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Abstract 

The purpose of this research is to determine whether a DRL solution would be a suitable solution for the OBSP problem and 
to compare it with traditional methods. For this purpose, models trained utilizing the PPO algorithm were tested in a complex 
and realistic warehouse environment, and an attempt was made to measure whether a strategy was developed to decrease 
the number of orders being late. A heuristic method was also applied and the results were compared on the same 
environment and data. The results showed that DRL approach that combines heuristics with the PPO algorithm outperforms 
the heuristics in minimizing the tardy order percentage in all tested scenarios. 
Keywords: Reinforcement Learning, Order Batching and Sequencing, Proximal Policy Optimization, Warehouse Optimization 
 

I. INTRODUCTION 
Warehousing entails the act of storing physical goods or inventory within a warehouse or stock facility prior to 

their sale or distribution.  It enables companies to meet the increasingly demanding customer requirements for fast 

and effective order processing, a necessity heightened in the digital age. Optimization of warehouse operations is 

an issue that needs to be addressed in e-commerce, and has gained more importance with the increasing e-

commerce volume. Solutions in this area are necessary to enhance efficiency, reduce costs, improve order 

accuracy, maximize space utilization, streamline workflow, and increase overall productivity, thereby meeting 

customer demands effectively and maintaining competitive advantage. 

Mainly two types of stock systems can be mentioned in today’s warehouses, which are Person-to-Goods (PtG) and 

Goods-to-Person (GtP) systems. In PtG systems, order pickers follow designated paths, which can lead to 

inefficiencies when dealing with small orders due to extensive walking among the shelves and the central depot. 

GtP systems leverage automated solutions to bring items to pickers stationed at specific areas. GtP offers fast order 

picking and significantly decreases the reliance on human labor, but they come with a considerably higher initial 

investment compared to PtG systems. 

Items must be collected from the warehouse stock systems before orders are prepared. The two types of picking 

methods are single-select and multi-select. In single-select method, just one order is picked in a tour, whereas in 

multi-select method multiple orders are selected. Single-select results in shorter lead times but carries the potential 

drawback of inefficient traveled distances, while batching orders leads to longer lead times but boosts the picker's 

productivity.  

Optimizing stock systems, on the other hand, is crucial for improving the overall performance of a warehouse. It 

enhances efficiency, accuracy, and productivity while reducing costs and errors. The optimization of a specific 

warehousing system which combines PtG and GtP stock systems to improve efficiency is studied in the literature. 

Because  of the  limited capacity of  warehouse  resources and  tight delivery schedules, an order  picking plan is 

mailto:begumc@netas.com.tr
https://orcid.org/0009-0004-3662-7291
https://orcid.org/0000-0003-3258-8681


    
 
Int. J. Adv. Eng. Pure Sci. 2024, 36(3): <235-246>                      RL solution for OBSP 

 

236 
 

required to reduce the quantity of late orders. For 

instance, a Deep Reinforcement Learning (DRL) based 

approach is proposed in [1] for the optimization of 

order picking process to cope with the tardiness in 

delivery in a specific warehouse environment. 

Heuristics, which are often employed in optimization 

problems where the search space is vast and exploring 

every possible solution is not feasible have also been 

applied by many researchers with a purpose of 

minimizing tardy orders or decreasing total processing 

time of the orders [2][3]. [4] proposes a strategy to 

optimize warehouse layout, aiming to minimize 

transport time and reduce injury risks by employing 

association rule analysis with the apriori and FP-growth 

algorithms. 

This research aims to create a method that determines 

an order picking strategy to use, with the goal of 

minimizing order delays in an environment where 

resources are limited. To be more specific, it should be 

decided whether orders will be picked individually, or 

in batches, and if they will be picked in batches, which 

orders will be in the same batch. The problem is called 

Order Batching and Sequencing Problem (OBSP) in 

existing literature, and proposed solutions are mostly 

conventional methods such as heuristics. 

In [1], a deep reinforcement learning (DRL) 

methodology that applies a Proximal Policy 

Optimization (PPO) algorithm for minimizing the 

number of tardy orders on their specified warehousing 

concept is proposed. The solution is improved  by 

including a more dynamic warehouse environment, and 

optimizing the RL solution in [5].  

The purpose of the study is to investigate whether DRL 

will be a good solution to OBSP of a warehouse system 

that has been already utilized in e-commerce. The main 

criteria is minimizing the number of tardy orders, 

which has become an issue of increasing importance 

because of time-limited delivery expectation and order 

uncertainties in today’s e-commerce. This research is 

also built upon the same environment given in [1] since 

it fullfills the requirements for the topic and reflects the 

general. The generalizability of the DRL solution is 

investigated by testing the methods used in the previous 

literature with different order arrival data. In addition, 

how the performance of the solution could be improved 

with different parameters was tested. 

This paper is structured as follows: Relevant literature 

in problem domain has been overviewed in Section 2. 

How the problem is formulated to apply for both RL 

solution and heuristic solutions are presented in related 

subsections of Section 3.  In Section 4, the experimental 

findings are deliberated. Conclusion and some possible 

future imrovements are given in Section 5.  

 

 

II. RELATED WORK 
Traditional warehousing systems need to adapt to the 

requirements such as small orders, wide variety, strict 

delivery timelines, and fluctuating workload. Order 

picking in a batching, zoning and sorting environment 

is the most researched topic in this context, however it 

still needs further research to address the 

characteristics of e-commerce [6].  

In logistics, there exists many machine learning 

solutions for various problems. For instance, [7] 

proposes a novel approach using multiple machine 

learning models to address Pallet Loading Problem, 

which involves maximizing the number of boxes 

loaded onto a pallet and a major issue in shipments. 

Interest on Reinforcement learning (RL) applications 

especially in logistics increased a lot in the last few 

years. Q-learning, both tabular form and Deep Q-

Network (DQN) is the most favored RL method 

researched, followed by policy gradient and actor-critic 

methods. Among all the RL agents used, multilayer 

perceptrons and regression are the most popular ones. 

Heuristics such as genetic algorithms, greedy 

algorithms and dynamic programming are used as 

benchmarking methods in many studies [8].  

RL is advantageous over heuristics because it learns 

parameters to determine actions based on the current 

state whereas in heuristics predefined rules are utilized, 

it may learn from historical data and integrate 

forecasting and optimization whereas heuristics only 

uses forecasting on prediction and it  can rely on 

simulation environments. The limitations of RL are the 

challenge in handling complex multi-agent systems and 

coming up with generalized solutions, the cost and 

complexity of the solutions, and partially observable 

states [8]. 

In following sections, some heuristics and RL solutions 

in the literature are reviewed. 

2.1. Heuristic Approaches for OBSP 

Metaheuristic algorithms utilizing Iterated Local 

Search, Attribute-Based Hill Climbing, and a basic tabu 

search principle have been employed in [9] to reduce 

the overall tardiness for a specific collection of 

customer orders. The results of the proposed methods 

are evaluated against the typical constructive heuristics 

such as the Earliest Due Date rule on various categories 

of problems. It has been demonstrated that the results 

are highly improved and the proposed solutions can be 

used for a more efficient order picking system. Later, 

Variable Neighbourhood Descent and Variable 

Neighbourhood Search have been implemented within 

[10] on the same problem with the same objective, the 

findings indicated that the suggested approaches may 

improve the order picking effectiveness.  
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A heuristic solution grounded on the Variable 

Neighbourhood Search method to achieve a minimum 

tardiness in the context of the OBSP has also been 

proposed in [2], and it has been shown that the proposed 

algorithm is better than the state of the art in aspect of 

quality and speed.  

The modified seed algorithm proposed in [3] aims to 

reduce the overall picking, sorting and packing duration 

in an OBSP with limited buffers. The initial seed 

algorithm attempts to consolidate orders with nearby 

stock locations into the same batch to minimize picking 

time. However, it fails to achieve coordinated 

production of the order picking process and sorting-

packing process with limited buffers. Therefore, the 

modified algorithm takes into account the relationship 

between the current batch and the previous batch in 

terms of processing time. 

Heuristics have also been utilized in many related 

problems in operations research domain. For instance, 

the order picking problem is handled in [11]. A method 

involving multiple Genetic Algorithms (GAs) is 

introduced for optimizing batch picking, taking into 

account travel costs and order due times. The results 

showed that batch picking achieves better results than 

single order picking in general, and the proposed model 
has a solution quality better than all benchmark models 

in all datasets. 

The joint order batching and picker routing problem in 

warehouses that is seldom studied together and not 

studied at all for warehouses consisting of multiple 

blocks is investigated in [12]. They formularized the 

issue revolving around an exponential quantity of 

connectivity constraints and presented several 

inequalities based on the conventional layout of 

warehouses. They showed the applicability of the 

proposed method by presenting results for problems 

with up to 5000 orders. 

2.2.Reinforcement Learning Applications for OBSP 

Reinforcement Learning (RL) is a subset of machine 

learning focused on teaching agents to make sequences 

of decisions in dynamic environments to maximize 

cumulative rewards. Unlike supervised learning, where 

models are trained on labelled data, or unsupervised 

learning, which seeks to identify patterns in unlabeled 

data, RL relies on trial-and-error interactions to 

discover optimal strategies. Deep Reinforcement 

Learning (DRL) integrates RL with deep learning 

techniques to solve problems in complex environments. 

There exist a few studies with RL on the spesific 

problem of OBSP. In [1], it is questioned how can a 

DRL solution contribute to minimizing the quantity of 

late orders within a particular warehousing concept. 

The problem is formulated as a Semi-Markov Decision 

Process and solved with a Proximal Policy 

Optimizaiton (PPO) algorithm. To benchmark the 

algorithm, several heuristic solutions are also 

developed. A simulation model built in a 3D simulation 

program to assess the effectiveness of the algorithms 

and an order dataset belong to an e-commerce company 

are used. It is concluded that DRL is a preferred method 

because it generalized across various warehouse setups 

well, eliminating the need to train a new agent. The 

importance of the study is that there was no literature 

about solving order batching problems with DRL at its 

time. A paper based on [1] has been published later 

[13]. 

An RL algorithm for a different kind of batching 

problem is studied in [14]. The problem was 

minimizing the difference between the target weight 

and the real weight of a product batch. The difference 

which is called as giveaway can cause customers get an 

extra amount or lose some of the product they ordered. 

There are regulations called e-weighting regulations 

applied by European Union Directive to prevent 

customers getting a less amount. They converted the 

environment to a model that changes in episodes to 

implement RL. The complexity of the algorithm 

increased in several iterations to close to a real 

production setup, and the results was passing the e-

weighting regulations after the third iteration.  

Cals, Zhang, Dijkman, and van Dorst (2021) later 
published a paper based on  Cals (2019). They applied 

PPO in conjunction with a heuristic rule to adress 

OBSP. The agent used heuristics for sequencing 

decisions and DRL for batching decisions, and the 

resulting performance was compared to several 

heuristic approaches.  Results showed that the agent 

utilizing DRL for order batching surpasses the 

heuristics accross most warehouse settings examined, 

and the results are more robust and generalizable.  

[5] and [15] worked on the same problem and addressed 

the problem in a more realistic way by involving larger 

instances of hourly orders.  They also included a second 

objective of reducing order picking costs in addition to 

the first objective of reducing tardy order percentage. 

All these improvements added more complexity to the 

problem, so he improved the solution by using a 

method utilizing Bayesian optimization for shaping 

rewards. Additionally, they involved approximating 

DRL policies using decision trees, which can then be 

used to deduce logic and generate understandable 

decision rules, thus enhancing the explainability of the 

learned policies. 

 

III. METHODOLOGY 
 
3.1. Problem Description 
The scope of this research is finding a solution to 

schedule and fulfill orders for a warehouse system. This 

research is built upon the same warehousing system 

mentioned in [1] due to the difficulty of accessing real 

data. Also, the concept applies for modern warehouses 

and suitable to study the research topic. The 

warehousing system is developed by an anonymous  
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Figure 1. PtG and GtP order retrieval system incorporating a pack zone, StO and DtO zones [1]

logistics company to provide solutions to the problems 

in e-commerce market such as tight delivery schedules, 

orders with small number of items, large assortment, 

fluctuations in workload, labour scarcity and growing 

e-commerce market. 

The proposed system combines PtG and GtP to take 

advantage of both, and also applies a unique batching 

method by using single-select and multi-select 

simultaneously. When using this warehousing setup, 

two choices must be rendered: 

1. When should single-select or multi-select be 

chosen 

2. If multi-select is chosen which orders ought to 

be combined together in the same batch 

The first issue is an order batching problem, whereas 

the second one is a sequencing problem. Therefore, the 

problem is an Order Batching and Sequencing Problem 

(OBSP). The issue is complex because there are many 

inputs that will affect the decisions. The decisions are 

influenced by the attributes of the orders, various 

processing stages, limitations in capacity, and 

uncertainties associated with the orders.  

There exist two kind of stock systems, PtG and GtP, 

and three kind of operating areas in the proposed 

warehouse system which is shown in Figure 1. Items 

are stored on shelves or palettes in PtG systems, and 

picker stops at the locations where certain items are 

stored and picks the quantity needed. The GtP system 

operates as an Automated Stock/Retrieval System 

(AS/RS), retrieving items from shelves and 

transporting to a area at which a picker is stationed. The 

picker then retrieves the requested items from the tote. 

In the PtG approach, where single-select is 

implemented, the picker gathers the items into a carton 

box, preparing them for shipping without stopping at 

areas. When multi-select, totes are used in the PtG 

system. Two kinds of totes exist which are product totes 

and batch totes. Product totes contains items of same 

SKU and are stored in the GtP whereas batch totes are 

created in the PtG system while multi-select. Batch 

totes are subsequently moved to either the GtP system 

or a packing area. 

Totes have the option to be conveyed to three distinct 

areas: direct-to-order (DtO) zones, sort-to-order (StO) 

zones, and packing zones. At a DtO zone, totes of 

products arrive sequentially, and the required items for 

each order are picked and deposited into a carton box. 

Alternatively, batches can be formed by gathering 

items one by one into a batch tote instead of a carton 

box. These batch totes are stored in GtP system, later 

dispatched to either a StO or packing zone. At a StO 

zone, orders are sorted, buffered and packed. First, a 

picker extracts products from a batch tote and positions 

them in a put wall, where shelves are designated to a 

unique order one at a time. After the put wall is 

occupied and the needed products are gathered for 

every individual order, they are sent to the buffering 

area. Then, the operator asks for a put wall,  places it 

into the packing area, packages each order in a carton 

box and sends it to shipping. Product totes can also be 

used instead of batch totes, but it may cause long 

queues since many of them will be required. When all 

items does not exist in PtG system, A hybrid approach 

involving both product totes and batch totes is also 

feasible for completing the missing items from GtP 

system. At a pack zone, only batch totes arrive and 

sorting is not required since each item within the batch 

corresponds to a single order. Here, the processed 

orders  consist of one type of product. 

An order consisting of only one item and one SKU is 

referred to as a single-item order (SIO). An order that 

contains multiple items and multiple SKUs is called 

multiple item order (MIO). Order type is an important 

factor on order picking process. 

This research concentrates on aforementioned stock 

units and areas. Other aspects of the warehouse system 

are disregarded to prevent further complexity in the 

problem. Additionally, certain assumptions are made, 

such as consistently having adequate capacity to buffer 
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orders and always being able to transport totes between 

processes via conveyors. Although the proposed 

warehouse system is designed for much higher amount 

of orders, research is limited by 360 to 500 orders per 

hour. The algorithm takes inputs including a warehouse 

configuration with pickers, shuttles, and areas, as well 

as order arrival events. It sequentially allocates orders 

to the elements of the warehouse, ensuring that the 

limitation on capacity is respected and the number of 

late orders is minimized. 

 

3.2. Solution Methods 

A DRL solution is applied on the aforementioned 

OBSP. Also a heuristic solution is applied to use as a 

benchmark. The details of the applied methods are 

given in the following sections. 

 

3.2.1. Deep reinforcement learning basics 

RL is a type of machine learning where an agent learns 

to make a sequence of decisions (actions) within an 

environment to maximize a cumulative reward signal. 

Upon taking an action, the environment responds with 

a reward and possibly a new state. The aim of the agent 

is to acquire an optimal policy which makes its long-

term reward as large as possible. The conceptualized 

model of RL can be viewed in Figure 2. 

DRL is a subfield of machine learning that merges 

principles from RL with deep learning techniques, to 

enable agents - the learner or decision maker that 

interacts with the environment - to learn how to make 

decisions.  

 

Figure 2. A conceptual model for reinforcement 

learning [17] 

DRL has shown remarkable achievements in numerous 

fields such as robotics, gaming, autonomous driving, 

finance, and healthcare. It poses significant challenges, 

including sample inefficiency, instability during 

training, and the need for extensive computational 

resources. However, recent advances in algorithms 

(e.g., deep Q-networks, policy gradient methods), 

hardware (e.g., GPUs, TPUs), and environments (e.g., 

simulation platforms like OpenAI Gym) have 

accelerated progress in DRL research and applications. 

Considering that the OBSP involves making 

consecutive decisions in presence of uncertain demand 

and postponed rewards (order batching might decrease 

the capacity for other orders usage, possibly causing 

delays), Deep Reinforcement Learning (DRL) may be 

an appropriate method for a solution. 

3.2.2. Simulation model  

Simulation environments are necessary develop, test, 

and refine RL agents in a safe, efficient, and cost-

effective manner. The simulation environment for the 

DRL agent for our spesific OBSP has been developed 

using OpenAI Gym [16]. There exist seven entities 

which are shuttle, picker, order/batch, product tote, 

batch tote, carton box and queues in the simulation 

model. Entities can carry data by means of its attributes. 

Whenever an entity moves between the parts of the 

warehouse, an event is triggered. There exist four main 

events which are arriving, picking, order consolidation 

and shipping.  

The simulation model's environment interacts with the 

DRL agent to facilitate learning. It is structured as a 

semi-Markov decision process (SMDP), comprising 

transition times, a finite state space, a set of actions, and 

a reward function. The DRL agent tries to solve 

instances within each episode, that is comprised of a 

sequence of states, actions, and rewards, terminating 

when all orders are fulfilled or when an excessive 

number of late orders accumulated. 

State space is represented with three main components: 
the number of orders that are not processed yet, 

available capacity and extra information such as the 

count of late orders, the count of fulfilled orders, and 

the present simulation time. Action space is formulated 

so that there are two actions - single-select and multi-

select - for each order category plus the “do nothing” 

action when there is no available capacity, there are 11 

actions totally. Taking an action in case of no order or 

choosing an order when there is no capacity is 

considered to be an infeasible action. In such instances, 

the state remains unchanged, and orders remain 

unprocessed. If wait action is chosen when there are 

orders and capacities, it is also an infeasible action and 

not performed. The action and state formulas are taken 

from [5]. 

The reward function similar to the reward function in 

[1] is shown in Equation 1, a reward proportional to the 

finished order percentage by the conclusion of the 

episode, with penalties imposed for late orders and 

infeasible actions. w is the sum of the count of late 

orders and count of non-processed orders. N is the total 

count of orders. Then, 1 – w/N is the ratio of the 

processed orders before their cut-off time, and the 

reward exponentially depends on this value. An 

environment is simulated for the agent to know how the 

state changes as a result of its actions. The engagement 

between the agent and the simulation model is shown 

in Figure 3. After action a is performed, the simulation 

model simulates the action till state s changes to s’. At 

the time that orders arrive or available capacity increase 

or decrease, the state changes. When orders are ready 

for shipping, tardiness information is received.  
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                          -0.5            if infeasible action 

r(s, a, s’) =        -1.5             if late order           (1)   

                         (1– w/N)2    if episode finishes 

                          0                otherwise 

 

 

Transition time τ is minimal when capacities are 

available, but it increases significantly when the wait 

action is selected. The agent needs to learn the actions 

for each  Ociljek, and the capacities needed for each of 

the actions. This is encouraged by giving a penalty for 

infeasible actions. 

 

Figure 3. Interaction of  the DRL agent with the 

simulation model [1] 

3.2.3. Proximal policy optimization 

Proximal Policy Optimization (PPO) introduced by 

[18] is a cutting-edge RL method designed to optimize 

policies for decision-making tasks in environments 

with complex and continuous action spaces. PPO is a 

member of the policy gradient methods family that 

directly learn the optimal policy through gradient 

ascent on the objective function. PPO finds applications 

in various industries including gaming, robotics, 

finance, healthcare, and autonomous systems and it has 

been proved that PPO achieves good stability, sample 

efficiency and robustness in various environments 

[19][20]. 

PPO  algorithm is chosen to be applied to OBSP. One 

of the reasons is that it is an extension of Trust Region 

Policy Optimization (TRPO) and Actor Critic with 

Experience Replay (ACER) algorithms which are both 

extensions of DQN -the first developed DRL 

algorithm- with the recent improvements. Another 

reason is reducing computational expenses. Since PPO 

only updates policies instead of individual states as in 

DQN, training time is significantly reduced. The third 

reason is the success of PPO algorithm in coming by a 

more general strategy so that it can be applied to 

another warehouse settings later on.  

Self-dependence of training data on the policy creates 

instabilities in the process of training in RL. Besides, 

parameter tuning is sensitive in a considerable amount. 

PPO solves these problems of RL.  

PPO is an online learning algorithm as opposed to 

DQN, which means it learns directly from encountered 

experiences rather than storing and replaying. This 

method employs a policy gradient approach, 

necessitating the computation of an estimator for the 

policy gradient and its utilization within a stochastic 

gradient ascent algorithm. Gradient estimators has a 

common form in Equation 2. In neural network 

implementations, gradient estimator can be obtained by 

differentiating objective function in Equation 3. The 

policy πθ  takes states as input and proposes actions as 

log probabilities. 𝐴𝑡 is the advantage function which is 

the comparative value of chosen action for current state. 

It is the difference between cumulated and discounted  

sum of rewards Gt and the baseline estimate.  

𝑔 = 𝐸𝑡[𝛻𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡 ∨ 𝑠𝑡)𝐴𝑡]         (2) 

𝐿𝑃𝐺(𝜃) = 𝐸𝑡[𝑙𝑜𝑔𝜋𝜃(𝑎𝑡 ∨ 𝑠𝑡)𝐴𝑡]                      (3) 

Gt is formulated in Equation 4. 𝛾 indicates the discount 

factor which is a value in [0,1], so the importance of 

future rewards are less than the close ones. 𝐴𝑡 is 

calculated after all rewards in the episode is collected. 

Baseline estimate is the value function in state st, which 

is produced by the neural network and has some 

variance. 𝐴𝑡 indicates the comparative value of the 

chosen action over the expectation of the state.  

𝐺𝑡 = 𝑅𝑡 + 𝛾𝑅𝑡+1+. .= ∑ 𝛾𝑘𝑅𝑡+𝑘
∞
𝑘=0                        (4) 

Due to the parameter updates of the neural network 

extending beyond the range of collected data, 

advantage function predicts the wrong estimate. This 

problem is solved in TRPO formulated which is also 

the basis for PPO. A limit on the policy update 

magnitude is applied as in Equation 5. 

𝑚𝑎𝑥
𝜃

𝐸𝑡 [
𝜋𝜃(𝑎𝑡∨𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡∨𝑠𝑡)
𝐴𝑡], subject to 𝐾𝐿𝜋𝜃𝑜𝑙𝑑(𝜋𝜃) ≤ 𝛿     (5) 

However, this additional overhead of KL constraint in 

optimization process can cause problems in training. 

This is solved by the clipping operation in the objective 

function of PPO as formulated in Equation 6. 
𝜋𝜃(𝑎𝑡∨𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡∨𝑠𝑡)
is denoted by 𝑟𝑡(𝜃). Expectation over the 

minimum of two terms is calculated. First term is the 

default objective, and the second term is obtained by 

applying a clipping operation on the first term where 

𝜖is between 0 and 0.2. 
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Figure 4. PPO Algorithm for the proposed warehouse system [1] 

 

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸𝑡[𝑚𝑖𝑛⁡(𝑟𝑡(𝜃)𝐴𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡)]

                                                                   (6)                                    

The PPO objective function is created by adding extra 

terms to 𝐿𝐶𝐿𝐼𝑃(𝜃) as in Equation 7.  𝐿1
𝑉𝐹(𝜃) updates 

the baseline network. 𝑆[𝜋𝜃](𝑠𝑡) encourages 

exploration. c1 and c2 weights are hyperparameters to 

be adjusted. 

𝐿𝑡
𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆(𝜃) = 𝐸𝑡[𝐿𝑡

𝐶𝐿𝐼𝑃(𝜃) − 𝑐1𝐿1
𝑉𝐹(𝜃) +

𝑐2𝑆[𝜋𝜃](𝑠𝑡)]                                                             (7)                                       

PPO training algorithm for the proposed warehouse 

system is shown in Figure 4. 

3.2.4. Heuristic algorithm 

Least Slack Time (LST)  rule which is a heuristic 

method that assigns a priority to the orders with least 

slack times  is applied as a benchmark. Slack time is 

defined as the difference between the amount of time 

until the due date of the order and the total processing 

time. When slack time turns negative, single-select is 

applied. Our algorithm for LST batching and 

sequencing rule is as follows: 

1. Orders are ordered by ascending cut-off times 

2. Orders are grouped into batches or single orders 

according to greedy rule 

3. Slack time of each order/batch is calculated  

4. If there are batches that have a negative slack time, 

those are dismantled into single orders 

5. Order/batches are ordered by ascending slack time 

6. First order/batch in the list is selected to be 

processed 

 

3.3. Experiments 

Order arrival events dataset shared by [21] is utilized in 

this research. It is a public dataset that includes 

purchase data from April 2020 to November 2020 from 

a major online retailer of home appliances and 

electronics. The dataset includes the information of 

order arrival times and products in each order, which 

are interested for OBSP. The other required 

information for our algorithm, such as the stock 

location of items and the composition of orders are 

generated in the scope of this work. The dataset is 

chosen because it is e-commerce purchase history data 

which is suitable for the proposed warehouse system. 

The dataset includes 1.4M orders and 2.6M items in 

total. It is observed that order arrivals are concentrated 

on morning hours, see Figure 5 for order arrival 

distribution. 

Some preprocessing steps are done to simplify the 

problem, such as removing the outliers which are 

orders consisting of 10 or more items and  orders 

containing more than one from the same SKU. Only 

hours between 06:00 and 12:00 is taken into 

consideration since these are the busiest hours.The cut-

off times are generated since they do not exist in the 

original dataset, however cut-off times will be applied 

to decide the tardiness of the order. Two cut-off time 

settings with every hour or 15 minutes between 07:00 

and 13:00 are examined. Items that are purchased 

before 12:00 will be delivered same day, so orders 

before 12:00 are processed same day and have cut-off 

times before 13:00. A pareto analysis has been done, 

and the most frequently ordered items are placed in PtG 

stock whereas the others are placed in GtP. 

Scenarios are created from the order arrivals dataset 

processed according to these assumptions. Each 

scenario is analysed for different order throughput and 

resource settings and with settings in Table 1 between 

06:00 and 12:00. Orders before 06:00 are not 

considered. All orders that are not processed between 
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release and next cut-off moment are considered to be 

tardy. 

 

Figure 5. The distribution of order arrivals aggregated 

over a span of 30 days 

Order arrivals have been released to the simulation 

environment at the start of the hour or once in every 15 

minutes depending on the scenario. Then, it is decided 

which orders will be picked and whether it will be a 

batch or a single order. The decision is a result of the 

learned policy of the agent in DRL experiments, and 

depends on a rule in heuristic experiments. After the 

items for the order/batch is picked, it follows the 

designated path in our spesific warehouse environment. 

The orders are accepted to become tardy when their 

shipping time exceed the cut-off time specified for each 

scenario. 

Table 1. Different scenarios applied for order arrivals 

dataset 

Scenario A B 

Length of run 1 hour 1 hour 

SKU 

distribution  

PtG - 70%  

GtP - 30%  

PtG - 70%  

GtP - 30% 

Order releasing 

times 

Every hour Every 15 

minutes 

Cut-off times Every hour Every 15 

minutes 

 

Same experiment setup has been applied for both 

heuristics and DRL algorithm to be able to compare 

them. Two different order throughput setting has been 

applied for each scenario, which are 360 and 500 orders 

per hour. Resources are 9 pickers, 15 shuttles, 1 DtO 

zone, 1 StO zone and 1 packing zone for all 

experiments. The number of warehouse resources and 

order throughput values have been determined by 

running heuristic experiments several times 

beforehand, and trying to achieve a low percentage of 

tardy orders. Four experiment have been done with 

LST, symbolized with lst360_3600, lst360_900, 

lst500_3600 and lst500_900. The first number in the 

model name symbolizes the order throughput and the 

second number symbolizes the order arrival interval in 

terms of seconds.  

For the DRL algorithm experimentation, a training step 

is also required. Train and test datasets are obtained by 

splitting the original dataset randomly, and getting 70% 

for training, and the remaining 30% for testing. PPO 

algorithm is utilized for training, the model is trained 

for 1000000 steps. The step size, the number of steps 

per update is 1024. The discount factor is 0.9999. 

MlpPolicy is used as policy model. The clipping 

parameter is 0.2. Learning rate is 0.0003. The other 

parameters are all default values. Four models are 

trained: a360_3600, a360_900, a500_3600 and 

a500_900. The first number in the model name 

symbolizes the order throughput and the second 

number symbolizes the order arrival interval in terms 

of seconds.  

The results are examined and compared in terms of 

tardy order percentage. Also, robustness and action 

strategy of the DRL solution are investigated. 

All experiments  are conducted on the same virtual 

machine on Microsoft Azure. The virtual machine is 

Standard D16as v5 size (16 vcpus, 64 GiB memory) 

and has a Linux (ubuntu 20.04) operating system. For 

training and testing the PPO model, stable-baselines3 

package [22] and PyTorch [23] is used, and 

Tensorboard is used for monitoring the behaviour of the 

agent. 

IV. RESULTS AND DISCUSSION 

 
4.1. Tardy Order Percentages 

To adjust the reward formula, different weights for 

penalties are tested for 1 hour order arrival interval and 

for 360 and 500 order throughputs. The effect of 

different reward formulas in terms of tardy order 

percentages can be viewed in Table 2. First we had 

applied smaller penalties, and after some trial and error, 

we decided on larger penalties. The weights for small 

penalties are -0.005 for infeasible action and -0.0075 

for tardy order which are the weights used in [1], 

whereas for large penalties they are -0.5 and -1.5 

respectively. Larger penalties resulted in more 

difference for higher order throughputs.  

The reward formula is a fundamental component in RL 

that directly impacts how the agent learns and behaves. 

Its design requires careful consideration to ensure that 

it effectively guides the agent towards the intended 

goals while avoiding pitfalls and promoting efficient 

learning. The choice between large and small penalties 

in RL depends on the specific requirements and 

constraints of the task. By providing a strong deterrent 

against suboptimal actions, large penalties can help the 

agent converge to a better policy more quickly, as it 

more decisively learns which actions to avoid. 

However, they can cause instability. Small penalties, on 

the other hand, allow the agent to explore the 

environment more freely, understanding a broader 

range of actions and their outcomes without being 

overly discouraged by mistakes. However, they lead to 
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a slower convergence. On our spesific problem, smaller 

weights might not have been sufficient to strongly 

discourage tardy orders.  

Table 2. Tardy Order Percentage for Different 

Reward Formulas with Standard Deviation Given in 

Paranthesis 

Trained 

Model 

Penalty Weights Mean (%) 

a360_3600 (-0.005, -0.0075) 1.91(1.79) 

a360_3600 (-0.5, -1.5) 1.6 (1.74) 

a500_3600 (-0.005, -0.0075) 12.15 (10.15) 

a500_3600 (-0.5, -1.5) 8.51 (2.24) 

 

After deciding on the reward formula, 4 different 

models are trained with the PPO algorithm for 360 and 

500 order throughputs, and 1 hour and 15 minutes order 

arrival intervals. The models are tested for 20 episodes. 

LST rule has been applied on the same settings for same 

number of episodes and the results are compared for 

each setting. Table 3 shows the resulting average tardy 

order percentages and standard deviations.  

Table 3. Comparison of Tardy Order Percentages of 

LST and PPO Algorithms 

Experiment Mean (%) Standard 

Deviation(%) 

lst360_3600 3.73 2.68 

a360_3600 1.91 1.79 

lst360_900 0.0 0.0 

a360_900 0.0 0.0 

lst500_3600 24.83 3.17 

a500_3600 8.51 2.24 

lst500_900 23.2 12.01 

   a500_900 8.3 9.1 

 

It is observed that the agent trained with DRL achieves 

around a one third lower tardy order percentage for all 

settings when compared with the benchmark of applied 

heuristic. The higher order throughput values result in 

higher tardy order percentages as expected.  The mean 

values are slightly lower when an arrival interval of 15 

minutes applied, however the standard deviation is 

higher in that case. We observed that the amount of 

decrease in tardiness when DRL applied is significant 

especially when the amount of orders to be processed 

is higher. 

The overall performance of the DRL agent in terms of 

tardy order percentages is higher than the heuristics, 

which is compatible with the previous studies [1][5]. It 

shows that RL can be an effective solution for 

achieving a lower tardy order percentage in logistics 

due to its ability to learn optimal strategies through 

interactions with the environment. It may be a 

promising method for the tight delivery schedules and 

order uncertanties frequently encountered in today’s 

logistics solutions. 

4.2. Action Strategy 

The actions taken by the agents on each episode  for 

different order throughput values and order arrival 

interval of 1 hour are logged during training and 

visualized in Tensorboard as shown in Figure 6. The 

last chart shows do nothing action which is selected 

when there are no capacity or available orders. Action1, 

action3, action5, action7 and action10 represent single-

select actions whereas the others represent multi-select 

actions. First 4 actions are for picking single item 

orders, whereas the others are for multiple item orders. 

Action1, action2, action5 and action6 is for picking 

items that are stored in PtG stock. Action3, action4, 

action7 and action8 is for picking items that are stored 

in GtP stock. Action9 and action10 is for picking items 

from both PtG and GtP stocks. 

The count of average performed actions per episode is 
higher in case of a high order throughput almost for all 

actions. It makes sense because more actions will be 

required to pick more orders. The results are only 

different for action1 and action5. Action1 and action5 

was for picking items by order from PtG stock area. 

Our agent may take a multi-select decision instead of 

single-select for a high order throughput value for PtG 

stocks only because total picking time for PtG 

decreases more than GtP when orders are batched. To 

explain it with an example; suppose that they will be 3 

items in the batch. Then, total picking time will be 

roughly 3x30+100=190 to pick them from PtG, and 

roughly 3x15=45 for picking them from GtP. When not 

batched, the time will be (30+100)x3=390 for PtG 

stock and will not change for GtP. There is a constant 

value symbolizing the time for picker to arrive to the 

location of the item in PtG stock, which explains the 

decision of the agent.  

The distribution of numbers of actions diverses mostly 

in action2, action6 and action8. Action2 increases for 

the low order throughput value, whereas it decreases for 

the high order throughput value. For action6 and 

action8, the situation is the vice versa. All of them are 

multi-select actions. The difference between the 

categories these actions address is that action 2 is for 

single item orders, whereas action 6 and 8 is for 

multiple item orders. We can make an inference that 

our agent improves a strategy to select multi-select 

actions more for single item orders and less for multiple  
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Figure 6. The mean number of actions executed per episode for different order throughputs during training for 1 

hour arrival interval 

 

item orders when total number of orders is high. It may 

be because of that batching single item orders requires 

less time to process orders at areas. For the case of 

smaller arrival intervals, the same strategy 

development is not observed. 

Generally, the number of do-nothing actions is smaller 

for a low order throughput value. It may be because of 

resource deficiency met when high number of orders 

started to be processed in our warehouse environment. 

Developing an action strategy is essential for an RL 

agent’s success. It provides the framework within 

which the agent learns and makes decisions, ensuring 

that the agent can efficiently and effectively navigate 

its environment to achieve the desired goals. By 

monitoring the actions taken by our RL agent during 

training, it is observed that it develops an action 

strategy to achieve a lower number of tardy orders in a 

capacity constraint environment.  

4.3. Robustness Analysis 

The agents trained on 360 and 500 order throughputs 

are also tested on 500 and 360 orders respectively for 

different order arrival intervals, to observe how will 

they behave when there is a lower or higher order 

throughput is experienced than they are trained on.  

Resulting tardy order percentages can be viewed on 

Table 4. It is observed that the agent trained on 500 

hourly orders processes all orders in time when it met 

360 hourly orders. The other agent which is trained on 

360 hourly orders, does not perform as well as the one 

trained on 500 orders as expected. However, it can still 

achieve better than the heuristic approach. 

Table 4. Tardy Order Percentage for Models Tested 

on Different Order Throughput Values Than They 

Trained 

Trained Model Test Order 

Throughput 

Mean (%) 

a360_3600 500 18.97 (2.73) 

a360_900 500 0.57 (1.55) 

a500_3600 360 0.0 (0.0) 

a500_900 360 0.0 (0.0) 
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The behaviour of the RL agent in case of order 

uncertainty and variability is important since it is a case 

that frequently occurs in today’s warehouses, 

especially in e-commerce. It is shown that the the 

proposed RL solution may cope with the order peeks, 

and exhibit an acceptable performance. 

V. CONCLUSION 
In this research, the performance of a DRL solution on 

an OBSP problem with an objective of minimizing the 

tardy order percentage is investigated. The results are 

compared to a heuristic solution which is applied on the 

same warehouse environment and order arrival dataset. 

The following conclusions are obtained: 

1. DRL with an LST applied for sequencing gives 

better results than LST batching and sequencing on 

our spesific problem for all of the applied 

scenarios. 

2. The proposed solution is robust to changes in order 

throughput. 

3. It is observed that our agent develops an action 

strategy that will decrease the time for an order to 

be prepared. 

The DRL model may be improved by including 

different techniques for optimizing reward function, 

further investigating different model parameters. There 

exists studies with the methods based on PPO and 

proved to have a better sample efficiency [24][25]. 

Following up recent improvements in RL algorithms 

and including in our solution may improve the results. 

For a better simulation of a real life problem, higher 

order throughputs may be experimented and a more 

detailed warehouse simulation may be used. Other 

performance metrics such as maximization of the 

utilization of resources may be measured to investigate 

the versatility of the solution. 
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