result, we use Lemma 2.1, as the operators preserve constant and linear
functions, the result is true for i = 0, 1. Next

lim
n→∞

∥(Ane2(x)− e2∥2 = lim
n→∞

1

(1 + x2)

[
x(1 + x)

n
+

x

n2

]
= 0.

The proof is complete. □

Theorem 3.4. If f ′′ ∈ C∗
2 [0,∞), then for x ∈ [0,∞), we have∣∣∣∣(Anf)(x)− f(x)−

(
x(1 + x)

n
+

x

n2

)
f ′′(x)

∣∣∣∣
≤8(1 + x2)O(n−1)Ω(f ′′, 1/

√
n).

Proof. By applying Taylor’s formula, with h(t, x) a continuous function defined by h(t, x) :=
1
2 (f

′′(ξ)− f ′′(x)), x < ξ < t, on the operators (Anf)(x), we obtain

(Anf)(x)− f(x) = µn,1(x)f
′(x) +

µn,2(x)

2
f ′′(x) + (Anh(t, x)(t− x)2)(x),
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where h(t, x) vanishes when t→ x. Now applying Lemma 2.2, we have∣∣∣∣(Anf)(x)− f(x)− µn,1(x)f
′(x) +

µn,2(x)

2
f ′′(x)

∣∣∣∣ ≤ (Anh(t, x)(t− x)2)(x).

Following [19, Thm. 2.1] the remainder term for An has the form:

|(Anh(t, x)(t− x)2)(x)| ≤ 8(1 + x2)O(n−1)Ω(f ′′, 1/
√
n).

The proof of the theorem is complete. □

Corollary 3.1. If f ′′ ∈ C∗
2 [0,∞), then we have

lim
n→∞

n [[(Anf)− f ](x)] =
x(1 + x)

2
f ′′(x).

The moduli of continuity with weights (see [24]) is considered:

ωψ(f, δ) = sup{|f(u)− f(v)| : |u− v| ≤ δψ ((u+ v)/2) ;u, v ≥ 0},

where ψ(u) =
√
u/(1 + um),m = 2, 3, 4, ...

Following [20], supposeWψ[0,∞) denotes the subspace of all real-valued functions such that
f ◦ e2 and f ◦ e2/(2m+1) are uniformly continuous in the intervals [0, 1] and [1,∞), respectively.

Following [20, Th. 6.3] and references therein below quantitative estimate of error holds:

Theorem 3.5. Let f ∈ C2[0,∞) ∩ E, where E is the subspace of positive real axis also if f ′′ ∈
Wψ[0,∞), then we have∣∣∣∣(Anf)(x)− f(x)−

(
x(1 + x)

n
+

x

n2

)
f ′′(x)

∣∣∣∣
≤
(
x(1 + x)

n
+

x

n2

)[
1 +

1√
2x
Cn,r,2(x)

]
ωψ
(
f ′′, δ1/2

)
,

where

Cn,r,2(x) = 1 +
1

(An|t− x|3)(x)

r∑
s=0

(
r

s

)
xr−s

(An|t− x|r+s)(x)
2s

and δ := µn,4(x)/µn,2(x), where the moments are given in Lemma 2.2.

For proof of above theorem, we use Lemma 2.2 and follow the steps as in [21].
Below we find the difference between our new composition operator An and the Szász-

Mirakjan operators.

Theorem 3.6. If n ∈ N and f ∈ CB [0,∞), then we get

|(Anf)(x)− (Snf) (x)| ≤ 2ω

(
f,

(
x2

n
+

x

n2

)−1/2
)
.

Proof. We prove the first inequality as follows

|(Anf)(x)− (Snf) (x)| = |(Sn ◦ Pnf)(x)− (Snf) (x)|

≤
∑
k≥0

sk(nx)

∣∣∣∣(Pnf)(kn
)
− f

(
k

n

)∣∣∣∣ dt.
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In the following inequality using (Pn(e1 − xe0)
2)(x) = x2

n , we can write

| (Pnf) (x)− f(x)| ≤
(
1 +

(Pn(e1 − xe0)
2)(x)

δ2

)
ω(f, δ)

=

(
1 +

x2

nδ2

)
ω(f, δ).

Thus using the fact that of (Sne2)(x) = x2 + x
n , we have

|(Sn ◦ Pnf)(x)− (Snf) (x)| ≤
∑
k≥0

sk(nx)

(
1 +

k2

n3δ2

)
ω(f, δ) =

[
1 +

1

nδ2

(
x2 +

x

n

)]
ω(f, δ).

Choosing δ =
(
x2

n + x
n2

)−1/2

, the result follows.
□

The Post-Widder operator Pn can be written as

(Pnf) (x) =
1

Γ(n)

∫ ∞

0

e−uun−1f
(xu
n

)
du, u ≥ 0.

It is easy to observe that,

(Pnf) (x) = E

[
f

(
xU(n)

n

)]
, x ≥ 0,

where {U(n) : n > 0} is gamma process.

Proposition 3.1. For f ∈ C[0,∞), ω (f, δ) <∞ and δ ≥ 0, we have

ω (Pnf, δ) ≤ 2ω (f, δ) .

Proof. Following the notations of [5], since E
[
xU(n)
n

]
= (Pne1) (x) = x, therefore

a1(δ, n) = sup
x,x+δ∈[0,∞)

E

∣∣∣∣ (x+ δ)U(n)

n
− xU(n)

n

∣∣∣∣ = δ,

and since U(n) has zero density at origin, therefore

b(δ, n) = sup
x,x+δ∈[0,∞)

P

(∣∣∣∣ (x+ δ)U(n)

n
− xU(n)

n

∣∣∣∣ > 0

)
= 1.

Following [5, Corollary 2], we have

ω (Pnf, δ) ≤
(
a1(δ, n)

δ
+ b(δ, n)

)
ω (f, δ) .

Substituting above values, the result is immediate. □

Theorem 3.7. If n ∈ N and f ∈ CB [0,∞), then we get

|(Anf)(x)− (Pnf) (x)| ≤ 4ω

(
f,

√
x

n

)
.
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Proof. We prove the first inequality by considering g = Pnf as follows

|(Anf)(x)− (Pnf) (x)| = |(Sn ◦ g)(x)− g(x)|

≤
(
1 +

(Sn(e1 − xe0)
2)(x)

η2

)
ω(g, η)

=

(
1 +

x

nη2

)
ω(g, η).

Choosing η =
(
x
n

)−1/2 and applying Proposition 3.1, the result follows. □

4. COMPARISON

The operator (Sn ◦ Pnf) provide a discrete operator namely Baskakov operator Vn and the
composition (Pn◦Snf) provide a summation-integral type operatorAn. Both have the different
moments but their asymptotic formula are same and given by

lim
n→∞

n[(Sn ◦ Pnf)− f(x)] = lim
n→∞

n[(Pn ◦ Snf)− f(x)] =
x(1 + x)

2
f ′′(x).

In the following table, we give the error for the two compositions of operators.

TABLE 1. Upper bound for error between the two composition operators An
and Vn

n
Operator

An (x ∈ [0, 2]) Vn (x ∈ [0, 2]) An (x ∈ [0, 9]) Vn (x ∈ [0, 9])

5 1.28 1.2 18.36 18
10 0.62 0.6 9.09 9.0
50 0.1208 0.12 1.8036 1.8

100 0.0602 0.06 0.9009 0.90
1000 0.006002 0.006 0.090009 0.09

We observe here from the above table that the error is less in case we consider the discrete
operator viz. Vn := Sn ◦ Pn and it increases slightly by taking the reverse order composition
An := Pn ◦ Sn.

One may study the composition of Mihesan and BBH operators discussed in [8], [11] and
also the King type approach of our operators along the lines of [12]. We may discuss them
elsewhere.

REFERENCES

[1] U. Abel, V. Gupta: On Composition of integral-type operators and discrete operators, Math Pannonica, (2024), DOI:
https://doi.org/10.1556/314.2024.00001
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