

Int. J. Adv. Eng. Pure Sci. 2024, 36(3): <235-246>

DOI: 10.7240/jeps.1475312

Corresponding Author: BEGÜM CANASLAN, Tel: 05385873567, E-mail: begumc@netas.com.tr

Submitted: 29.04.2024, Revised: 22.06.2024, Accepted: 27.06.2024

RESEARCH ARTICLE / ARAŞTIRMA MAKALESİ

Solving an Order Batching and Sequencing Problem with Reinforcement

Learning

Begüm Canaslan 1 , Ayla Gülcü 2

1 Netaş Telecommunications, Innovation and R&D Strategies Department, 34912, Istanbul, Turkey

2 Bahçeşehir University, Department of Software Engineering, 34349, Istanbul, Turkey

Abstract

The purpose of this research is to determine whether a DRL solution would be a suitable solution for the OBSP problem and
to compare it with traditional methods. For this purpose, models trained utilizing the PPO algorithm were tested in a complex
and realistic warehouse environment, and an attempt was made to measure whether a strategy was developed to decrease
the number of orders being late. A heuristic method was also applied and the results were compared on the same
environment and data. The results showed that DRL approach that combines heuristics with the PPO algorithm outperforms
the heuristics in minimizing the tardy order percentage in all tested scenarios.
Keywords: Reinforcement Learning, Order Batching and Sequencing, Proximal Policy Optimization, Warehouse Optimization

I. INTRODUCTION
Warehousing entails the act of storing physical goods or inventory within a warehouse or stock facility prior to

their sale or distribution. It enables companies to meet the increasingly demanding customer requirements for fast

and effective order processing, a necessity heightened in the digital age. Optimization of warehouse operations is

an issue that needs to be addressed in e-commerce, and has gained more importance with the increasing e-

commerce volume. Solutions in this area are necessary to enhance efficiency, reduce costs, improve order

accuracy, maximize space utilization, streamline workflow, and increase overall productivity, thereby meeting

customer demands effectively and maintaining competitive advantage.

Mainly two types of stock systems can be mentioned in today’s warehouses, which are Person-to-Goods (PtG) and

Goods-to-Person (GtP) systems. In PtG systems, order pickers follow designated paths, which can lead to

inefficiencies when dealing with small orders due to extensive walking among the shelves and the central depot.

GtP systems leverage automated solutions to bring items to pickers stationed at specific areas. GtP offers fast order

picking and significantly decreases the reliance on human labor, but they come with a considerably higher initial

investment compared to PtG systems.

Items must be collected from the warehouse stock systems before orders are prepared. The two types of picking

methods are single-select and multi-select. In single-select method, just one order is picked in a tour, whereas in

multi-select method multiple orders are selected. Single-select results in shorter lead times but carries the potential

drawback of inefficient traveled distances, while batching orders leads to longer lead times but boosts the picker's

productivity.

Optimizing stock systems, on the other hand, is crucial for improving the overall performance of a warehouse. It

enhances efficiency, accuracy, and productivity while reducing costs and errors. The optimization of a specific

warehousing system which combines PtG and GtP stock systems to improve efficiency is studied in the literature.

Because of the limited capacity of warehouse resources and tight delivery schedules, an order picking plan is

mailto:begumc@netas.com.tr
https://orcid.org/0009-0004-3662-7291
https://orcid.org/0000-0003-3258-8681

Int. J. Adv. Eng. Pure Sci. 2024, 36(3): <235-246> RL solution for OBSP

236

required to reduce the quantity of late orders. For

instance, a Deep Reinforcement Learning (DRL) based

approach is proposed in [1] for the optimization of

order picking process to cope with the tardiness in

delivery in a specific warehouse environment.

Heuristics, which are often employed in optimization

problems where the search space is vast and exploring

every possible solution is not feasible have also been

applied by many researchers with a purpose of

minimizing tardy orders or decreasing total processing

time of the orders [2][3]. [4] proposes a strategy to

optimize warehouse layout, aiming to minimize

transport time and reduce injury risks by employing

association rule analysis with the apriori and FP-growth

algorithms.

This research aims to create a method that determines

an order picking strategy to use, with the goal of

minimizing order delays in an environment where

resources are limited. To be more specific, it should be

decided whether orders will be picked individually, or

in batches, and if they will be picked in batches, which

orders will be in the same batch. The problem is called

Order Batching and Sequencing Problem (OBSP) in

existing literature, and proposed solutions are mostly

conventional methods such as heuristics.

In [1], a deep reinforcement learning (DRL)

methodology that applies a Proximal Policy

Optimization (PPO) algorithm for minimizing the

number of tardy orders on their specified warehousing

concept is proposed. The solution is improved by

including a more dynamic warehouse environment, and

optimizing the RL solution in [5].

The purpose of the study is to investigate whether DRL

will be a good solution to OBSP of a warehouse system

that has been already utilized in e-commerce. The main

criteria is minimizing the number of tardy orders,

which has become an issue of increasing importance

because of time-limited delivery expectation and order

uncertainties in today’s e-commerce. This research is

also built upon the same environment given in [1] since

it fullfills the requirements for the topic and reflects the

general. The generalizability of the DRL solution is

investigated by testing the methods used in the previous

literature with different order arrival data. In addition,

how the performance of the solution could be improved

with different parameters was tested.

This paper is structured as follows: Relevant literature

in problem domain has been overviewed in Section 2.

How the problem is formulated to apply for both RL

solution and heuristic solutions are presented in related

subsections of Section 3. In Section 4, the experimental

findings are deliberated. Conclusion and some possible

future imrovements are given in Section 5.

II. RELATED WORK
Traditional warehousing systems need to adapt to the

requirements such as small orders, wide variety, strict

delivery timelines, and fluctuating workload. Order

picking in a batching, zoning and sorting environment

is the most researched topic in this context, however it

still needs further research to address the

characteristics of e-commerce [6].

In logistics, there exists many machine learning

solutions for various problems. For instance, [7]

proposes a novel approach using multiple machine

learning models to address Pallet Loading Problem,

which involves maximizing the number of boxes

loaded onto a pallet and a major issue in shipments.

Interest on Reinforcement learning (RL) applications

especially in logistics increased a lot in the last few

years. Q-learning, both tabular form and Deep Q-

Network (DQN) is the most favored RL method

researched, followed by policy gradient and actor-critic

methods. Among all the RL agents used, multilayer

perceptrons and regression are the most popular ones.

Heuristics such as genetic algorithms, greedy

algorithms and dynamic programming are used as

benchmarking methods in many studies [8].

RL is advantageous over heuristics because it learns

parameters to determine actions based on the current

state whereas in heuristics predefined rules are utilized,

it may learn from historical data and integrate

forecasting and optimization whereas heuristics only

uses forecasting on prediction and it can rely on

simulation environments. The limitations of RL are the

challenge in handling complex multi-agent systems and

coming up with generalized solutions, the cost and

complexity of the solutions, and partially observable

states [8].

In following sections, some heuristics and RL solutions

in the literature are reviewed.

2.1. Heuristic Approaches for OBSP

Metaheuristic algorithms utilizing Iterated Local

Search, Attribute-Based Hill Climbing, and a basic tabu

search principle have been employed in [9] to reduce

the overall tardiness for a specific collection of

customer orders. The results of the proposed methods

are evaluated against the typical constructive heuristics

such as the Earliest Due Date rule on various categories

of problems. It has been demonstrated that the results

are highly improved and the proposed solutions can be

used for a more efficient order picking system. Later,

Variable Neighbourhood Descent and Variable

Neighbourhood Search have been implemented within

[10] on the same problem with the same objective, the

findings indicated that the suggested approaches may

improve the order picking effectiveness.

RL solution for OBSP Int. J. Adv. Eng. Pure Sci. 2024, 36(3): <235-246>

237

A heuristic solution grounded on the Variable

Neighbourhood Search method to achieve a minimum

tardiness in the context of the OBSP has also been

proposed in [2], and it has been shown that the proposed

algorithm is better than the state of the art in aspect of

quality and speed.

The modified seed algorithm proposed in [3] aims to

reduce the overall picking, sorting and packing duration

in an OBSP with limited buffers. The initial seed

algorithm attempts to consolidate orders with nearby

stock locations into the same batch to minimize picking

time. However, it fails to achieve coordinated

production of the order picking process and sorting-

packing process with limited buffers. Therefore, the

modified algorithm takes into account the relationship

between the current batch and the previous batch in

terms of processing time.

Heuristics have also been utilized in many related

problems in operations research domain. For instance,

the order picking problem is handled in [11]. A method

involving multiple Genetic Algorithms (GAs) is

introduced for optimizing batch picking, taking into

account travel costs and order due times. The results

showed that batch picking achieves better results than

single order picking in general, and the proposed model
has a solution quality better than all benchmark models

in all datasets.

The joint order batching and picker routing problem in

warehouses that is seldom studied together and not

studied at all for warehouses consisting of multiple

blocks is investigated in [12]. They formularized the

issue revolving around an exponential quantity of

connectivity constraints and presented several

inequalities based on the conventional layout of

warehouses. They showed the applicability of the

proposed method by presenting results for problems

with up to 5000 orders.

2.2.Reinforcement Learning Applications for OBSP

Reinforcement Learning (RL) is a subset of machine

learning focused on teaching agents to make sequences

of decisions in dynamic environments to maximize

cumulative rewards. Unlike supervised learning, where

models are trained on labelled data, or unsupervised

learning, which seeks to identify patterns in unlabeled

data, RL relies on trial-and-error interactions to

discover optimal strategies. Deep Reinforcement

Learning (DRL) integrates RL with deep learning

techniques to solve problems in complex environments.

There exist a few studies with RL on the spesific

problem of OBSP. In [1], it is questioned how can a

DRL solution contribute to minimizing the quantity of

late orders within a particular warehousing concept.

The problem is formulated as a Semi-Markov Decision

Process and solved with a Proximal Policy

Optimizaiton (PPO) algorithm. To benchmark the

algorithm, several heuristic solutions are also

developed. A simulation model built in a 3D simulation

program to assess the effectiveness of the algorithms

and an order dataset belong to an e-commerce company

are used. It is concluded that DRL is a preferred method

because it generalized across various warehouse setups

well, eliminating the need to train a new agent. The

importance of the study is that there was no literature

about solving order batching problems with DRL at its

time. A paper based on [1] has been published later

[13].

An RL algorithm for a different kind of batching

problem is studied in [14]. The problem was

minimizing the difference between the target weight

and the real weight of a product batch. The difference

which is called as giveaway can cause customers get an

extra amount or lose some of the product they ordered.

There are regulations called e-weighting regulations

applied by European Union Directive to prevent

customers getting a less amount. They converted the

environment to a model that changes in episodes to

implement RL. The complexity of the algorithm

increased in several iterations to close to a real

production setup, and the results was passing the e-

weighting regulations after the third iteration.

Cals, Zhang, Dijkman, and van Dorst (2021) later
published a paper based on Cals (2019). They applied

PPO in conjunction with a heuristic rule to adress

OBSP. The agent used heuristics for sequencing

decisions and DRL for batching decisions, and the

resulting performance was compared to several

heuristic approaches. Results showed that the agent

utilizing DRL for order batching surpasses the

heuristics accross most warehouse settings examined,

and the results are more robust and generalizable.

[5] and [15] worked on the same problem and addressed

the problem in a more realistic way by involving larger

instances of hourly orders. They also included a second

objective of reducing order picking costs in addition to

the first objective of reducing tardy order percentage.

All these improvements added more complexity to the

problem, so he improved the solution by using a

method utilizing Bayesian optimization for shaping

rewards. Additionally, they involved approximating

DRL policies using decision trees, which can then be

used to deduce logic and generate understandable

decision rules, thus enhancing the explainability of the

learned policies.

III. METHODOLOGY

3.1. Problem Description
The scope of this research is finding a solution to

schedule and fulfill orders for a warehouse system. This

research is built upon the same warehousing system

mentioned in [1] due to the difficulty of accessing real

data. Also, the concept applies for modern warehouses

and suitable to study the research topic. The

warehousing system is developed by an anonymous

Int. J. Adv. Eng. Pure Sci. 2024, 36(3): <235-246> RL solution for OBSP

238

Figure 1. PtG and GtP order retrieval system incorporating a pack zone, StO and DtO zones [1]

logistics company to provide solutions to the problems

in e-commerce market such as tight delivery schedules,

orders with small number of items, large assortment,

fluctuations in workload, labour scarcity and growing

e-commerce market.

The proposed system combines PtG and GtP to take

advantage of both, and also applies a unique batching

method by using single-select and multi-select

simultaneously. When using this warehousing setup,

two choices must be rendered:

1. When should single-select or multi-select be

chosen

2. If multi-select is chosen which orders ought to

be combined together in the same batch

The first issue is an order batching problem, whereas

the second one is a sequencing problem. Therefore, the

problem is an Order Batching and Sequencing Problem

(OBSP). The issue is complex because there are many

inputs that will affect the decisions. The decisions are

influenced by the attributes of the orders, various

processing stages, limitations in capacity, and

uncertainties associated with the orders.

There exist two kind of stock systems, PtG and GtP,

and three kind of operating areas in the proposed

warehouse system which is shown in Figure 1. Items

are stored on shelves or palettes in PtG systems, and

picker stops at the locations where certain items are

stored and picks the quantity needed. The GtP system

operates as an Automated Stock/Retrieval System

(AS/RS), retrieving items from shelves and

transporting to a area at which a picker is stationed. The

picker then retrieves the requested items from the tote.

In the PtG approach, where single-select is

implemented, the picker gathers the items into a carton

box, preparing them for shipping without stopping at

areas. When multi-select, totes are used in the PtG

system. Two kinds of totes exist which are product totes

and batch totes. Product totes contains items of same

SKU and are stored in the GtP whereas batch totes are

created in the PtG system while multi-select. Batch

totes are subsequently moved to either the GtP system

or a packing area.

Totes have the option to be conveyed to three distinct

areas: direct-to-order (DtO) zones, sort-to-order (StO)

zones, and packing zones. At a DtO zone, totes of

products arrive sequentially, and the required items for

each order are picked and deposited into a carton box.

Alternatively, batches can be formed by gathering

items one by one into a batch tote instead of a carton

box. These batch totes are stored in GtP system, later

dispatched to either a StO or packing zone. At a StO

zone, orders are sorted, buffered and packed. First, a

picker extracts products from a batch tote and positions

them in a put wall, where shelves are designated to a

unique order one at a time. After the put wall is

occupied and the needed products are gathered for

every individual order, they are sent to the buffering

area. Then, the operator asks for a put wall, places it

into the packing area, packages each order in a carton

box and sends it to shipping. Product totes can also be

used instead of batch totes, but it may cause long

queues since many of them will be required. When all

items does not exist in PtG system, A hybrid approach

involving both product totes and batch totes is also

feasible for completing the missing items from GtP

system. At a pack zone, only batch totes arrive and

sorting is not required since each item within the batch

corresponds to a single order. Here, the processed

orders consist of one type of product.

An order consisting of only one item and one SKU is

referred to as a single-item order (SIO). An order that

contains multiple items and multiple SKUs is called

multiple item order (MIO). Order type is an important

factor on order picking process.

This research concentrates on aforementioned stock

units and areas. Other aspects of the warehouse system

are disregarded to prevent further complexity in the

problem. Additionally, certain assumptions are made,

such as consistently having adequate capacity to buffer

RL solution for OBSP Int. J. Adv. Eng. Pure Sci. 2024, 36(3): <235-246>

239

orders and always being able to transport totes between

processes via conveyors. Although the proposed

warehouse system is designed for much higher amount

of orders, research is limited by 360 to 500 orders per

hour. The algorithm takes inputs including a warehouse

configuration with pickers, shuttles, and areas, as well

as order arrival events. It sequentially allocates orders

to the elements of the warehouse, ensuring that the

limitation on capacity is respected and the number of

late orders is minimized.

3.2. Solution Methods

A DRL solution is applied on the aforementioned

OBSP. Also a heuristic solution is applied to use as a

benchmark. The details of the applied methods are

given in the following sections.

3.2.1. Deep reinforcement learning basics

RL is a type of machine learning where an agent learns

to make a sequence of decisions (actions) within an

environment to maximize a cumulative reward signal.

Upon taking an action, the environment responds with

a reward and possibly a new state. The aim of the agent

is to acquire an optimal policy which makes its long-

term reward as large as possible. The conceptualized

model of RL can be viewed in Figure 2.

DRL is a subfield of machine learning that merges

principles from RL with deep learning techniques, to

enable agents - the learner or decision maker that

interacts with the environment - to learn how to make

decisions.

Figure 2. A conceptual model for reinforcement

learning [17]

DRL has shown remarkable achievements in numerous

fields such as robotics, gaming, autonomous driving,

finance, and healthcare. It poses significant challenges,

including sample inefficiency, instability during

training, and the need for extensive computational

resources. However, recent advances in algorithms

(e.g., deep Q-networks, policy gradient methods),

hardware (e.g., GPUs, TPUs), and environments (e.g.,

simulation platforms like OpenAI Gym) have

accelerated progress in DRL research and applications.

Considering that the OBSP involves making

consecutive decisions in presence of uncertain demand

and postponed rewards (order batching might decrease

the capacity for other orders usage, possibly causing

delays), Deep Reinforcement Learning (DRL) may be

an appropriate method for a solution.

3.2.2. Simulation model

Simulation environments are necessary develop, test,

and refine RL agents in a safe, efficient, and cost-

effective manner. The simulation environment for the

DRL agent for our spesific OBSP has been developed

using OpenAI Gym [16]. There exist seven entities

which are shuttle, picker, order/batch, product tote,

batch tote, carton box and queues in the simulation

model. Entities can carry data by means of its attributes.

Whenever an entity moves between the parts of the

warehouse, an event is triggered. There exist four main

events which are arriving, picking, order consolidation

and shipping.

The simulation model's environment interacts with the

DRL agent to facilitate learning. It is structured as a

semi-Markov decision process (SMDP), comprising

transition times, a finite state space, a set of actions, and

a reward function. The DRL agent tries to solve

instances within each episode, that is comprised of a

sequence of states, actions, and rewards, terminating

when all orders are fulfilled or when an excessive

number of late orders accumulated.

State space is represented with three main components:
the number of orders that are not processed yet,

available capacity and extra information such as the

count of late orders, the count of fulfilled orders, and

the present simulation time. Action space is formulated

so that there are two actions - single-select and multi-

select - for each order category plus the “do nothing”

action when there is no available capacity, there are 11

actions totally. Taking an action in case of no order or

choosing an order when there is no capacity is

considered to be an infeasible action. In such instances,

the state remains unchanged, and orders remain

unprocessed. If wait action is chosen when there are

orders and capacities, it is also an infeasible action and

not performed. The action and state formulas are taken

from [5].

The reward function similar to the reward function in

[1] is shown in Equation 1, a reward proportional to the

finished order percentage by the conclusion of the

episode, with penalties imposed for late orders and

infeasible actions. w is the sum of the count of late

orders and count of non-processed orders. N is the total

count of orders. Then, 1 – w/N is the ratio of the

processed orders before their cut-off time, and the

reward exponentially depends on this value. An

environment is simulated for the agent to know how the

state changes as a result of its actions. The engagement

between the agent and the simulation model is shown

in Figure 3. After action a is performed, the simulation

model simulates the action till state s changes to s’. At

the time that orders arrive or available capacity increase

or decrease, the state changes. When orders are ready

for shipping, tardiness information is received.

Int. J. Adv. Eng. Pure Sci. 2024, 36(3): <235-246> RL solution for OBSP

240

 -0.5 if infeasible action

r(s, a, s’) = -1.5 if late order (1)

 (1– w/N)2 if episode finishes

 0 otherwise

Transition time τ is minimal when capacities are

available, but it increases significantly when the wait

action is selected. The agent needs to learn the actions

for each Ociljek, and the capacities needed for each of

the actions. This is encouraged by giving a penalty for

infeasible actions.

Figure 3. Interaction of the DRL agent with the

simulation model [1]

3.2.3. Proximal policy optimization

Proximal Policy Optimization (PPO) introduced by

[18] is a cutting-edge RL method designed to optimize

policies for decision-making tasks in environments

with complex and continuous action spaces. PPO is a

member of the policy gradient methods family that

directly learn the optimal policy through gradient

ascent on the objective function. PPO finds applications

in various industries including gaming, robotics,

finance, healthcare, and autonomous systems and it has

been proved that PPO achieves good stability, sample

efficiency and robustness in various environments

[19][20].

PPO algorithm is chosen to be applied to OBSP. One

of the reasons is that it is an extension of Trust Region

Policy Optimization (TRPO) and Actor Critic with

Experience Replay (ACER) algorithms which are both

extensions of DQN -the first developed DRL

algorithm- with the recent improvements. Another

reason is reducing computational expenses. Since PPO

only updates policies instead of individual states as in

DQN, training time is significantly reduced. The third

reason is the success of PPO algorithm in coming by a

more general strategy so that it can be applied to

another warehouse settings later on.

Self-dependence of training data on the policy creates

instabilities in the process of training in RL. Besides,

parameter tuning is sensitive in a considerable amount.

PPO solves these problems of RL.

PPO is an online learning algorithm as opposed to

DQN, which means it learns directly from encountered

experiences rather than storing and replaying. This

method employs a policy gradient approach,

necessitating the computation of an estimator for the

policy gradient and its utilization within a stochastic

gradient ascent algorithm. Gradient estimators has a

common form in Equation 2. In neural network

implementations, gradient estimator can be obtained by

differentiating objective function in Equation 3. The

policy πθ takes states as input and proposes actions as

log probabilities. 𝐴𝑡 is the advantage function which is

the comparative value of chosen action for current state.

It is the difference between cumulated and discounted

sum of rewards Gt and the baseline estimate.

𝑔 = 𝐸𝑡[𝛻𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡 ∨ 𝑠𝑡)𝐴𝑡] (2)

𝐿𝑃𝐺(𝜃) = 𝐸𝑡[𝑙𝑜𝑔𝜋𝜃(𝑎𝑡 ∨ 𝑠𝑡)𝐴𝑡] (3)

Gt is formulated in Equation 4. 𝛾 indicates the discount

factor which is a value in [0,1], so the importance of

future rewards are less than the close ones. 𝐴𝑡 is

calculated after all rewards in the episode is collected.

Baseline estimate is the value function in state st, which

is produced by the neural network and has some

variance. 𝐴𝑡 indicates the comparative value of the

chosen action over the expectation of the state.

𝐺𝑡 = 𝑅𝑡 + 𝛾𝑅𝑡+1+. .= ∑ 𝛾𝑘𝑅𝑡+𝑘
∞
𝑘=0 (4)

Due to the parameter updates of the neural network

extending beyond the range of collected data,

advantage function predicts the wrong estimate. This

problem is solved in TRPO formulated which is also

the basis for PPO. A limit on the policy update

magnitude is applied as in Equation 5.

𝑚𝑎𝑥
𝜃

𝐸𝑡 [
𝜋𝜃(𝑎𝑡∨𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡∨𝑠𝑡)
𝐴𝑡], subject to 𝐾𝐿𝜋𝜃𝑜𝑙𝑑(𝜋𝜃) ≤ 𝛿 (5)

However, this additional overhead of KL constraint in

optimization process can cause problems in training.

This is solved by the clipping operation in the objective

function of PPO as formulated in Equation 6.
𝜋𝜃(𝑎𝑡∨𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡∨𝑠𝑡)
is denoted by 𝑟𝑡(𝜃). Expectation over the

minimum of two terms is calculated. First term is the

default objective, and the second term is obtained by

applying a clipping operation on the first term where

𝜖is between 0 and 0.2.

RL solution for OBSP Int. J. Adv. Eng. Pure Sci. 2024, 36(3): <235-246>

241

Figure 4. PPO Algorithm for the proposed warehouse system [1]

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸𝑡[𝑚𝑖𝑛⁡(𝑟𝑡(𝜃)𝐴𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡)]

 (6)

The PPO objective function is created by adding extra

terms to 𝐿𝐶𝐿𝐼𝑃(𝜃) as in Equation 7. 𝐿1
𝑉𝐹(𝜃) updates

the baseline network. 𝑆[𝜋𝜃](𝑠𝑡) encourages

exploration. c1 and c2 weights are hyperparameters to

be adjusted.

𝐿𝑡
𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆(𝜃) = 𝐸𝑡[𝐿𝑡

𝐶𝐿𝐼𝑃(𝜃) − 𝑐1𝐿1
𝑉𝐹(𝜃) +

𝑐2𝑆[𝜋𝜃](𝑠𝑡)] (7)

PPO training algorithm for the proposed warehouse

system is shown in Figure 4.

3.2.4. Heuristic algorithm

Least Slack Time (LST) rule which is a heuristic

method that assigns a priority to the orders with least

slack times is applied as a benchmark. Slack time is

defined as the difference between the amount of time

until the due date of the order and the total processing

time. When slack time turns negative, single-select is

applied. Our algorithm for LST batching and

sequencing rule is as follows:

1. Orders are ordered by ascending cut-off times

2. Orders are grouped into batches or single orders

according to greedy rule

3. Slack time of each order/batch is calculated

4. If there are batches that have a negative slack time,

those are dismantled into single orders

5. Order/batches are ordered by ascending slack time

6. First order/batch in the list is selected to be

processed

3.3. Experiments

Order arrival events dataset shared by [21] is utilized in

this research. It is a public dataset that includes

purchase data from April 2020 to November 2020 from

a major online retailer of home appliances and

electronics. The dataset includes the information of

order arrival times and products in each order, which

are interested for OBSP. The other required

information for our algorithm, such as the stock

location of items and the composition of orders are

generated in the scope of this work. The dataset is

chosen because it is e-commerce purchase history data

which is suitable for the proposed warehouse system.

The dataset includes 1.4M orders and 2.6M items in

total. It is observed that order arrivals are concentrated

on morning hours, see Figure 5 for order arrival

distribution.

Some preprocessing steps are done to simplify the

problem, such as removing the outliers which are

orders consisting of 10 or more items and orders

containing more than one from the same SKU. Only

hours between 06:00 and 12:00 is taken into

consideration since these are the busiest hours.The cut-

off times are generated since they do not exist in the

original dataset, however cut-off times will be applied

to decide the tardiness of the order. Two cut-off time

settings with every hour or 15 minutes between 07:00

and 13:00 are examined. Items that are purchased

before 12:00 will be delivered same day, so orders

before 12:00 are processed same day and have cut-off

times before 13:00. A pareto analysis has been done,

and the most frequently ordered items are placed in PtG

stock whereas the others are placed in GtP.

Scenarios are created from the order arrivals dataset

processed according to these assumptions. Each

scenario is analysed for different order throughput and

resource settings and with settings in Table 1 between

06:00 and 12:00. Orders before 06:00 are not

considered. All orders that are not processed between

Int. J. Adv. Eng. Pure Sci. 2024, 36(3): <235-246> RL solution for OBSP

242

release and next cut-off moment are considered to be

tardy.

Figure 5. The distribution of order arrivals aggregated

over a span of 30 days

Order arrivals have been released to the simulation

environment at the start of the hour or once in every 15

minutes depending on the scenario. Then, it is decided

which orders will be picked and whether it will be a

batch or a single order. The decision is a result of the

learned policy of the agent in DRL experiments, and

depends on a rule in heuristic experiments. After the

items for the order/batch is picked, it follows the

designated path in our spesific warehouse environment.

The orders are accepted to become tardy when their

shipping time exceed the cut-off time specified for each

scenario.

Table 1. Different scenarios applied for order arrivals

dataset

Scenario A B

Length of run 1 hour 1 hour

SKU

distribution

PtG - 70%

GtP - 30%

PtG - 70%

GtP - 30%

Order releasing

times

Every hour Every 15

minutes

Cut-off times Every hour Every 15

minutes

Same experiment setup has been applied for both

heuristics and DRL algorithm to be able to compare

them. Two different order throughput setting has been

applied for each scenario, which are 360 and 500 orders

per hour. Resources are 9 pickers, 15 shuttles, 1 DtO

zone, 1 StO zone and 1 packing zone for all

experiments. The number of warehouse resources and

order throughput values have been determined by

running heuristic experiments several times

beforehand, and trying to achieve a low percentage of

tardy orders. Four experiment have been done with

LST, symbolized with lst360_3600, lst360_900,

lst500_3600 and lst500_900. The first number in the

model name symbolizes the order throughput and the

second number symbolizes the order arrival interval in

terms of seconds.

For the DRL algorithm experimentation, a training step

is also required. Train and test datasets are obtained by

splitting the original dataset randomly, and getting 70%

for training, and the remaining 30% for testing. PPO

algorithm is utilized for training, the model is trained

for 1000000 steps. The step size, the number of steps

per update is 1024. The discount factor is 0.9999.

MlpPolicy is used as policy model. The clipping

parameter is 0.2. Learning rate is 0.0003. The other

parameters are all default values. Four models are

trained: a360_3600, a360_900, a500_3600 and

a500_900. The first number in the model name

symbolizes the order throughput and the second

number symbolizes the order arrival interval in terms

of seconds.

The results are examined and compared in terms of

tardy order percentage. Also, robustness and action

strategy of the DRL solution are investigated.

All experiments are conducted on the same virtual

machine on Microsoft Azure. The virtual machine is

Standard D16as v5 size (16 vcpus, 64 GiB memory)

and has a Linux (ubuntu 20.04) operating system. For

training and testing the PPO model, stable-baselines3

package [22] and PyTorch [23] is used, and

Tensorboard is used for monitoring the behaviour of the

agent.

IV. RESULTS AND DISCUSSION

4.1. Tardy Order Percentages

To adjust the reward formula, different weights for

penalties are tested for 1 hour order arrival interval and

for 360 and 500 order throughputs. The effect of

different reward formulas in terms of tardy order

percentages can be viewed in Table 2. First we had

applied smaller penalties, and after some trial and error,

we decided on larger penalties. The weights for small

penalties are -0.005 for infeasible action and -0.0075

for tardy order which are the weights used in [1],

whereas for large penalties they are -0.5 and -1.5

respectively. Larger penalties resulted in more

difference for higher order throughputs.

The reward formula is a fundamental component in RL

that directly impacts how the agent learns and behaves.

Its design requires careful consideration to ensure that

it effectively guides the agent towards the intended

goals while avoiding pitfalls and promoting efficient

learning. The choice between large and small penalties

in RL depends on the specific requirements and

constraints of the task. By providing a strong deterrent

against suboptimal actions, large penalties can help the

agent converge to a better policy more quickly, as it

more decisively learns which actions to avoid.

However, they can cause instability. Small penalties, on

the other hand, allow the agent to explore the

environment more freely, understanding a broader

range of actions and their outcomes without being

overly discouraged by mistakes. However, they lead to

RL solution for OBSP Int. J. Adv. Eng. Pure Sci. 2024, 36(3): <235-246>

243

a slower convergence. On our spesific problem, smaller

weights might not have been sufficient to strongly

discourage tardy orders.

Table 2. Tardy Order Percentage for Different

Reward Formulas with Standard Deviation Given in

Paranthesis

Trained

Model

Penalty Weights Mean (%)

a360_3600 (-0.005, -0.0075) 1.91(1.79)

a360_3600 (-0.5, -1.5) 1.6 (1.74)

a500_3600 (-0.005, -0.0075) 12.15 (10.15)

a500_3600 (-0.5, -1.5) 8.51 (2.24)

After deciding on the reward formula, 4 different

models are trained with the PPO algorithm for 360 and

500 order throughputs, and 1 hour and 15 minutes order

arrival intervals. The models are tested for 20 episodes.

LST rule has been applied on the same settings for same

number of episodes and the results are compared for

each setting. Table 3 shows the resulting average tardy

order percentages and standard deviations.

Table 3. Comparison of Tardy Order Percentages of

LST and PPO Algorithms

Experiment Mean (%) Standard

Deviation(%)

lst360_3600 3.73 2.68

a360_3600 1.91 1.79

lst360_900 0.0 0.0

a360_900 0.0 0.0

lst500_3600 24.83 3.17

a500_3600 8.51 2.24

lst500_900 23.2 12.01

 a500_900 8.3 9.1

It is observed that the agent trained with DRL achieves

around a one third lower tardy order percentage for all

settings when compared with the benchmark of applied

heuristic. The higher order throughput values result in

higher tardy order percentages as expected. The mean

values are slightly lower when an arrival interval of 15

minutes applied, however the standard deviation is

higher in that case. We observed that the amount of

decrease in tardiness when DRL applied is significant

especially when the amount of orders to be processed

is higher.

The overall performance of the DRL agent in terms of

tardy order percentages is higher than the heuristics,

which is compatible with the previous studies [1][5]. It

shows that RL can be an effective solution for

achieving a lower tardy order percentage in logistics

due to its ability to learn optimal strategies through

interactions with the environment. It may be a

promising method for the tight delivery schedules and

order uncertanties frequently encountered in today’s

logistics solutions.

4.2. Action Strategy

The actions taken by the agents on each episode for

different order throughput values and order arrival

interval of 1 hour are logged during training and

visualized in Tensorboard as shown in Figure 6. The

last chart shows do nothing action which is selected

when there are no capacity or available orders. Action1,

action3, action5, action7 and action10 represent single-

select actions whereas the others represent multi-select

actions. First 4 actions are for picking single item

orders, whereas the others are for multiple item orders.

Action1, action2, action5 and action6 is for picking

items that are stored in PtG stock. Action3, action4,

action7 and action8 is for picking items that are stored

in GtP stock. Action9 and action10 is for picking items

from both PtG and GtP stocks.

The count of average performed actions per episode is
higher in case of a high order throughput almost for all

actions. It makes sense because more actions will be

required to pick more orders. The results are only

different for action1 and action5. Action1 and action5

was for picking items by order from PtG stock area.

Our agent may take a multi-select decision instead of

single-select for a high order throughput value for PtG

stocks only because total picking time for PtG

decreases more than GtP when orders are batched. To

explain it with an example; suppose that they will be 3

items in the batch. Then, total picking time will be

roughly 3x30+100=190 to pick them from PtG, and

roughly 3x15=45 for picking them from GtP. When not

batched, the time will be (30+100)x3=390 for PtG

stock and will not change for GtP. There is a constant

value symbolizing the time for picker to arrive to the

location of the item in PtG stock, which explains the

decision of the agent.

The distribution of numbers of actions diverses mostly

in action2, action6 and action8. Action2 increases for

the low order throughput value, whereas it decreases for

the high order throughput value. For action6 and

action8, the situation is the vice versa. All of them are

multi-select actions. The difference between the

categories these actions address is that action 2 is for

single item orders, whereas action 6 and 8 is for

multiple item orders. We can make an inference that

our agent improves a strategy to select multi-select

actions more for single item orders and less for multiple

Int. J. Adv. Eng. Pure Sci. 2024, 36(3): <235-246> RL solution for OBSP

244

Figure 6. The mean number of actions executed per episode for different order throughputs during training for 1

hour arrival interval

item orders when total number of orders is high. It may

be because of that batching single item orders requires

less time to process orders at areas. For the case of

smaller arrival intervals, the same strategy

development is not observed.

Generally, the number of do-nothing actions is smaller

for a low order throughput value. It may be because of

resource deficiency met when high number of orders

started to be processed in our warehouse environment.

Developing an action strategy is essential for an RL

agent’s success. It provides the framework within

which the agent learns and makes decisions, ensuring

that the agent can efficiently and effectively navigate

its environment to achieve the desired goals. By

monitoring the actions taken by our RL agent during

training, it is observed that it develops an action

strategy to achieve a lower number of tardy orders in a

capacity constraint environment.

4.3. Robustness Analysis

The agents trained on 360 and 500 order throughputs

are also tested on 500 and 360 orders respectively for

different order arrival intervals, to observe how will

they behave when there is a lower or higher order

throughput is experienced than they are trained on.

Resulting tardy order percentages can be viewed on

Table 4. It is observed that the agent trained on 500

hourly orders processes all orders in time when it met

360 hourly orders. The other agent which is trained on

360 hourly orders, does not perform as well as the one

trained on 500 orders as expected. However, it can still

achieve better than the heuristic approach.

Table 4. Tardy Order Percentage for Models Tested

on Different Order Throughput Values Than They

Trained

Trained Model Test Order

Throughput

Mean (%)

a360_3600 500 18.97 (2.73)

a360_900 500 0.57 (1.55)

a500_3600 360 0.0 (0.0)

a500_900 360 0.0 (0.0)

RL solution for OBSP Int. J. Adv. Eng. Pure Sci. 2024, 36(3): <235-246>

245

The behaviour of the RL agent in case of order

uncertainty and variability is important since it is a case

that frequently occurs in today’s warehouses,

especially in e-commerce. It is shown that the the

proposed RL solution may cope with the order peeks,

and exhibit an acceptable performance.

V. CONCLUSION
In this research, the performance of a DRL solution on

an OBSP problem with an objective of minimizing the

tardy order percentage is investigated. The results are

compared to a heuristic solution which is applied on the

same warehouse environment and order arrival dataset.

The following conclusions are obtained:

1. DRL with an LST applied for sequencing gives

better results than LST batching and sequencing on

our spesific problem for all of the applied

scenarios.

2. The proposed solution is robust to changes in order

throughput.

3. It is observed that our agent develops an action

strategy that will decrease the time for an order to

be prepared.

The DRL model may be improved by including

different techniques for optimizing reward function,

further investigating different model parameters. There

exists studies with the methods based on PPO and

proved to have a better sample efficiency [24][25].

Following up recent improvements in RL algorithms

and including in our solution may improve the results.

For a better simulation of a real life problem, higher

order throughputs may be experimented and a more

detailed warehouse simulation may be used. Other

performance metrics such as maximization of the

utilization of resources may be measured to investigate

the versatility of the solution.

ACKNOWLEDGEMENT
This research was prepared within the scope of

Bahçeşehir University postgraduate thesis study. I

would like to express my gratitude to my supervisor

Assos. Prof. Ayla Gülcü for her valuable guidance and

advice which makes this study possible.

REFERENCES
[1] Cals, B. J. H. C. (2019). The order batching

problem: a deep reinforcement learning approach.

(Master Thesis, Eindhoven University of

Technology, Eindhoven, Holland). Retrieved from

https://research.tue.nl/en/studentTheses/the-order-

batching-problem

[2] Menéndez, B., Bustillo, M., G. Pardo, E., &

Duarte, A. (2017). General Variable

Neighborhood Search for the Order Batching and

Sequencing Problem. European Journal of

Operational Research. 263.

10.1016/j.ejor.2017.05.001.

[3] Xiaowei, J., Zhou, Y., Zhang, Y., Sun, L., & Hu,

X. (2018). Order batching and sequencing problem

under the pick-and-sort strategy in online

supermarkets. Procedia Computer Science. 126.

1985-1993. 10.1016/j.procs.2018.07.254.

[4] Aylak, B. L. (2022). WAREHOUSE LAYOUT

OPTIMIZATION USING ASSOCIATION

RULES. FRESENIUS ENVIRONMENTAL

BULLETIN, 31(3 A), 3828-3840.

[5] Beeks, M. S. (2021). Deep reinforcement learning

for solving a multi-objective online order batching

problem. (Master Thesis, Eindhoven University of

Technology, Eindhoven, Holland). Retrieved from

https://research.tue.nl/en/studentTheses/deep-

reinforcement-learning-for-solving-a-multi-

objective-online-

[6] Boysen, N., De Koster, R.B.M, & Weidinger, F.

(2018). Warehousing in the e-commerce era: A

survey. European Journal of Operational Research.

277. 10.1016/j.ejor.2018.08.023.

[7] Aylak, B. L., İnce, M., Oral, O., Süer, G.,

Almasarwah, N., Singh, M., & Salah, B. (2021).

Application of machine learning methods for pallet

loading problem. Applied Sciences, 11(18), 8304.

[8] Yan, Y., Chow, A.H.F., Ho, C.P., Kuo, Y.H., Wu,
Q., & Ying, C. (2021). Reinforcement Learning for

Logistics and Supply Chain Management:

Methodologies, State of the Art, and Future

Opportunities. Retrieved from SSRN:

https://ssrn.com/abstract=3935816

[9] Henn, S. & Schmid, V. (2011). Metaheuristics for

Order Batching and Sequencing in Manual Order

Picking Systems. Computers and Industrial

Engineering. 66. 10.1016/j.cie.2013.07.003.

[10] Henn, S. (2012). Order batching and sequencing

for the minimization of the total tardiness in

picker-to-part warehouses. Flexible Services and

Manufacturing Journal. 27. 10.1007/s10696-012-

9164-1.

[11] Tsai, C.-Y., Liou, J. J. H., & Huang, T.-M. (2008).

Using a multiple-GA method to solve the batch

picking problem: considering travel distance and

order due time. International Journal of Production

Research, 46:22, 6533-6555. DOI:

10.1080/00207540701441947

[12] Valle, C.A., Beasley, J.E., & Cunha, A.S. (2017).

Optimally solving the joint order batching and

picker routing problem. European Journal of

Operational Research. 10.1016/j.ejor.2017.03.069.

[13] Cals, B., Zhang, Y., Dijkman, R. M., & van Dorst,

C. (2021). Solving the Online Batching Problem

using Deep Reinforcement Learning. Computers

& Industrial Engineering, 156, [107221].

https://doi.org/10.1016/j.cie.2021.107221

[14] Hildebrand, M., Frendrup, J., & Sarivan, M.

(2019). Batching using reinforcement learning.

The 7th Student Symposium on Mechanical and

Manufacturing Engineering. Department of

Materials and Production, Aalborg University.

https://research.tue.nl/en/studentTheses/the-order-batching-problem
https://research.tue.nl/en/studentTheses/the-order-batching-problem
https://research.tue.nl/en/studentTheses/deep-reinforcement-learning-for-solving-a-multi-objective-online-
https://research.tue.nl/en/studentTheses/deep-reinforcement-learning-for-solving-a-multi-objective-online-
https://research.tue.nl/en/studentTheses/deep-reinforcement-learning-for-solving-a-multi-objective-online-
https://doi.org/10.1016/j.cie.2021.107221

Int. J. Adv. Eng. Pure Sci. 2024, 36(3): <235-246> RL solution for OBSP

246

[15] Beeks, M., Refaei Afshar, R., Zhang, Y., Dijkman,

R., Dorst, C. & Looijer, S. (2022). Deep

Reinforcement Learning for a Multi-Objective

Online Order Batching Problem. In Proceedings of

the International Conference on Automated

Planning and Scheduling. 32. 435-443.

10.1609/icaps.v32i1.19829.

[16] Brockman, G., Cheung, V., Pettersson, L.,

Schneider, J., Schulman, J., Tang, J. & Zaremba,

W. (2016).

[17] Sutton, R. S., & Barto, A. G. (2018).

Reinforcement Learning: An Introduction. A

Bradford Book, Cambridge, MA, USA.

[18] Schulman, J., Wolski, F., Dhariwal, P., Radford,

A. & Klimov, O. (2017). Proximal Policy

Optimization Algorithms.

https://doi.org/10.48550/arXiv.1707.06347

[19] Lopes, G.C., Ferreira, M., da Silva Simões, A., &

Colombini, E. L. (2018) Intelligent Control of a

Quadrotor with Proximal Policy Optimization

Reinforcement Learning. 2018 Latin American

Robotic Symposium, 2018 Brazilian Symposium

on Robotics (SBR) and 2018 Workshop on

Robotics in Education (WRE), João Pessoa, Brazil,

2018, pp. 503-508, doi:
10.1109/LARS/SBR/WRE.2018.00094.

[20] Funika, W., Koperek, P., & Kitowski, J. (2020).

Automatic Management of Cloud Applications

with Use of Proximal Policy Optimization. In:

Krzhizhanovskaya, V., et al. Computational

Science – ICCS 2020. ICCS 2020. Lecture Notes

in Computer Science, vol 12137. Springer, Cham.

https://doi.org/10.1007/978-3-030-50371-0_6

OpenAI Gym.

https://doi.org/10.48550/arXiv.1606.01540

[21] Kechinov, M. (2020). eCommerce purchase

history from electronics store [Data file]. Retrieved

from

https://www.kaggle.com/datasets/mkechinov/eco

mmerce-purchase-history-from-electronics-store

[22] Raffin, A., Hill, A., Gleave, A., Kanervisto, A.,

Ernestus, M., & Dormann, N. (2021). Stable-

Baselines3: Reliable Reinforcement Learning

Implementations. Journal of Machine Learning

Research 22 (2021) 1-8

[23] Paszke, A., Gross, S., Massa, F., Lerer, A.,

Bradbury, J., Chanan, G., ... & Chintala, S. (2019).

Pytorch: An imperative style, high-performance

deep learning library. Advances in neural

information processing systems, 32.

[24] Wang, Y., He, H. & Tan, X. (2020). Truly

Proximal Policy Optimization. Proceedings of the

35th Uncertainty in Artificial Intelligence

Conference, in Proceedings of Machine Learning

Research 115:113-122 Available from

https://proceedings.mlr.press/v115/wang20b.html.

[25] Cobbe, K. W., Hilton, J., Klimov, O., & Schulman,

J. (2021). Phasic policy gradient. In International

Conference on Machine Learning (pp. 2020-

2027). PMLR.

https://doi.org/10.1007/978-3-030-50371-0_6
https://doi.org/10.48550/arXiv.1606.01540
https://proceedings.mlr.press/v115/wang20b.html

