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Abstract

In this paper a study of the transient behavior of sojourn distributions of particular customers traversing serial networks of single-server
queues is presented. It is motivated by the need to project completion times of critical customers in loaded, capacitated queueing systems.
In particular, serial networks with First-Come-First-Served queueing discipline which do not allow overtaking are considered. An analytic
model based on a Markovian state space is shown to be computationally prohibitive even for relatively small scenarios. Given the limitation
of the exact solution, heuristic schemes, based on a characterization of the behavior of the exact solution and the Central Limit Theorem, are
developed as an alternative to digital Monte-Carlo simulation. A hybrid technique combining the estimated mean from one of the heuristics
and the estimated variance from another proves to be accurate and efficient in approximating the mean and variance of the sojourn distribution
in a variety of application scenarios.
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1. Introduction

In this paper a study of the sojourn-time distribution for
a job traversing a network of queueing stations is presented.
While much work has been done on determining such distri-
butions under “steady-state” or equilibrium conditions, the
same cannot be said for “given scenario” conditions. A
“given scenario” is a given state of the system at a par-
ticular instant in time (queue lengths, server statuses, etc.).
The emphasis of this paper is in the presentation and evalua-
tion of techniques for determining sojourn-time distributions
for particular jobs in serial networks of single-server, First-
Come-First-Served (FCFS) Markovian queues. Of particular
interest are simple heuristics that can provide fast, accurate
results that potentially can be used in real or near-real time
application tools.

The motivation for studying queueing systems of this type
stems from production problems encountered by manage-
ment of repair and maintenance job shops, like the U.S.
Navy’s Fleet Readiness Centers (FRC’s). An FRC is a large
job-shop where planned, periodic depot-level maintenance
(i.e., overhaul) of aircraft, engines, aircraft components, and
ground support equipment is performed. Shops within an
FRC, like many jobshops, are generally operated at near
capacity limits so that backlogs of work-in-process almost
always exist. Management’s goal is to provide timely, yet
cost-effective repairs so as to maintain fleet readiness. One

very visible measure of performance is the ability or inabil-
ity to meet scheduled completion dates. A major concern is
the early detection and expeditious handling of any jobs that
have fallen behind schedule. Currently available information
systems can provide data on the status of any job, however,
this type of information only allows managers to try to fight
“fires” as they occur.

A more appropriate tool would be an information system
that could, in real-time, predict the “fires” before they actu-
ally occur. Such a system would look forward in time and
project the completion time for any job and provide infor-
mation on potential bottlenecks, i.e., critically overloaded
shops. Given such information, unsatisfactory completions
and bottlenecks could be responded to by raising job priori-
ties, buying overtime, or shifting manpower before the prob-
lem actually occurs.

It should be noted that sojourn-time results for arbitrary
customers in an open network under “given scenario” con-
ditions have been largely ignored. This is quite understand-
able given the severe difficulty of obtaining analytic results in
other than very simple cases. The main interest of this work
is the determination of the mean and variance of the sojourn
times for a particular customer under “given scenario” con-
ditions. We will consider three approaches to this problem.

One approach is based on the observation that in loaded
systems the Central Limit Theorem applies, thus simple, de-
terministic procedures yield good approximations. The sec-
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ond approach stems from characterization of the exact solu-
tion. This approach considers the paths through a Markovian
state space network. The majority of the paths through the
network in moderate to heavy traffic scenarios have a simple
structure whose distributions can be obtained in a computa-
tionally efficient manner. The third approach is a hybrid of
the first two, combining the benefits of both.

2. Literature review

Some of the first results on sojourn times in queueing net-
works were presented by Reich (1957). He proved that for
a tandem configuration of M/M/1 queues with FCFS queue
discipline, the steady-state sojourn times at each queue are
independent of each other. Reich (1963) extended this re-
sult to an arbitrary number of such queues in tandem. Burke
(1972) provided an alternative proof based upon a reversibil-
ity argument and the fact that in such a system customers
cannot be overtaken or passed by later arriving customers.
This overtaking condition was shown by Takacs (1962) to
bring on dependencies among the partial sojourn times in-
curred at individual nodes. These dependencies lead to enor-
mous difficulties in analysis. Simon and Foley (1979) and
Mitrani (1979) also demonstrated this property in correcting
assumptions made by Lemoine (1977).

Chow (1980) derived the Laplace-Stieltjes transform of
the cycle time (which is equal to the sum of two succes-
sive response times) distribution for the case of exponentially
distributed service times at two queues. Schassburger and
Daduna (1983) generalized the results of Chow (1980) by
deriving the distribution of cycle time for a closed cycle of
many arbitrary single-server queues.

Walrand and Varaiya (1980) considered an open multi-
class Jackson network in equilibrium. They showed that the
sojourn times of a customer at the various nodes of a non-
overtaking path are all mutually independent. They also give
two examples to show that the non-overtaking condition may
be necessary to ensure independence when there is a single
customer class.

Harrison (1984) proved that in steady-state the cycle time
distribution is a combination of M Erlang N density func-
tions for an arbitrary customer in a closed cycle of M
(M/M/1) queues and for tree-like M/M/1 queues where N
is the total number of customers. For systems with m servers
at a queue in tree-like networks the component distributions
are shown to be convolutions of the Erlang N distributions
with at most m − 1 exponentials.

Daduna (1982) considered closed multi-class Gordon-
Newell networks Gordon and Newell (1967) and proved that
the passage time through an overtake free path is a mixture
of Erlang distributions where the mixing distribution is given
by the steady state behavior of the network at arrival times
at the path. Daduna (1984) extended his results to include
the case where the first and last nodes can be multi-server
queues.

Boxma and Donk (1982) determined the joint distribution
of consecutive sojourn times of a customer in a closed cy-

cle of two single-server exponential queues. The result is
the Laplace-Stieltjes transform of the distribution which is
proved using a reversibility argument. These results and the
results of Schassburger and Daduna (1983) are generalized
by Boxma et al. (1984) for arbitrarily many single-server
queues. Kelly and Pollett (1983) extended and unified the
results of Daduna (1982) and Boxma et al. (1984). They
found the joint distribution of consecutive sojourn times for
a customer along an overtake free path in a closed multi-
class Jackson network. In this case the individual sojourn
times are not independent but the joint distribution has a rel-
atively simple representation in terms of the product form of
the stationary state distribution at an arrival instant.

Grassmann (1977b) and Grassmann (1977a) applied the
method of randomization to find transient solutions for
the M/M/1 queue problem. Melamed (1982) considered a
queueing network with types of customers, Poisson arrivals,
type dependent routing and state dependent services. The
main purpose was to put together some results concerning
various aspects of sojourn times in a class of queueing net-
works of considerable generality. He made use of Little’s
standard formula to derive limiting mean sojourn times con-
ditioned on customer type and path. Melamed and Yadin
(1984a) proposed a methodology utilizing and generalizing
the randomization procedure to approximate sojourn time
distributions in discrete-state Markovian queueing networks.
Melamed and Yadin (1984b) presented the computational as-
pects of this methodology. Also an optimal storage scheme
was described for open Jackson networks.

As Grassmann (1977b) noted, the method of randomiza-
tion can be “very convenient in cases where it is difficult to
obtain the distributions by other methods.” Such cases in-
clude the handling of arrivals to the system and customer
overtaking. However, randomization does not take advan-
tage of the structure in the case where there are no arrivals
to the system and no customer overtaking. This structure,
namely, the upper triangularity of the transition matrix al-
lows for simple solutions using back substitution.

3. Exact analytic solution

The problem can be described as a series configuration of 
M shops (see Figure 1), each having a FCFS queue and a 
single server. The service times at shop j, ( j = 1, ..., M) 
form a sequence of i.i.d. random variables of the phased 
exponential type (generalized Erlang) having p j phases. The 
rate of the kth stage is constant and equal to µ jk.

Arrivals
-����1 -����2 - r r r -����M -

Departures

Fig. 1 Serial network of single-server queues

Given the problem as described above, the requirement
is to specify the sojourn-time distribution (or remaining
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sojourn-time distribution) for a particular arriving job (or any
job currently in the system) which finds the system in some
state s0 ∈ Ω(s0) = state space. Notice that any job behind the
particular job will not affect its sojourn-time since the service
rates are constant and service discipline is FCFS. Therefore,
those jobs behind the particular job or new arrivals can be
eliminated from further consideration. The sojourn-time dis-
tribution can be easily shown to be a weighted sum of gener-
alized Erlang terms, Harrison (1980).

Given that there are M shops, there is a maximum of M
events which could cause a transition out of any state u, that
is, a completion of a phase of service at any of the M shops.
Thus, the time to transition out of state u is equal to the mini-
mum of up to M exponential time intervals. It is well known
that this time is exponentially distributed with rate λu, where

λu =
∑
1≤ j≤M
r( j),0

µ jr( j)

with r( j) = phase of service in progress at shop j (1 ≤ r( j) ≤
p j). Thus, λu is the holding rate of state u.

Let f ∗u (s) be the Laplace-Stieltjes Transform (LST ) of the
holding time density function of state u, fu(t), i.e.,

L[ fu(t)] =

∫ ∞
0

e−std fu(t) =
λu

s + λu
.

Define the functions φ(u, v) and ψ(u, v) such that

φ(u, v) = number of the shop from which a completion
of a phase of service causes the transition
from u to v, (u, v ∈ Ω(s0)), which is 0
if a one-step transition u→ v is not possible.

ψ(u, v) = number of the phase of service at shop φ(u, v)
which causes a transition from u to v,
which is 0 if a one-step transition u→ v
is not possible.

Then the transition probability from state u to v of the un-
derlying Markov process is

Tuv =
λφ(u,v),ψ(u,v)

λu

where λ0,0 ≡ 0. Let T be the matrix of these state transition
probabilities. Then, for any row in T the number of non-
zero entries in that row will be at most M, i.e., the number of
events that cause a transition out of a given state is equal to
the number of shops that are active in that state.

Let T∗ be a modified transition matrix such that:

T ∗uv = weighted LST of the holding time distribution
of state u given the next state is v,

= Tuv f ∗u (s)
=

µφ(u,v),ψ(u,v)

λu
∗

λu
s+λu

=
µφ(u,v),ψ(u,v)

s+λu
.

Now, let the cumulative distribution function of the time
for the system to transition from state α to state β(α, β ∈

Ω(s0)) be Gαβ(t) and let G∗αβ(s) be its LST . Further define
Hαβ, such that,

Hαβ = {h = (h1, h2, ..., hn) | n ∈ Z+; }
h1 = α; hn = β; hk ∈ Ω(s0); Tk,k+1 , 0; 1 ≤ k < n}
where: Z+ is the set of positive integers

Hαβ represents the set of all possible sequences of state tran-
sitions, or paths, from state α to β. Each path in Hαβ corre-
sponds to a unique realization of state transitions where each
transition interval is exponentially distributed with known
rate. Thus, the time to traverse each path is a convolution
of exponential distributions, i.e., generalized Erlang.

The following is easily proved.

G∗αβ(s) = (I − T∗)−1
αβ. (1)

The proof involves weighting the contributions of every path
in Hαβ. With an appropriate ordering of the states, it is easily
seen that the transition matrix T, and thus T∗ and (I − T∗) is
upper-triangular and can be solved by simple back substitu-
tion.

Thus, the distribution of Gαβ(t) is the so-called general-
ized hyper-Erlang, that is, a weighted combination of gen-
eralized Erlang distributions. Each of these general Erlang
distributions corresponds to a unique path from state α to β.
The weight associated with each term is the probability of
traversing the corresponding path.

While the back substitution solution of (I − T∗)−1 is a
straightforward and simplistic procedure, there still are com-
putational problems to overcome. The number of back sub-
stitutions required to solve (I − T∗)−1

αβ is proportional to the
number of states in Ω(s0). However, the number of terms in
the solution is equal to the number of paths from state α to
state β. This value is a function of the number of shops, the
number of service phases at each shop, the initial state α, and
the final state β.

For simplicity, consider the exponential service case, i.e.,
p j = 1, for all shops j. Let fHαβ

(M) =| Hαβ |. This value is
sum of the fHγβ

(M) values for all one-step reachable states γ
from state α and can be obtained recursively, i.e.,

fHαβ
(M) =

∑
γ∈Jα

fHγβ
(M)

where Jα = set of 1-step reachable states from α, i.e. {γ |
φ(α, γ) > 0}. Recall that | Jα |≤ M.

Table 1 gives representative values of fHαβ
(M) for α = s0

and β is the empty state, i.e., the state which represents the
completion of service of the particular job at shop M. From
this table it can be easily seen that the number of paths ex-
plodes as the number of customers in each queue increases
and/or the number of shops grows. Therefore, a large num-
ber of calculations and a large amount of storage space is
necessary to keep track of the paths.
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Table 1
Number of paths in some representative scenarios

# Customers at
Shop: Number Number

1 2 3 4 of States of Paths
0 0 5 5 51 1.638 x 103

0 0 10 10 176 1.574 x 107

0 5 5 5 506 6.726 x 1010

0 10 10 10 3311 4.541 x 1023

5 5 5 5 5481 3.866 x 1024

10 10 10 10 27636 1.064 x 1038

All values in this table reflect exponential service at each shop.

4. Heuristic solution procedures based on the CLT

Perhaps the simplest heuristic scheme is to assume that all
service times are deterministic (and equal to the mean of the
given service distribution) and make a single pass simulation
using these fixed service times. This would give an approx-
imation for the mean sojourn time. The variance can be ap-
proximated by simply summing variances given the service
times are assumed independent. This is the basic scheme of
the Deterministic Simulation Heuristic (DSH).

The reason that the technique is effective lies in the sym-
metry of the associated distributions. It should be intuitively
obvious that using mean values should lead to good estimate
of the overall mean even for skewed distributions. However,
for the variance, two key factors affect the performance of
such a heuristic. First, for the Markovian systems under
consideration, the variance of the individual shop sojourn
times are proportionally additive. That is, for a fixed queue
length, L, the variance of the sojourn time at a shop is sim-
ply a convolution of L identical generalized Erlang distribu-
tions which is itself generalized Erlang. It is well known
that the variance of a generalized Erlang distribution is sim-
ply the sum of the variances of the individual exponentially
distributed stages. The second factor affecting the perfor-
mance of the heuristic is the inherent symmetry of the shop
sojourn times. This is due to the normalizing effect (Cen-
tral Limit Theorem) of convolving many exponentially dis-
tributed time intervals. These factors allow for averaging of
variances across all possible values of L to yield an effective
estimate of the true variance of the shop sojourn times.

An inherent problem with the DSH technique occurs in
situations where the service variances at the individual shops
are large and, according to the heuristic, the particular job
finds no jobs or only a few jobs ahead of it at a given
shop. These cases are potentially troublesome because of
the skewed shop sojourn-time distributions that result.

The coefficient of skewness, α3, is a measure of skew-
ness. For symmetric distributions, like the normal, α3 = 0.
However, for single tailed distributions (like sojourn distri-
butions), α3 approaches unity as skewness decreases. An N
stage special Erlang, for example, is asymptotically normal
(by the Central Limit Theorem) and has α3 ≈ 1 as N → ∞.
This is demonstrated in Table 2 for a single, special-Erlang

Table 2
Coefficient of skewness for some representative distributions

Stages of Number in Queue
Service 1 2 3 4 5

1 2.12 1.63 1.44 1.34 1.28
2 1.63 1.34 1.23 1.18 1.14
3 1.44 1.23 1.16 1.12 1.10
5 1.28 1.14 1.10 1.07 1.06

10 1.14 1.07 1.05 1.04 1.03

server at each shop. From this table it can be seen that
as the queue size increases and/or the number of phases of
service increases (for a constant mean service time, hence
tighter variance) the coefficient of skewness decreases. If the
number of exponential stages convolved is sufficiently large
then α3 ≈ 1 and hence the sojourn distribution is effectively
single-tailed symmetric. The DSH technique assumes that
the sojourn time distribution for the particular job at each
shop in the serial network is effectively symmetric. How-
ever, if the sojourn distribution at a shop is skewed because
of small queue sizes then a deterministic approximation will
tend to underestimate the true shop sojourn mean.

An enhanced heuristic, DPL, was developed to account for
this problem. If the number of queued jobs at a given shop
j upon arrival of the particular job is large then DPL uses
the DSH approximation for the mean and variance contribu-
tion at that shop. However, if this value is small, then the
estimate for the shop sojourn is adjusted. The DPL heuris-
tic incorporates a probabilistic estimate for the shop sojourn
mean for those troublesome cases just described. This esti-
mate is based on the following observations.

Consider a simple two queue (shop) network with expo-
nential servers working at rates µ1 and µ2, respectively. As-
sume that both servers are busy. and the queue at shop 1 is
empty and the queue at shop 2 contains 1 job. Let the job in
service at shop 1 be considered the particular job, then the
probability, Pn, that the particular customer completes ser-
vice and finds a total of n jobs at shop 2, n = 1, 2, 3, is given
in Equation 2.

P3 =
(µ2

1+µ1µ2)
(µ1+µ2)2

P2 =
µ1µ2

(µ1+µ2)2

P1 =
µ2

2
(µ1+µ2)2

(2)

Equation 3 shows these same probabilities for a system
with 2-stage special Erlang service distributions.

P3 =
µ3

1+3µ2
1µ2

(µ1+µ2)3

P2 =
3µ3

1µ
2
2+7µ2

1µ
3
2

(µ1+µ2)5

P1 =
5µ1µ

4
2+µ5

2
(µ1+µ2)5

(3)

Note that P3 ≈ 0.5 for nearly equal rates, µ1, µ2, in both
cases. The same is true for more generalized Erlang distribu-
tions. However, to avoid the complicating factors associated
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with determining the exact probabilities of the number of
jobs the particular job will find at successive shops, the DPL
heuristic uses a simplification of the above derivation. It ad-
justs the probabilities derived for the exponential case for use
in those cases where staged Erlang service is assumed. The
adjustment gives more weight towards the events associated
with fewer jobs than the weight derived above for the expo-
nential case. This scheme is in keeping with the goal of a
simple, yet accurate, heuristic.

For the following, let L represent the number of jobs po-
tentially at shop j upon arrival of the particular job according
to the DSH technique and let Lmax be a decision point. If the
DSH technique finds that L ≥ Lmax, then the standard DSH
estimates for the shop sojourn mean and variance at j are
used. However, if this value is less than Lmax the following
is used. Let

PLmax =
µ̂ j−1

µ̂ j + µ̂ j−1

Pl = PLmax (
µ̂ j

µ̂ j + µ̂ j−1
)p j∗(Lmax−l)

P1 = 1.0 −
L∑

l=2

Pl

where l = 2, ..., Lmax−1 and p j = number of phases of service
at shop j and µ̂ j is the total service rate of shop j.

The estimate of the mean shop sojourn time at each shop
j, MS J( j), and the shop variance, S V( j), are then computed
from the following.

MS J( j) =

L∑
l=1

lPl

µ̂ j

S V( j) =

L∑
l=1

lPlr j

µ̂ j

Based upon empirical evidence and the coefficients of
skewness shown in Table 2, setting Lmax = 3 provides the
best estimates. Defining T as the sojourn time for a particu-
lar customer, then

5. Experimental design

An experimentation plan was developed in order to eval-
uate the effectiveness of the heuristics presented. The plan
consists of a set of example scenarios which was designed to
test the heuristics under conditions similar to those found in
the heavy traffic facilities described in Section 1. Scenarios
which did not fall into this category were also included to
test the robustness of the heuristics.

Under steady-state conditions heavy traffic is defined as
ρ values near unity, however, for transient “given scenario”
conditions the meaning is unclear. For the purposes of this
research heavy traffic is defined as the condition under which
there is a very low probability that the particular customer

will arrive at a shop and find it empty. Light traffic will refer
to cases where this probability is high.

Experimentation was designed around four key parame-
ters: the number of shops, the initial queue lengths, the shop
service rates, and the service distributions. The number of
shops was set at four levels; 2, 3, 5, and 10. The queue
lengths were varied from 1 to 12. The service rates were
normalized to a base value of 1.0. For purposes of emulating
heavy traffic facilities, rates between 0.8 and 1.0 were used.
However, rates as low as 0.2 were also included to test ro-
bustness. These light traffic examples were included in the
two and three shop scenarios. A total of 595 example sce-
narios were developed.

Each scenario was solved for each of 5 different service
time distributions for a total of nearly 3000 problems. The
service distributions included the exponential distribution
and four special Erlang distributions where the number of
stages was 2, 3, 5 and 10, respectively. These distributions
provided a means to determine the effect of the variance
on the heuristics. Henceforth, the example datasets with
the exponential service times are referred to as the Model 1
datasets, those with a 2-stage Erlang distribution are Model
2, those with a 3-stage are Model 3, those with a 5-stage are
Model 5, and finally those with a 10-stage are Model 10.

6. Results for CLT-based heuristics

In this section the results of the heuristic DSH and DPL
techniques are compared to those from a Monte-Carlo sim-
ulation model for the examples just described. These results
are broken down by mean comparison and standard devia-
tion comparison.

6.1. Comparison of means

Due to the computational problems of the exact technique,
a Monte-Carlo simulation model was employed for compari-
son purposes for all datasets. The number of iterations of the
simulation was gauged to provide estimates within 1% of the
exact values at the α = 0.05 level.

As mentioned previously both heavy and light traffic sce-
narios were tested to evaluate the robustness of the heuris-
tics. Table 3 summarizes the effectiveness of both heuris-
tics. As expected the DPL technique outperforms DSH in
the light traffic scenarios since skewed sojourn times occur
more often. The difference in the estimate of the mean for
DSH is nearly twice that of DPL in the high variance model
(Model 1). The difference between the two tapers off with
the service variance as the shop sojourn times become less
skewed. Under light traffic the percentage differences for the
DPL technique are very good ranging from a worst case of
8.73% down to 1.09%.

Notice that in the heavy traffic examples the difference be-
tween DSH and DPL is insignificant. Both techniques pro-
vide very good approximations generally within about 2% of
the simulated results for all but the highest service variance
cases (Models 1 and 2).
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6.2. Comparison of standard deviations

The standard deviation from the heuristic was compared
with that from the Monte-Carlo simulation for the entire
dataset. The comparisons summarized by average absolute
difference in Table 4.

Both techniques tend to overestimate the total sojourn
variance. Empirical evidence indicates that there is an in-
herent negative correlation between successive shop sojourn
times. This makes sense intuitively since it would be ex-
pected that a particularly long stay at a shop would result in a
shorter stay at the next shop since the extra time would allow
more jobs at that next shop to complete before the particular
job arrives. Neither heuristic attempted to account for this
correlation due to the complex nature of this phenomenon.

Contrary to the estimates of the mean, DSH tends to pro-
vide slightly better estimates in the light traffic scenarios.
This is understandable given the way the variance is esti-
mated. With both techniques, the mean estimate influences
the estimate of the variance through the estimated number of
completions at each shop. Therefore, a higher estimate of
the mean produces a higher estimate of variance. The DSH
technique tends to underestimate the true mean in light traf-
fic. DPL provides a better and hence larger estimate of the
mean. Thus, the DSH estimate of the variance is smaller
and, given the correlation, generally better. However, in the
heavy traffic cases there is little difference because situations
which cause the heuristics to produce different estimates oc-
cur infrequently.

7. Heuristic techniques based on the analytic solution

The Path Heuristic was developed to solve the tandem
queue problem through the analysis of “paths” through a
Markovian state space network. Before proceeding further,
it is useful to define a few terms and consider a Markovian
state transition diagram.

Let

i = the number of entities initially at shop 1
j = the number of entities initially at shop 2
i′ = the number of entities at shop 1 in some

arbitrary state
j′ = the number of entities at shop 2 in some

arbitrary state.

The example in Figure 2 is a tandem arrangement of two
exponential queues with initial state (i = 2, j = 1) and ser-
vice rates µ1 and µ2 for servers 1 and 2, respectively.

An example path for this problem starts from state (2,1)
and proceeds through (1,2), (1,1), (0,2), and (0,1) to (0,0).
The probability of traversing a path is simply the prod-
uct of the probabilities of traversing the arcs between the
states. For example, the path described above has probabil-
ity ( µ1

µ1+µ2
)2( µ2

µ1+µ2
). Note that the probability of the majority

of the paths take on the general form ( µ1
µ1+µ2

)i( µ2
µ1+µ2

)k, where

����2,1

?

µ2
µ1+µ2

-

µ1
µ1+µ2 ����1,2

?

µ2
µ1+µ2

-

µ1
µ1+µ2 ����0,3

?
1

����2,0 -1 ����1,1

?

µ2
µ1+µ2

-

µ1
µ1+µ2 ����0,2

?
1

����1,0 -
1 ����0,1

?
1

����0,0

(NOTE: Arc values represent traversal probabilities)

Fig. 2 Diagram of state transition probabilities

k = the number of server 2 completions in the path before
reaching a state with i′ = 0.

There are some paths, those through j′ = 0 states, that
do not follow this general form. For example, the path (2,1),
(2,0), (1,1), (0,2), (0,1) to (0,0) has probability ( µ1

µ1+µ2
)( µ2
µ1+µ2

).
Although these paths do not follow the general form, if i � j
or µ2 � µ1 they tend to contribute little to the overall sojourn
distribution since few paths of this nature exist and they have
small traversal probabilities. In these cases, the sum of the
probabilities of all paths is approximately 1, i.e.

∑i+ j−1
k=0 Pk

i, j(
µ1

µ1+µ2
)i( µ2

µ1+µ2
)k ≈ 1

where i + j − 1 = the maximum level for k, Pk
i, j = the total

number of level k paths from the initial state (i, j).
With the path probabilities in hand, we proceed to cap-

ture the sojourn times at each level, k. There are three com-
ponents which comprise the sojourn time of a given path.
The first component occurs in the situation where the first
and second server are both busy, i.e., an (i′, j′) state where
i′ ≤ i, i′ , 0 and j′ ≤ j, j , 0. There are an estimated i + k of
these states. It is an estimate of i + k due to the addition of
the second component. The second component occurs in the
situation where only the first server is busy, an (i′, 0) state.
As mentioned previously, there are few occurrences of this
state in the set of all paths. Therefore, we have omitted this
component and added it to the first component, thus the i + k
estimate of occurring states. Thus, the LST of this compo-
nent is ( µ1+µ2

s+µ1+µ2
)i+k.

The third component occurs in the situation where only
the second server is busy, a (0, j′) state. For a level k path,
there are i + j − k of these states and the LST of this com-
ponent is ( µ2

s+µ2
)i+ j−k.

The weighted combination of the LST of these sojourn
distributions with weights corresponding to their respective
traversal probabilities yields the following sojourn distribu-
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Table 3
Average absolute percent difference of the mean for DSH and DPL heuristics

Model 2 Shops 3 Shops 5 Shops 10 Shops
(Service Heuristic Scenarios Scenarios Scenarios Scenarios
Stages) Technique Light Heavy Light Heavy Heavy Heavy

1 DSH 5.633 2.119 16.675 4.472 4.65 6.08
DPL 2.912 1.598 8.730 4.624 4.63 4.26

2 DSH 3.555 0.872 11.736 2.204 1.83 2.34
DPL 2.638 0.872 7.795 2.148 1.14 1.67

3 DSH 2.612 0.589 9.399 1.435 1.01 1.41
DPL 2.289 0.589 7.632 1.402 1.00 1.28

5 DSH 1.772 0.302 6.959 0.863 0.45 0.74
DPL 2.337 0.302 6.565 0.849 0.37 1.24

10 DSH 1.092 0.190 4.595 0.488 0.16 0.29
DPL 1.091 0.190 4.583 0.488 0.17 1.31

Table 4
Average absolute percent difference for the standard deviation for DSH and DPL heuristics

Model 2 Shops 3 Shops 5 Shops 10 Shops
(Service Heuristic Scenarios Scenarios Scenarios Scenarios
Stages) Technique Light Heavy Light Heavy Heavy Heavy

1 DSH 6.233 5.264 4.006 7.883 13.64 17.49
DPL 7.198 5.264 8.481 8.107 13.50 17.02

2 DSH 6.925 5.128 4.728 7.559 10.88 12.53
DPL 7.576 5.128 6.985 7.494 10.72 11.99

3 DSH 7.421 5.054 5.334 7.066 9.74 9.83
DPL 8.187 5.054 6.085 6.884 9.46 8.82

5 DSH 7.691 4.407 6.565 6.553 7.99 7.50
DPL 9.174 4.407 6.543 6.309 7.82 6.96

10 DSH 8.816 4.184 10.616 6.441 6.44 5.78
DPL 10.116 4.184 9.802 6.176 6.28 5.54

7 



tion, T , of the time from an (i, j) state to the (0,0) state, i.e.

FT (s) =
∑i+ j−1

k=0 Pk
i, jξ

i(1 − ξ)k

∗ [( µ1+µ2
s+µ1+µ2

)i+k( µ2
s+µ2

)i+ j−k]
(4)

where ξ = ( µ1
µ1+µ2

).
Straightforward computation of the moments of this func-

tion can be decomposed into the contributions from each
term in the summation. This yields moments for all paths
of level k as

M1(k) = Pk
i, jξ

i(1 − ξ)k[( (i+ j−k)
µ2

) + ( (i+k)
µ1+µ2

)]

M2(k) = Pk
i, jξ

i(1 − ξ)k[( (i+ j−k)
µ2

) + ( (i+k)
µ1+µ2

)]2

+ [( (i+ j−k)
(µ2)2 ) +

(i+k)
(µ1+µ2)2 )].

The mean of time spent in the system is simply the sum of
the first moment contributions at each level, i.e.

E[T ] =

i+ j−1∑
k=0

M1(k). (5)

The variance of the time spent in the system is calculated
by subtracting the sum of the square of the first moment for
all levels of k from the sum of the second moment for all
levels of k, i.e.

V[T ] =

i+ j−1∑
k=0

M2(k) − [
i+ j−1∑
k=0

M1(k)]2. (6)

In order to account for the lost traversal probabilities and
lost holding times of the paths through j′ = 0 states, a
“weighted” path is added, i.e., a weighted worse case path
(path through all j′ = 0 states). The weighted value of this
path is based on the total lost traversal probability, the ser-
vice rate of each server, and the total number of (i′, 0) states
(i of them). Thus, the weighted value is

[1 − (
i+ j+1∑
k=0

Pk
i, jξ

i(1 − ξ)k)](1 − ξ)(i) (7)

This factor is rounded up or down about the 0.5 value, since
it represents a number of actual (i′, 0) states.

The first and second moments of the weighted path are cal-
culated and added to the previous first and second moments
to generate the mean and variance of the system.

To test the technique, the two queue scenarios described
in Section 5 were solved. In general, the Path Heuristic gen-
erates better estimates of the sojourn variance than the CLT-
based heuristics while mean estimates are not quite as good.
The mean estimates are consistently in the same range while
the variance increases with the number of Erlang stages. The
Path Heuristic gives its worse estimates in those cases where
the service rate at the second server is much faster than the
first. Such scenarios would increase the probability of enter-
ing an (i′, 0) state, thus increasing the error of the estimate.

As with the exact solution, storage problems arise when
solving large problems due to the large number of paths
through a network (see Table 1).

In order to take advantage of the improved estimates of the
variance that this technique gives, a hybrid technique, Deter-
ministic Path Heuristic (DPH), was developed. The DPH
technique combines features of the Path, DSH, and DPL
techniques.

The DPH technique uses the DPL heuristic to estimate
the mean since it yields the best estimates. The DSH and
Path Heuristic are combined in order to estimate the vari-
ance. This was accomplished by decomposing the M queue
model into a series of paired queues. The solution is embed-
ded at queue completion times for the particular customer.
In other words, the technique solves for the sojourn time be-
tween successive service completions for the particular cus-
tomer.

Using the Path technique, the sojourn time is found itera-
tively from the initial (i, j) state to a (0, j′) for each pair of
queues considered. The DSH heuristic is used to determinis-
tically approximate the number of entities at the next queue,
thus setting up another two queue scenario. When the algo-
rithm reaches the final two queues, the Path technique is used
to solve for the remaining sojourn time, i.e., it solves them
completely to the (0,0) state as before.

For simplicity, each of the two queue problems are as-
sumed separate and independent systems, therefore the to-
tal sojourn mean and variance is approximated as the sum
of the means of the individual problems. Although these
two queue scenarios are not truly independent of the others,
this assumption yields good results if the true dependency is
small.

8. Results for heuristics based on the analytic solution

As previously mentioned, a Monte-Carlo simulation
model was employed for comparison purposes for all
datasets. The number of replicates of the simulation model
provided confidence interval estimates within 1% of the ex-
act values at the α = 0.05 level.

Based on observation of Tables 5 and 6, one can see that
the DPL/DPH methods yields the best overall estimates for
the mean, and the DPL results in the lowest variance of the
test cases. The mean percentage differences range from a
worse case of 5.8% down to 0.17% with an overall average
percentage difference of 2.58% for all cases. The standard
deviation percentage differences range from a worse case of
9.43% to 2.76% with an overall average percentage differ-
ence of 5.64%. With 2,268 different scenarios being consid-
ered, these values are quite good.

9. Conclusions

This paper has been concerned with the solution of
sojourn-time distributions for particular jobs in serial net-
works of queues. The emphasis was the attainment of such
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Table 5
Average absolute percent difference for the mean for all heuristics

Model Heuristic Number of Shops
Number 2 3 5 10

1 DSH 4.91 7.96 4.65 6.08
DPL and DPH 2.64 5.80 4.63 4.26

2 DSH 3.00 4.93 1.83 2.34
DPL and DPH 1.76 3.30 1.14 1.67

3 DSH 2.20 3.71 1.01 1.41
DPL and DPH 1.94 3.18 1.00 1.28

5 DSH 1.47 2.60 0.45 0.74
DPL and DPH 1.56 2.37 0.37 1.24

10 DSH 0.91 1.66 0.16 0.29
DPL and DPH 1.64 2.47 0.17 1.31

distributions in a computationally efficient manner for use in
real-time or near real-time applications. An exact technique
was developed but shown to be computationally prohibitive.
The limitations of the exact technique led to the development
of heuristic methodologies which could provide a computa-
tionally attractive alternative to straightforward Monte-Carlo
simulation.

Two simple procedures were developed which were
founded in the Central Limit Theorem. Both of these tech-
niques were shown to give good approximations for the
mean and variance of the desired distribution for a range of
scenarios. In particular, they were very good for the cases
which closely resembled the operation of heavy traffic job-
shops. A third method considered paths through a Marko-
vian state space network. This method proved to give even
better approximations of the variance. This led to the de-
velopment of a hybrid technique, Deterministic Path Heuris-
tic (DPH), which combined the concepts of both approaches
into a single technique.

The DPH technique yielded the best mean estimates by us-
ing the DPL method and yielded the best variance estimates
by using a combination of the DSH and Path Heuristic. Thus,
the DPH gives the best overall results for the 1932 different
scenarios considered (see Tables 3 and 6).

Limitations of the DPH lie in the large amount of storage
space required for large problems. This is due to the large
number of paths that are possible for bigger problems (see
Table 1).

Possible future endeavors include modifying the DPH by
enhancing the Path heuristic. One possibility is to elimi-
nate the j′ = 0 paths to see if better estimates can be ob-
tained. This may hold true since these paths add to the er-
ror of the current version of the DPH. Another possibility is
based upon the observation that the mean calculation used
by the DSH, Path Heuristic combination is generally under-
estimated for each two queue scenario, which leads to over-
estimates of the variance; this can be seen from Equation 6.
These mean calculations can be improved by incorporating
the DPL technique for the paired queue calculations. As a
result, better variance estimates should be obtainable.

Table 6
Average absolute percent difference for the standard deviation for all heuris-
tics

Model Heuristic Number of Shops
Number 2 3 5 10

1 DSH 6.03 6.78 13.64 17.49
DPL 6.80 8.21 13.50 17.02
DPH 2.76 3.79 6.88 9.43

2 DSH 6.56 6.75 10.88 12.53
DPL 7.47 8.44 10.72 11.99
DPH 3.63 4.40 7.84 9.38

3 DSH 6.93 6.57 9.74 9.83
DPL 7.54 6.66 9.46 8.82
DPH 4.60 4.40 7.85 9.42

5 DSH 7.02 6.56 7.99 7.50
DPL 7.96 8.13 7.82 6.96
DPH 5.61 4.70 7.23 6.43

10 DSH 7.86 7.63 6.44 5.78
DPL 8.82 9.24 6.28 5.54
DPH 5.84 4.93 5.09 5.27
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