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Öz 
Bir görüntünün sınırlarını ilgi alanına odaklanacak şekilde 
otomatik olarak ayarlama işlemi olan oto-kırpma, panoramik diş 
radyografilerinin teşhis kalitesinin iyileştirilmesi açısından çok 
önemlidir. Önemi, minimum bilgi kaybıyla farklı girdi 
görüntülerinin boyutunu standartlaştırma yeteneğinde 
yatmaktadır, böylece tutarlılık sağlanmakta ve sonraki görüntü 
işleme görevlerinin performansı iyileştirilmektedir. Çalışmaların 
birçoğunda CNN'ler yaygın olarak kullanılmasına rağmen, farklı 
boyutlardaki görüntüler için oto-kırpma kullanan araştırmalar 
sınırlı kalmaktadır. Bu çalışma, panoramik diş radyografilerinde 
türevlenebilir oto-kırpma kullanmanın potansiyelini araştırmayı 
amaçlamaktadır. Çalışmada, çoğunlukla 2836×1536 veya buna 
yakın çözünürlüklü, 3 diş hekimi tarafından beş farklı sınıfa 
bölünmüş 20.973 panoramik diş radyografisinden oluşan 
benzersiz bir veri kümesi kullanıldı; bu, önceki çalışmadaki aynı 
veri kümesidir (Top et al. 2023). Değerlendirme için bu veri 
kümesine en başarılı sonucu veren ResNet-101 modeli kullanıldı 
(Top et al. 2023). Varyansı azaltmak için, hem oto-kırpma olan 
hem de oto-kırpma olmayan eğitimlere 10 kat çapraz doğrulama 
kullanılarak model değerlendirildi. Daha doğru ve sağlam 
sonuçlara ulaşmak için veri artırma yöntemi de kullanıldı. Veri 
artırma, oto-kırpma olan eğitim için, oto-kırpma olmayan 
eğitime göre çok daha az etkili olacak şekilde ayarlandı. Veri 
kümesiyle ilgili sorunları azaltmak için geliştirilen önerilen oto-
kırpma optimizasyonu sayesinde doğruluk %1,8 artarak 
%92,7'den %94,5'e çıktı. Makro ortalama AUC'si de 0,989'dan 
0,993'e yükseldi. Önerilen oto-kırpma optimizasyonu, uçtan uca 
bir CNN'de eğitilebilir bir ağ katmanı olarak uygulanabilir ve 
diğer problemler için de kullanılabilir. Doğruluğu %92,7'den 
%94,5'e çıkarmak, iyileştirme için çok az alan kaldığından, azalan 
faydalar kanununa da bağlı olarak çok zorlu bir iştir. Sonuçlar, 
önerilen türevlenebilir oto-kırpma algoritmasının potansiyelini 
göstermekte ve farklı alanlarda kullanımını teşvik etmektedir.  
 

Anahtar Kelimeler: Bilgisayar destekli teşhis; CNN; Türevlenebilir 
kırpma; Gradyan yükselme; Panoramik radyografi.

Abstract 
Auto-cropping, the process of automatically adjusting the 
boundaries of an image to focus on the region of interest, is 
crucial to improving the diagnostic quality of dental panoramic 
radiographs. Its importance lies in its ability to standardize the 
size of different input images with minimal loss of information, 
thus ensuring consistency and improving the performance of 
subsequent image-processing tasks. Despite the widespread use 
of CNNs in many studies, research on auto-cropping for 
different-sized images remains limited. This study aims to 
explore the potential of differentiable auto-cropping in dental 
panoramic radiographs. A unique dataset of 20,973 dental 
panoramic radiographs, mostly with a resolution of 2836×1536 
or close, divided into five classes by 3 dentists, was used, which 
is the same dataset from the previous study (Top et al. 2023). 
ResNet-101 model, which was the most successful network for 
the dataset (Top et al. 2023), was used for the evaluation. To 
reduce variance, the model was evaluated using 10-fold cross-
validation for both non-auto-cropped and auto-cropped 
trainings. Data augmentation was also used to produce more 
accurate and robust results. For auto-cropped training, it was 
adjusted to be much less effective than the non-auto-cropped 
one. Accuracy was improved by 1.8%, from 92.7% to 94.5%, 
thanks to the proposed auto-crop optimization developed to 
reduce dataset-related issues. Its macro-average AUC was also 
raised from 0.989 to 0.993. The proposed auto-crop 
optimization can be implemented as a trainable network layer 
in an end-to-end CNN and can be used for other problems as 
well. Increasing the accuracy from 92.7% to 94.5% is a very 
challenging task due to diminishing returns, as there is little 
room for improvement. The results show the potential of the 
proposed differentiable auto-crop algorithm and encourages its 
use in different fields.  
 
 
Keywords: Computer aided diagnosis; Convolutional Neural Networks; 
Differentiable cropping; Gradient ascent; Panoramic radiograph. 

  

 

1. Introduction 

There has been a significant transformation in the 

computer vision society in recent years, mostly driven by 

the widespread acceptance and application of 

Convolutional Neural Networks (CNNs) (LeCun et al. 

1998). The CNNs have proven to be a fast, adaptable, 

scalable, comprehensive, and end-to-end learning 

approach that moves the field forward (Jaderberg et al. 

2015). Input limitations on size are present in many 

current Neural Network (NN) models used in computer 

vision (He et al. 2016, Krizhevsky et al. 2012, Simonyan 

and Zisserman 2014, Zeiler and Fergus 2014). However, 

the conventional strategy is uniformly downsampling for 
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the intended input size, which is lower than the images in 

the dataset (Recasens et al. 2018). In many 

circumstances, uniform downsampling is straightforward 

and efficient, but it can be lossy for tasks when the aspect 

ratio is crucial and the RoI projection is on a small portion. 

Significant advancements have been made in Computer-

Aided Diagnosis (CAD) recently (Demir et al. 2023, Fidan 

et al. 2019, Katsumata 2023, Kemal and Kılıçarslan 2021, 

Kohinata et al. 2023, Yurttakal and Baş 2021). Manually 

extracted features along with learning methods were 

used in traditional CAD systems, including pattern 

recognition algorithms, to transform them into decisions 

(Shin et al. 2016). The evolution from rule-based to 

learning-based solutions was realized by Artificial 

Intelligence (AI) and further advanced by Deep Learning 

(DL) (Çelik and Çelik 2022, Kooi et al. 2017). This study 

applied the proposed auto-cropping method on a unique 

dental radiography dataset (Top et al. 2023) in a DL 

training for a CAD system. 

When a few teeth are missing from the mouth, 

restorations like dental bridges and crowns are utilized to 

fill the gap (Sakaguchi and Powers 2012, Top 2023). 

Radiographs are an essential diagnostic tool since these 

restorations are not usually evident during a conventional 

clinical examination (Top et al. 2023, White et al. 2001). 

Restorations must be precisely detected and identified to 

stop several problems in oral health (Liedke et al. 2015, 

Top 2023). Panoramic X-ray is a useful radiography type 

and a valuable diagnostic tool for dental and oral health 

disorders as they provide a complete and exhaustive 

image (i.e., a full image of the whole jaw and teeth in a 

single image) of the oral anatomy (Corbet et al. 2009, 

Scarfe and Farman 2008).  

Although panoramic radiography is a very valuable 

diagnostic tool, it is prone to significant and unforeseen 

geometric anomalies. Furthermore, the specific jaw 

curvature and posture of patients may result in 

differences in the generated image (Choi 2011, Top 2023). 

The NN training of panoramic radiographs presents a 

unique set of difficulties due to their comprehensive 

nature, capturing not only the teeth but also the chin, 

spine, and jaws, as mentioned in (Jader et al. 2018). As a 

result, it becomes difficult to set just one fixed position 

that applies to the entire dataset for the intended Region 

of Interest (RoI). One approach to overcome this difficulty 

is to extract the RoI from the image automatically. Thus, 

auto-cropping eliminates the problem of image variability 

and allows the model to focus on the most relevant parts 

of the images, which is crucial for improving model 

accuracy and diagnostic performance. 

Additionally, while the dataset is extensive, data 

augmentation is necessary to enhance the robustness and 

generalizability of deep learning models. Data 

augmentation techniques, such as random rotations, 

shifts, and flips, introduce variability that helps the model 

learn to generalize better to unseen data. This is 

particularly important for reducing overfitting and 

improving the model's performance on the test set by 

simulating real-world uncertainties and variations. 

This study aims to uncover the potential of the previously 

studied unique dataset (Top et al. 2023) by using 

differentiable auto-crop optimization, which is utilized in 

CNNs to detect the quantitative level of dental 

restorations. We propose a novel Differentiable Auto-

Cropping (DAC) technique for automatically selecting the 

bounding box and then cropping the RoI by tweaking the 

gradient ascent optimization independently for each 

input picture. The proposed auto-crop algorithm was 

developed with the dataset (Top et al. 2023) in (Top 2023) 

to alleviate dataset-related issues. Hence, it aims to 

improve the training performance of the dataset by using 

auto-crop. 

 

2. Related Work 

In computer vision systems, auto-cropping is essential 

(Chen et al. 2016) because it allows for the autonomous 

separation of meaningful sections from images. A few 

methods have been proposed to address the challenge of 

end-to-end image cropping or downsampling after 

localizing (Dai et al. 2016a, Han et al. 2019, Jaderberg et 

al. 2015, Liang et al. 2022, Recasens et al. 2018, Riad et al. 

2022, Rippel et al. 2015). In recent studies, Spatial 

Transformer Networks (STNs) (Jaderberg et al. 2015) 

were employed for image transformation and cropping 

operations, and they were usually trained in two stages. 

However, some end-to-end systems are also available, 

such as (Liang et al. 2022), which employed two stages. 

Locating the vertebrae and segmenting the entire spine 

were done in the first stage. Then, a regression network 

predicted the orientations of the localized vertebrae in 

the second stage. A differentiable cropping was employed 

for moving data between stages that were intended to 

closely connect both phases, and this was called as "inter-

stage transfer method" in the study. The approach 

introduced in the study, which includes two steps with the 

localization of several bounding boxes inside a single 

image for cropping and sending to the regression 

network, cannot be applied to other tasks as it is designed 

as task-specific. It is based on supervised learning and 

requires ground-truth bounding boxes for training, but 

our study can operate under unsupervised learning as 
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well as supervised learning and does not require ground-

truth bounding boxes for training. Additionally, the RoI 

Align pooling layer (He et al. 2017) was employed to 

differentiate the cropping process, as this layer gathers 

the information from the outputs of localization and 

segmentation networks rather than using the raw input. 

However, our proposed method works on the raw input. 

To reduce computational complexity and provide some 

shift-invariance, CNNs frequently use a variety of 

downsampling operators, such as strided convolutions or 

pooling layers, that gradually reduce the resolution of 

intermediate features (Riad et al. 2022). According to 

(Riad et al. 2022), the first downsampling layer with 

differentiable strides was proposed by employing both 

the spatial and frequency domains, much like (Rippel et 

al. 2015). As opposed to (Rippel et al. 2015), which 

optimizes a fixed bounding box updated by a stride 

parameter, their solution employs backpropagation to 

learn the size of the bounding box. Our study is similar to 

(Riad et al. 2022), as it also determines the bounding box 

area itself. Additionally, (Dai et al. 2016a) presented one 

of the major advances in differentiable semantic 

segmentation. They created a differentiable pooling layer 

known as the "RoI Warping Layer" that uses interpolation 

on the feature maps of the preceding layer and reduces 

the size for the next layer. Instead of downsampling the 

input image right after the input layer, all three strategies 

(Dai et al. 2016a, Riad et al. 2022, Rippel et al. 2015) 

focused on intermediate layers. However, our proposed 

method downsamples (i.e., crops) the input image that is 

fed to the NN in the first place. (Han et al. 2019) 

conducted a study to develop a specialized layer (i.e., for 

detecting people) that can transform RoI in a 

differentiable and supervised manner. This layer aims to 

identify specific objects (i.e., individuals) from the input 

data. It is important to note that this approach relied on 

supervised learning and was primarily designed for object 

detection tasks. The detector employed in the approach 

was trained alone using state-of-the-art techniques (Dai 

et al. 2016b, Girshick 2015, He et al. 2017, Ren et al. 2015) 

and detecting the bounding boxes required supervised 

learning. The weakness of the need for supervision is the 

point that inspired this study, as our proposed method 

does not require such supervision. 

The end-to-end auto-cropping applicability logic 

described in this study bears a striking resemblance to the 

end-to-end concept implemented by (Recasens et al. 

2018). A saliency-based non-uniform distortion layer for 

CNNs that improves spatial sampling for specific tasks was 

introduced. This layer integrates seamlessly into existing 

networks and enhances task performance by selectively 

preserving important information from high-resolution 

data. However, it should be emphasized that our auto-

cropping technique uniformly downsamples the input, 

and therefore the employed approaches are different. In 

their groundbreaking work, Jaderberg et al. introduced 

the notion of spatial transformers, a learnable module 

that empowers CNNs with the ability to manipulate data 

spatially (Jaderberg et al. 2015). Explicit transformations 

of feature maps, including scaling, rotation, translation, 

and even non-rigid deformations, can be done by the 

module. A spatial manipulation inside a CNN was 

accomplished by both the STNs and our algorithm but 

with a different focus. Our algorithm wasn't built to 

achieve broad (general) spatial invariance; instead, it was 

made for RoI selection and cropping. Moreover, a 

differentiable pre-processing stage (i.e., 𝑚𝑎𝑥 − 𝑚𝑖𝑛 

pooling) and the optimization part were brought together 

to feed downsampled and clarified inputs (i.e., in terms of 

regional variability (Liu et al. 2020)) to the optimization in 

our algorithm.  

Jiang et al. described a major drawback of bilinear 

interpolation, which is quite localized by considering only 

the four nearest pixels (i.e., causes gradients to be 

affected only by the intensity differences between these 

nearby pixels) (Jiang et al. 2019), which was the essential 

part of the spatial transformer module (Jaderberg et al. 

2015). In an effort to alleviate this limitation, (Jiang et al. 

2019) introduced an approach that transforms the 

sampling part through the inclusion of randomly 

generated auxiliary sample locations (i.e., by making 

bilinear sampling on those locations later on), thereby 

achieving a more linear approximation. Despite providing 

a broader context for local transformations, the 

optimization remains unaffected by all pixels in the input 

image. In contrast, our proposed auto-crop optimization 

takes every pixel into account, some with minimal impact 

(but never completely ignored), as observed in the two 

related studies. 
 

3. Materials and Methods 

3.1. Dataset 

The study utilized a retrospective dataset (Top et al. 2023) 

from Ankara Yıldırım Beyazıt University (AYBU) Tepebaşı 

Oral and Dental Health Training Hospital, which was 

conducted in accordance with approved protocols by the 

AYBU non-drug ethics committee with the permission 

date of 19/04/2019 (file number: 2019-12). The study 

followed the criteria established in the Helsinki 

Declaration of 1964 as well as the updated version from 

2013. 
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Figure 1. A sample from each class (Top et al. 2023) 

 
Table 1. The classes and details (Top 2023, Top et al. 2023) 

# of 
Restorations 

# of 
Samples (%) 

Category Name 

0 
4248 
(20.25%) 

No restoration 

1-3 
4231 
(20.17%) 

Low-level-restoration 

4-6 
4227 
(20.16%) 

Mid-level-restoration 

7-11 
4253 
(20.28%) 

High-level-restoration 

12-32 
4014 
(19.14%) 

Very High-level-restoration 

 

The collection contains 20,973 panoramic radiographs in 

total, and each one is unique even if taken from the same 

person, pose angle, exposure time, different contrast and 

brightness values, and passed time between the shots 

leads this uniqueness). The dataset was obtained 

retrospectively from the Tepebaşı Oral and Dental Health 

Training Hospital's Picture Archiving Communication 

System (PACS) using the Infinitt PACS, developed by 

Infinitt Co. in Seoul, Korea. Filming was done with two 

different Planmeca ProMax X-ray devices (Planmeca, 

Helsinki, Finland). Three dentists labeled the dataset into 

five classes in consensus according to fixed dentures that 

included crowns and bridges. Details about the categories 

and number of samples can be seen in Table 1. Also, a 

sample from each class is depicted in Figure 1.  

The dataset does not consist of single-resolution images, 

but there are two sets of resolution, most of which are 

grouped there. 44% of the total images have a resolution 

of 2836×1536 and 37% of the total images have a 

resolution of 2860×1536. 17% of the images were stored 

in 16, 24, or 32-bit format, and they were converted into 

8-bit depth grayscale images. The proposed auto-crop 

method finds the RoI and resizes the image to a desired 

size (i.e., using bi-linear interpolation and preserving the 

aspect ratio of the original input), so the variable 

resolution of the dataset is not so important. In other 

words, the proposed method somehow brings scale-

invariance. 

As mentioned, during the pre-processing phase, the 

images were converted to single-channel grayscale. For 

non-auto-cropped training, they are resized to 224×224 

pixels (i.e., the aspect ratio was corrupted). In contrast, 

the experiment using the auto-crop algorithm reproduces 

the inputs at a fixed resolution of 200×370 pixels (i.e., 

according to the desired aspect ratio and resolution of the 

input images), where the width is 370px; so no additional 

resizing is needed. 

Apart from these, image augmentation settings tried to 

be defined not to lose parts of the RoI (see Figure 2) for 

non-auto-cropped experiments. However, since each 

person and each X-ray shot is unique and there is no single 

RoI location for all, these settings still apply an excessive 

augmentation for some samples. Translating and rotating 

without knowing the midpoint of the RoI causes problems 

such as the appearance of no-data (black) regions as a 

result of excessive augmentation, which reduces the 

efficiency of the data set as very large regions are no-data. 

 

 
Figure 2. The image translation process and RoI (Top et al. 2023) 

The auto-crop algorithm downsampled images into a 

single and desired resolution (i.e., 370×200), so the 

setting for the augmentation needed to be changed. Also, 

the reproduced dataset has lost some tissues (i.e., 

explained in the first section) other than the oral region, 

so the excessive augmentation (i.e., in terms of 

percentage) would damage the accuracy a lot. Therefore, 

a reasonable (i.e., not excessive) augmentation (i.e., 

random translation between −26 to 26 pixels on the 𝑥-

axis and −14 to 14 pixels on the 𝑦-axis, random reflection 

on the 𝑥-axis, random rotation with an angle between −7 

to 7 degrees, random scaling with a factor between 0.97 

to 1.03, and random shearing over an angle between 0 to 

2 degrees) was employed for the auto-cropped 

experiment. 

In an X-ray film, teeth and bones appear lighter than 

cheeks and gums due to the absorption of the X-rays 

(Fitzgerald 2000, Top 2023). Similarly, dental restorations 

like crowns and bridges appear lighter than the teeth as 

they are radiopaque (Pröbster and Diehl 1992, Top et al. 
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2023). This feature makes the grayscale image of dental 

restorations learnable by CNN and detectable by the 

auto-crop algorithm (i.e., not just restorations but teeth 

as well). 

 

3.2. Auto-Crop 

The proposed auto-crop algorithm relies on gradient 

ascent optimization to maximize the cost function. This 

approach includes the dot product between a discrete 

signal (i.e., image) and a continuous function (i.e., 

rectangular function). 

The features of the intended task are located in the oral 

region of the individual, which varies from person to 

person. Also, the exclusion of other tissues present in the 

panoramic radiograph is essential for enhancing the 

efficacy of the training process. In this context, the most 

practical approach is to crop the region from the images 

through an automatic procedure. To address this need, an 

auto-crop optimization was implemented to effectively 

find and crop the RoI from the images. 

The process of evaluating the gradient by conducting a 

dot product between an image (i.e., discrete) and a 

continuous function is called numerical estimation of the 

derivative or convolution. In the inner product method, 

the derivative to be approximated is initially represented 

by the constructed continuous function. Subsequently, 

this function is sampled (i.e., discretized) to align with the 

sampling rate of the image, and the dot product can then 

be computed. The algorithm continuously updates the 

parameters to determine the RoI position. The necessity 

of "highlighting the prominent regions and preventing the 

less important ones" feature in the rectangular function 

has led to the use of the 2D Sigmoid function (see Figure 

3), which can be described as: 
 

𝜎(𝑥, 𝑦, 𝛾) =
1

1+𝑒−𝑥⋅𝛾 ⋅
1

1+𝑒−𝑦⋅𝛾 (1) 

where the default value of the sharpness (𝛾) is 1 as in 

Figure 3. 

To search the RoI, rectangular area parameters (i.e., the 

center coordinates for the 𝑥 and 𝑦 axes, and a distance 

from the center) should be defined, and accordingly, the 

required function should be in the form of a rectangular 

function. Therefore, the rectangular function using 2D 

sigmoids is defined as: 

𝑅(𝑥, 𝑦, 𝑥𝑐 , 𝑦𝑐 , 𝑟𝑡𝑜𝑡𝑎𝑙 , 𝛼, 𝛾) = 𝐴 ⋅ 𝐵  

𝐴 = 𝜎(𝑥 − (𝑥𝑐 − 𝑟𝑡𝑜𝑡𝑎𝑙), 𝑦 − (𝑦𝑐 − 𝛼 ⋅ 𝑟𝑡𝑜𝑡𝑎𝑙), 𝛾) (2) 

𝐵 = 𝜎(−𝑥 + (𝑥𝑐 + 𝑟𝑡𝑜𝑡𝑎𝑙), −𝑦 + (𝑦𝑐 + 𝛼 ⋅ 𝑟𝑡𝑜𝑡𝑎𝑙), 𝛾) 

where 𝛼 is the aspect ratio (ℎ𝑒𝑖𝑔ℎ𝑡/𝑤𝑖𝑑𝑡ℎ), 𝑥𝑐  and 𝑦𝑐  are 

center coordinates of the region, 𝑟𝑡𝑜𝑡𝑎𝑙  is the center-to-

edge distance for the 𝑥-axis and '𝛼 ⋅ 𝑟𝑡𝑜𝑡𝑎𝑙 ' is for the 𝑦-

axis, and 𝛾 is for controlling the smoothness (or 

sharpness) of the rectangular function. The default value 

of the sharpness (𝛾) is 1, but see Figure 4 for how the 

rectangular function changes when 𝛾 is changed (i.e., 

decreasing gamma increases the smoothness of the 

rectangular function, and increasing gamma results in a 

sharper function). 

 
Figure 3. 3D plot of the sigmoid (Top 2023) 

 

 
(a) For the sharpness (𝛾) = 0.01 

 
(b) For the sharpness (𝛾) = 0.1 

 
(c) For the sharpness (𝛾) = 10 

 

Figure 4. 3D plots of the rectangular function for different 𝛾 values, where the function sampled for a 148 × 80 image and (𝑥𝑐 , 𝑦𝑐) =

(74, 40) with 𝑟 = 30 (Top 2023) 
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A rectangular function of the same size as the input 

image, known as a full-size rectangular function, is 

employed for the optimization. The cost function utilizes 

a function derived from this rectangular function, not the 

identical one. The improved cost function is as following: 

𝑓(𝑥𝑐 , 𝑦𝑐 , 𝑟, 𝑟𝑚𝑖𝑛 , 𝑠, 𝑥, 𝑦, 𝛼, 𝛾) =
𝑓𝑖𝑛𝑠𝑖𝑑𝑒

𝑓𝑜𝑢𝑡𝑠𝑖𝑑𝑒+1
  

𝑓𝑖𝑛𝑠𝑖𝑑𝑒 =
∑ 𝑠𝑖𝑧𝑖

𝑛−1
0

∑ 𝑧𝑖
𝑛−1
𝑖=0

 (3) 

𝑓𝑜𝑢𝑡𝑠𝑖𝑑𝑒 =
∑ 𝑠𝑖(1−𝑧𝑖)𝑛−1

𝑖=0

∑ 1−𝑧𝑖
𝑛−1
𝑖=0

  

where 𝑧𝑖  is the rectangular function (𝑅) explained above 

and 𝑟𝑡𝑜𝑡𝑎𝑙 = 𝑟𝑚𝑖𝑛 + 𝑟. 

Multiplying the input image by the rectangular function 

yields 𝑓𝑖𝑛𝑠𝑖𝑑𝑒 's top portion, while the discretized 

rectangular function makes up the bottom portion of 

𝑓𝑖𝑛𝑠𝑖𝑑𝑒 , which serves as a penalty to curb the increase of 

offset 𝑟 forever. During the gradient ascent process, 

𝑓𝑖𝑛𝑠𝑖𝑑𝑒  aims to maximize the desired inner portion of the 

rectangular function, while 𝑓𝑜𝑢𝑡𝑠𝑖𝑑𝑒  aims to minimize the 

undesired outer part of the rectangular function (i.e., 

helps maximize 𝑓𝑖𝑛𝑠𝑖𝑑𝑒  in return). The inclusion of 1 in the 

denominator of the cost function (𝑓) serves a purpose: 

when 𝑓𝑜𝑢𝑡𝑠𝑖𝑑𝑒  falls within the range of 0 to 1 and 

approaches 0, the cost function, which we aim to 

maximize, goes towards infinity. Adding 1 ensures that 

the maximum value of the cost function that it can reach 

is at 𝑓𝑖𝑛𝑠𝑖𝑑𝑒 . 

In the backward pass, the procedure calculates the 

gradients of 𝑥𝑐, 𝑦𝑐, and 𝑟 (i.e., RoI parameters) iteratively 

through the dot product of the image and the rectangular 

function, which emphasize those with a strong 

resemblance. The algorithm updates the RoI parameters 

based on the gradients. This seeks to maximize the value 

of the cost function (i.e., better RoI selection) and is 

expressed as: 

argmax
𝑥𝑐,𝑦𝑐,r

 𝑓(𝑥𝑐 , 𝑦𝑐 , 𝑟, 𝑟𝑚𝑖𝑛 , 𝑠, 𝑥, 𝑦, 𝛼, 𝛾) (4) 

The procedure stops when convergence (i.e., when the 

vanishing gradient problem occurs or reaches a stable RoI 

position) is reached. Several preventive mechanisms, 

such as gradient clipping, center shifting, and the use of 

absolute values, were employed to avoid problems during 

convergence such as exploding gradient problem or RoI 

falling outside of the image after the update. 

Before beginning the search, a differentiable pre-

processing procedure (i.e., subtracting the min-pooling 

from the max-pooling) was executed on the input. The 

process inherently has differentiability due to the 

differentiability of max pooling. The min-pooling is simply 

the inverse version of max-pooling, so it is also 

differentiable. The operation can be stated as below: 

𝑚𝑎𝑥𝑀𝑖𝑛𝐷𝑖𝑓(𝑥) = 𝑚𝑎𝑥𝑃𝑜𝑜𝑙(𝑥) −

                                    𝑚𝑖𝑛𝑃𝑜𝑜𝑙(𝑥)  (5) 

𝑚𝑖𝑛𝑃𝑜𝑜𝑙(𝑥) = −𝑚𝑎𝑥𝑃𝑜𝑜𝑙(−𝑥) 

 

Instead of simply utilizing filtering, pooling processes 

were adopted to downsample the image, making edges 

more perceptible and reducing the resolution. 

Downsampling was desired to reduce the computation 

time of the following processes. The generated image 

(see Figure 5) was fed into gradient ascent optimization, 

making major variations in regional characteristics more 

evident (Liu et al. 2020) across all teeth. 

PyTorch (Paszke et al. 2019) was used to implement the 

entire auto-crop process, leveraging its capabilities to 

efficiently run operations such as maximum pooling and 

dot product through the Torch library. PyTorch was 

considered ideal for providing end-to-end smart cropping, 

primarily because of its automatic gradient calculation 

capabilities on tensors (i.e., 2D tensors for our case). 

  

(a) The original input with a resolution 1480 × 800 (b) The generated image with a resolution 148 × 80 

Figure 5. Result of 𝑚𝑎𝑥 − 𝑚𝑖𝑛 pooling where the resolution was reduced 10x (i.e., window size and stride was 10) (Top 2023) 
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(a)  First search with (𝛾) = 0.025 (b)  Second search with (𝛾) = 0.1 (c)  Third search with (𝛾) = 0.4 

   
(d) Fourth search with (𝛾) = 1.6 (e) The initial & last bounding boxes (f) Cropped & resized result 

Figure 6. Representation of the initial (i.e., red) and optimized (i.e., green) bounding boxes in the input image (Top 2023)

Algorithm 1. Adaptive sharpness 𝛾 and step size 𝜂 

Input: 𝛾, 𝜂 and input image as 𝑠 

Output: output image 

1. Get 𝑤𝑖𝑑𝑡ℎ and ℎ𝑒𝑖𝑔ℎ𝑡 hence α information from image 

𝑠 

2. 𝑠 ←  𝑚𝑎𝑥𝑀𝑖𝑛𝐷𝑖𝑓(𝑠)  

3. 𝑥, 𝑦 ←  𝑚𝑒𝑠ℎ𝑔𝑟𝑖𝑑([0 …  width − 1], [0 …  ℎ𝑒𝑖𝑔ℎ𝑡 − 1]) 

//𝑚𝑒𝑠ℎ𝑔𝑟𝑖𝑑 returns a list of coordinate matrices from 

coordinate vectors 

4. 𝑥𝑐 ←  𝑤𝑖𝑑𝑡ℎ/2  

5. 𝑦𝑐 ← ℎ𝑒𝑖𝑔ℎ𝑡/2  

6. 𝑟𝑚𝑖𝑛 ←  𝑤𝑖𝑑𝑡ℎ/3.5  

7. 𝑟 ← (𝑤𝑖𝑑𝑡ℎ/2.3) − (𝑤𝑖𝑑𝑡ℎ/3.5)  

8. for 𝑖 ←  1 to 4 do 

9.  𝑥𝑐 , 𝑦𝑐 , 𝑟 ← argmax
𝑥𝑐,𝑦𝑐,r

 𝑓(𝑥𝑐 , 𝑦𝑐 , 𝑟, 𝑟𝑚𝑖𝑛 , 𝑠, 𝑥, 𝑦, 𝛼, 𝛾)     

10.  γ ← γ ∗ 4 

11.  η ← η/2 

12. end for 

13. Crop the found RoI and resize it to 370 × 200 

14. Save output image 

 

Fine-tuning by increasing the sharpness (𝛾) and 

decreasing the step size after some rough searching was 

held to find the ideal solution. Sharpness started at 0.025 

and the last fine-tuning value was 0.2, and the learning 

rate started at 96 and dropped to 12. Figure 6 depicts  

two rectangles (i.e., one for initial RoI and one for post-

search) on the input image, allowing a visual inspection. 

As can be seen, when the sharpness was low (smoother 

rectangular function) and the step-size was high, the 

bounding box moved too much at the rough search 

(Figure 6a). On the contrary, fine-tuning stages (Figure 6b, 

Figure 6c, and Figure 6d) searched in small steps in an 

adaptive way. The fine-tuning algorithm can be seen in 

Algorithm 1. 
 

The parameters of the rectangular function (𝑥𝑐, 𝑦𝑐, and 

𝑟𝑡𝑜𝑡𝑎𝑙) were not subject to the random initialization. 

Instead, a conscious approach was adopted that ensures 

a consistent starting point. As mentioned earlier, the (𝑥𝑐, 

𝑦𝑐) pair are center coordinates and hence initialized from 

the center. Also, the center-to-edge distance (𝑟𝑡𝑜𝑡𝑎𝑙) was 

initialized in a way that the bounding box of the RoI was 

positioned close to the edges of the image. Then they 

were optimized by gradient ascent and found the 

appropriate RoI. 
  

3.3. Training 

AlexNet (Krizhevsky et al. 2012), VGG-16 (Simonyan and 

Zisserman 2014), ResNet-18, ResNet-50, ResNet-101 (He 

et al. 2016), and Inception ResNet V2 (Szegedy et al. 2017) 

were tested on the non-auto-cropped dataset in (Top 

2023, Top et al. 2023). These networks were chosen 

based on previous performance improvements on the 

ImageNet dataset in ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) (Russakovsky et al. 2015). 

ResNets can still be considered one of the most successful 

networks around (Top et al. 2023). The selection also took 

into account the dataset's size, as it is a large dataset, and 

networks with a large number of parameters can exploit 

the full potential of the data. However, deep networks 

tend to face the vanishing gradient problem, and residual 

blocks have provided a solution to this problem (He et al. 

2016). Accordingly, ResNet101 (see Figure 7) produced 

the best results at the time, so it was used in the auto-

cropped trial. 
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The original network architecture underwent some minor 

modifications, such as reducing the input size from 3 

channels to 1 channel (since the dataset consists of 

grayscale images) and the resolution from 224×224 to 

200×370 (i.e., the input size could have been increased 

more but the limitation was the Video Random-Access 

Memory (VRAM) of the Graphics Processing Unit (GPU)), 

or decreasing the size of the classification layer (i.e., fully-

connected layer) from 1000 to 5 as there are 5 categories 

available for the task. 
 

 
Figure 7. Representation of the structural design of the modified ResNet-101 architecture (Top 2023) 
 

Transfer learning was not applicable because the dataset 

for the study consisted of grayscale images. The training 

aims to identify dental restorations (i.e., the objects it 

contains are different types of teeth, cheeks, gums, and 

bones, all present at the same time). The source domain 

of pre-trained networks is ImageNet (Russakovsky et al. 

2015), and its purpose is to classify objects such as tigers, 

airplanes, or pineapples, so each model is trained from 

scratch. 

We used 10-fold cross-validation to accurately assess 

model performance (by reducing variance) and reduce 

bias. This procedure ensured consistent and generalized 

results, where the average accuracy of the ten different 

trainings was used in the final evaluation. The "Adam" 

solver along with a batch size of 24 (i.e., to be able to fit 

the data into the VRAM of the GPU), and 1e-3 learning 

rate were the parameters of the training. A trial-and-error 

method was used for determining the best number of 

epochs. However, before we finished the development of 

the auto-crop algorithm, we tentatively trained and 

tested the idea (i.e., ad hoc) and found that 144 epochs 

solved the problem best, so when we finished 

development, we only used a 10-fold training with 144 

epochs. 

Since auto-cropping can deliver the unchanged aspect 

ratio, we modified the input size of ResNet101 as 

mentioned above (i.e., a 65.2% increase from 224×224 to 

200×370), which significantly increased the total number 

of parameters in the network. The reason why the extra 

number of epochs is needed compared to the non-auto-

cropped dataset is that the input layer has higher 

resolution and needs more information extraction or a 

deeper network. 

4. Results and Discussion 

For results, the average of the 10-fold cross-validation 

approach is reported, as explained in the previous 

section. On a single machine, the tests were carried out 

using a single Intel® Core™ i7-5960X CPU, 32 GB of 

Random Access Memory (RAM), and a single 8 GB 

NVIDIA® Quadro® M4000 GPU. The hardware capabilities 

help to decrease training time, but they are not necessary 

for practical usage in a clinical context. Even today's 

standard hardware (without a GPU) is adequate to run a 

test on the trained network. This highlights the method's 

high suitability for clinical applications, thanks to its 

significant results, robustness, and rapid execution time. 

Table 2 displays the average accuracies for these two 

approaches; DAC indicates that it is trained with our 

proposed method. 

Table 2. Average accuracy results of 10-fold cross-validation and 
their corresponding number of epochs 

Network (training type) # of Epochs Avg. Accuracy 

ResNet-101 (non-DAC) 48 90.5% 
ResNet-101 (non-DAC) 72 91.8% 
ResNet-101 (non-DAC) 96 92.7% 
ResNet-101 (non-DAC) 112 92.2% 
ResNet-101 (DAC) 144 94.5% 

 

Figure 8 shows confusion matrices to see accuracy results 

(i.e., precision and recall values can also be observed). The 

accuracy results indicate top-1 accuracy of the average of 

10-folds. To conduct a more comprehensive performance 

comparison of the models, the Receiver Operating 

Characteristic (ROC) curve was generated by varying the 

threshold for each class (see Figure 9). Additionally, the 

Area Under the ROC Curve (AUC) was calculated for each 

class (see Figure 11), along with their macro-averages (see 

Figure 10). Log-scale on x-axis was used in Figure 9 and 

Figure 11 to illustrate better.  

The highest accuracy achieved was 92.7% for non-auto-

cropped training (i.e., underfitted before the 96 epochs 

and overfitted at the 112 epochs) and 94.5% for auto-

cropped training, and the macro-average AUC scores 

were 0.989 and 0.993, respectively. The auto-cropped 

training showed a clear dominance over the non-auto-
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cropped training in every aspect, as it is more successful 

in terms of accuracy, precision, recall, AUC for all classes, 

and macro-average AUC.  

The classes "0", "7-11", and "12-32" tend to be simpler for 

the networks to learn, but the other classes "1-3" and "4-

6" appear to be more difficult. 

 

 
Figure 8. Confusion matrices for both training

 
Figure 9. ROC curves present ability to separate positive from 
negative samples 

The implementation of 10-fold cross-validation, which 

caused high computational costs during each training 

session, was found to be time-consuming throughout the 

training procedure. Additionally, fitting both the training 

data and all network parameters into the GPU's VRAM 

remained difficult, often requiring batch size reduction. 

Also, VRAM size has limited the increase of input size (i.e., 

we could have increased the input size more than 

200×370). For these reasons, having access to a more 

powerful GPU with additional VRAM capacity might have 

helped with these tests. However, resizing a set of images 

of different sizes to a fixed size (i.e., 200×370) to fit in 

VRAM, and losing less information by finding RoI is 

possible thanks to our proposed auto-cropping algorithm. 

 

 
Figure 10. A bar comparison of the AUC scores in each class 

Despite the limitations established on the augmentation 

parameters for non-auto-cropped training, excessive 

augmentation resulted in the loss of certain features. 

However, the use of auto-crop enabled the removal of 

noisy data, making extreme augmentation adjustments 

unnecessary. 

Auto-cropping took advantage of changing the input size 

with a significant resolution increase of 65.2% (i.e., from 
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224×224 to 200×370). Using the higher resolution with 

auto-crop resulted in better accuracy, as the algorithm 

can identify and crop the region that holds the required 

features and reduces information loss that occurs with 

traditional resizing methods that preserve irrelevant 

features (i.e., the resulting image by resizing the original 

input contains parts not relevant to the classification task 

and loses more data compared to resizing after cropping). 

The cropping and resizing operations were accomplished 

without distorting the aspect ratio, which had previously 

been an issue when resizing to 224×224. 

 
Figure 11. The macro-average AUC scores 

The auto-crop operation improved the accuracy and 

produced more consistent results. Because the 

performance values of each fold at 10-fold cross-

validation for auto-cropped training were closer to each 

other, while non-auto-cropped trainings were more 

unstable. Consistent results came into play because of the 

previous excessive augmentation approach, which 

involved noisy or unnecessary parts of the image. 
 

5. Conclusion and Future Work 

We have introduced an end-to-end differentiable 

optimization algorithm that finds the RoI with gradient 

ascent and crops it without corrupting the aspect ratio. 

We have demonstrated empirically that our method can 

provide better training performance than non-cropped 

training, where accuracy significantly increased from 

92.7% to 94.5%. This improvement is particularly notable 

given the diminishing returns typically observed in high-

accuracy regions. Also, the DAC method demonstrated its 

ability to improve the generalization capabilities of the 

network, allowing the model to continue effective 

training up to 144 epochs without overfitting. We have 

also shown our technique’s effectiveness in locating and 

cropping the RoI after its search. The significant 

improvement in accuracy highlights DAC's effectiveness in 

refining input data and enabling better learning by 

precisely focusing on relevant features. 

The efficiency of DAC method in resizing images while 

preserving critical information alleviated some of dataset 

challenges. By increasing resolution from 224×224 to 

200×370, DAC leveraged higher resolution images to 

improve accuracy significantly compared to traditional 

resizing methods.The DAC method produced more 

consistent results across all folds of the 10-fold cross-

validation, contrasted with the instability observed in 

non-DAC training. The consistency is attributed to the 

removal of noisy data and unnecessary augmentation, 

ensuring that only relevant features were emphasized 

during training. 

Unlike other similar methods, our method does not need 

supervised learning, takes every pixel into account, and 

can be applied immediately after the input layer. The 

proposed method is simple to include in existing models 

and may be effectively trained end-to-end.  

Auto-crop enables the network's input data to be cropped 

and resized, and it may be introduced as a network layer 

following the input layer (i.e., can be trained with the 

backpropagation and can be implemented using the 

Theseus layer (Pineda et al. 2022)) into current CNN 

architectures without additional supervision or 

adjustment to the optimization process (i.e., convenient 

due to gradient ascent). This also allows for the use of a 

dataset with varying resolution (i.e., multi-resolution). 

The auto-crop technique is not limited to tackling a 

specific problem; it may also be used for various Red-

Green-Blue (RGB) and grayscale datasets. 

Finding RoI can also lead to better data augmentation 

organization. For example, rotation-based augmentation 

creates black (no-data) regions in the augmented 

(rotated) image. With the introduction of the auto-crop, 

you can obtain an image without black regions if you 

rotate it around the center of the RoI with a properly 

selected rotation range. 
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