
Sigma J Eng Nat Sci, Vol. 42, No. 2, pp. 578−589, April, 2024

Sigma Journal of Engineering and Natural Sciences
Web page info: https://sigma.yildiz.edu.tr

DOI: 10.14744/sigma.2024.00045

ABSTRACT

Least Squares Support Vector Regression (LSSVR) which is a least squares version of the Sup-
port Vector Regression (SVR) is defined with a regularized squared loss without epsilon-in-
sensitiveness. LSSVR is formulated in the dual space as a linear equality constrained quadratic
minimization which can be transformed into solution of a linear algebraic equation system.
As a consequence of this system where the number of Lagrange multipliers is half that of
classical SVR, LSSVR has much less time consumption compared to the classical SVR. De-
spite this computationally attractive feature, it lacks the sparsity characteristic of SVR due to
epsilon-insensitiveness. In LSSVR, every (training) input data is treated as a support vector,
yielding extremely poor generalization performance. To overcome these drawbacks, the epsi-
lon-insensitive LSSVR with epsilon-insensitivity at quadratic loss, in which sparsity is directly
controlled by the epsilon parameter, is derived in this paper. Since the quadratic loss is sensi-
tive to outliers, its weighted version (epsilon insensitive WLSSVR) has also been developed.
Finally, the performances of epsilon-insensitive LSSVR and epsilon-insensitive WLSSVR are
quantitatively compared in detail with those commonly used in the literature, pruning-based
LSSVR and weighted pruning-based LSSVR. Experimental results on simulated and 8 differ-
ent real-life data show that epsilon-insensitive LSSVR and epsilon-insensitive WLSSVR are
superior in terms of computation time, generalization ability, and sparsity.

Cite this article as: Karal Ö. Comparative performance analysis of epsilon-insensitive and
pruning-based algorithms for sparse least squares support vector regression. Sigma J Eng Nat
Sci 2024;42(2):578−589.

Research Article

Comparative performance analysis of epsilon-insensitive and pruning-
based algorithms for sparse least squares support vector regression

Ömer KARAL1,*
1Department of Electrical and Electronics Engineering, Ankara Yildirim Beyazit University, Ankara, 06760, Türkiye

ARTICLE INFO

Article history
Received: 06 May 2022
Revised: 28 June 2022
Accepted: 12 October 2022

Keywords:
Least Squares Support Vector
Regression; Pruning; Epsilon
Insensitiveness; Robustness;
Sparseness

*Corresponding author.
*E-mail address: omerkaral@aybu.edu.tr
This paper was recommended for publication in revised form by
Regional Editor Md. Sabir Hossain

Published by Yıldız Technical University Press, İstanbul, Turkey
Copyright 2021, Yıldız Technical University. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

INTRODUCTION

Support Vector Machines (SVMs), a machine learning
method, were initially introduced by Vapnik in 1995 [1].
They were quickly recognized as an effective tool in classifi-
cation and regression tasks and have since found widespread
application in various real-world scenarios [2-7]. Within

the realm of regression, support vector machines are called
Support Vector Regression (SVR) [8, 9]. SVR uses the ε-in-
sensitive l1 loss function, which disregards noise while trying
to suppress the influence of outliers, providing better gener-
alization ability compared to least squares regression. Similar
to the ridge regression, which minimizes a regularized l2
loss, SVR is adept at constructing models with enhanced

https://sigma.yildiz.edu.tr
https://orcid.org/0000-0001-8742-8189
http://creativecommons.org/licenses/by-nc/4.0/

Sigma J Eng Nat Sci, Vol. 42, No. 2, pp. 578−589, April, 2024 579

generalization abilities. This is attained by minimizing both
regularized and ε-insensitive empirical error.

The optimal parameters for an SVR model are typically
determined by minimizing the convex quadratic cost func-
tion formulated in the dual space. This involves utilizing
Lagrange multipliers and a kernel to achieve the optimal
solution. While minimizing convex quadratic costs is effi-
cient, dual representations for classical SVR encounter sig-
nificant time consumption due to the substantial number
of optimization variables, especially when dealing with
large datasets. To address this, a more computationally
efficient alternative, known as the Least Squares Support
Vector Regression (LSSVR), has been presented [10]. The
formulation of LSSVR resembles ridge regression, using a
regularized l2 loss, where experimental errors are treated as
linear constraints [11]. Typically, LSSVR is formulated as a
quadratic minimization problem subject to a linear equality
constraint on Lagrange multipliers in the dual space.

A significant advantage of LSSVR over SVR is the pos-
sibility of having the ability to represent the primary cost
constraint as a penalty term in the dual formulation rep-
resentation using a single Lagrange multiplier, as opposed
to the pair of Lagrange multipliers required for training
samples in SVR. This formulation results in LSSVR requir-
ing only half the Lagrange multipliers required for classical
SVR compared to classical SVR, leading to a remarkable
reduction in calculation time.

In the LSSVR approach, the loss function used is the
regularized squared (l2) loss; The error terms are symbol-
ized as the equality constraints, resulting in the formulation
of a linear system of equations. Though this feature offers
computational advantages, the sparsity property inher-
ent in traditional SVR, induced through ε-insensitivity, is
vanished in LSSVR, where each input instance is treated as
a support vector. Moreover, due to the squared loss used,
LSSVR lacks robustness to outliers compared to SVR.

To deal with the lack of sparseness for LSSVR, current
methods can be classified in two approaches: iterative and
direct methods. In iterative methods, training samples are
progressively eliminated either forward or backward, one
by one, in each iteration. For instance, Suykens et al. intro-
duced the Pruned LSSVR (PLSSVR) model, which initially
runs the standard LSSVR model and sort the resulting
support vectors from largest to smallest. Then, it gradually
prunes the support vectors beginning from the smallest
value in the spectrum [12]. Additionally, they proposed
a weighted version to enhance robustness against outli-
ers [13]. Kruif and Vries proposed an alternative pruning
algorithm where the training sample yielding the smallest
error after its ignorance in the previous iteration is removed
[14]. Kuh and De Wilde [15] extended the Kruif and Vries’s
pruning algorithm which is applied to a non-regularized
loss to the regularized loss. Hoegaerts et al. [16] presented
two pruning algorithms: one is based on deleting the sam-
ple with the smallest correlation with the output and the
other on removing the sample with the least similarity to

the best fitting span. Zeng and Chen [17] introduced the
SMO-based pruning scheme, which eliminates samples
that contribute the least change in the dual objective func-
tion, rather than being merely on errors.

Zhao and Sun [18] presented a technique called recur-
sive reduced LSSVR (RRLSSVR), where data contributing
more to the objective function are selected as support vec-
tors while considering all constraints yielded by all training
samples. Subsequently, the improved version of RRLSSVR
(IRRLSSVR) was introduced to get much sparser solution
than RLLSSVR in [19]. Later, refined versions of them [20]
were proposed to improve their performance. Si et al. [21]
introduced the reconstructed LSSVR algorithm (RCLSSVR),
applied in mill load prediction, which utilizes reconstructed
support vectors. It selects reconstructed data based on den-
sity clustering information in the training dataset and to
improve sparseness and robustness simultaneously. Sun et al.
[22] proposed a localized generalization error model based
on the training mean square error and sensitivity measure to
prune support vectors in the LS-SVM.

In direct methods, the algorithm begins with a full
dense solution and then eliminates training samples based
on objective criteria. For instance, Espinoza et al. [23] intro-
duced a fixed-size least squares least squares support vector
machine (FS-LSSVM) method, utilizing Nystrm approxi-
mation with a predefined set of prototype vectors (PVs) to
provide a solution in the primal space. Based on the similar
idea, Mall and Suykens [24] proposed two L0-norm-reduced
models: the sparsified primal FS-LSSVM for the input space
and sparsified subsampled dual LSSVM for the dual space.
Yang et al. [25] introduced a one-step compressive pruning
strategy to construct a sparse LSSVM. Zhou [26] introduced
a low-rank representation technique using pivoted Cholesky
decomposition for the kernel matrix to sparsify the LSSVM.
Later, this method was extended to a robust LSSVM using
a non-convex truncated loss function [27]. Xia [28] used
the Kernel Matching Tracking technique, which exploits the
number of support vectors as the regularization parameter
to achieve sparsity in the LS-SVM solution. Ma et al. [29]
designed an indicator to assess the global representation of
data points based on density and distribution of them in the
feature space. Next, they presented a fast sparse LS-SVM
method by choosing support vectors with a non-recursive
strategy using global representation.

Recently, a new sparse LSSVR model (ε-LSSVR) with
ε-insensitivity at quadratic loss has been introduced in [30].
ε-LSSVR ignores errors within a given ε band, as in SVM,
and its sparsity is controlled only by the ε parameter. Inspired
by [30], this paper theoretically derives ε-LSSVR from the
LSSVR model in detail, which results in fewer support vec-
tors that provide sparsity in dual space without necessitating
computationally expensive algorithms. However, the qua-
dratic loss function of ε-LSSVR may comprise robustness
in the presence of outliers. To address this limitation and
improve robustness, a weighted version, ε-WLSSVR, will be
presented in Section 2.2, for the specific case of this study.

Sigma J Eng Nat Sci, Vol. 42, No. 2, pp. 578−589, April, 2024580

The pruning approach iteratively removes the con-
straints of non-support vectors backwards to build a sparse
LSSVR model. This may result in better convergence and
higher stability for inhomogeneous and unbalanced data-
sets. Conversely, the ε-insensitive strategy forces certain
support vectors to move to zero, allowing direct control
over the selection of non-zero support vectors, which
directly influences solution sparsity and computation time.

In this study, the performances of iterative based PLSSVR,
WPLSSVR algorithms and ε-LSSVR and ε-WLSSVR meth-
ods that provide direct sparsity are analyzed for the first time
in terms of generalization ability, sparsity, and computation
time on both synthetic and 8 different real-world data.

The main contributions of this paper are summarized
as follows:
i. Directly defining the sparseness of LSSVR in the input

space by using ε-insensitivity within the quadratic loss
function and providing a theoretical solution.

ii. Addressing the robustness matter inherent in the qua-
dratic loss function of ε-LSSVR by introducing its
weighted version, ε-WLSSVR.

iii. Analyzing the performances of PLSSVR, WPLSSVR,
ε-LSSVR, and ε-WLSSVR methods for the first time
in terms of sparsity, generalization ability, and compu-
tation time across both synthetic and 8 different real-
world datasets.
The remainder of the paper is structured as fol-

lows: Section 2 presents a review of the basic concepts of
LSSVR followed by a full portrait of the four methods of

interest. Section 3 examines and compares pruning-based,
and ε-insensitivity based approaches in both synthetic
and real-world datasets. Finally, Section 4 presents result
descriptions and potential feature guidelines.

Least Squares Support Vector Regression
Given a training set , where xs. represents

the sth input data vector, ys denotes the target output data
points for the input xs, and L is the number of training data
points, LSSVR is formulated in primal space as follows [10]:

(1)

 (2)

Where, C is a user defined regularization constant that
controls the balance between empirical error (for large C)
and generalization ability (for small C), w is the unknown
model parameter, es representing the deviation of the actual
output from the predicted output for each training exam-
ple, φ(.) is a nonlinear basis function, and b is the unknown
threshold parameter. LSSVR optimization problem (1)
in primal space is transformed into the following uncon-
strained optimization problem in dual space by applying
the Lagrange multipliers method.

Figure 1. a) Loss function of LSSVR b) ε-insensitivity in loss function of LSSVR c) Derivative of LSSVR loss function d)
Derivative of LSSVR loss function with ε-insensitivity.

Sigma J Eng Nat Sci, Vol. 42, No. 2, pp. 578−589, April, 2024 581

(3)

Where:
· αs represents the Lagrange multipliers.
· K(xs, xr) represents kernel functions character-

ized as the inner product of two input samples
φ(xs) and φ(xr) in the high dimensional space i.e.

.
The predicted range of learned LSSVR for the test sam-

ple x, can be expressed as follows:

(4)

ε-insensitive Least Squares Support Vector Regression
ε-LSSVR, the ε-insensitive variant of LSSVR, is intro-

duced in detail in this section. According to Equation (4),
every training data point xs contributes to the solution rep-
resentation of model except training data points with αs =
0. Therefore, the significance of a training data point xs is
determined by its support value αs. The values of αs, which
are Lagrange multipliers, rarely equal zero in most practi-
cal scenarios, leading to numerous support vectors in the
LSSVR solution representation. The optimization problem
required to derive ε-LSSVR from LSSVR is formulated as
follows [30]:

(5)

 (6)

where, the is defined as:

(7)

It’s important to note that is a continuously differen-
tiable function. Figure 1 illustrates the LSSVR loss function
and its derivative in comparison, as well as the ε-insensitiv-
ity in loss function of LSSVR and its derivative.

The canonical representation of the first derivative of
the ε-LSSVR loss function is as follows:

 (8)

The formulation model in terms of Lagrange multipli-
ers becomes:

(9)

The conditions required for the optimal solution of the
Lagrangian formulation model (9) are as follows:

(10)

(11)

 (12)

 (13)

To derive a cost function based on the Lagrange mul-
tipliers αs it is necessary to solve for es in terms of αs in
equation (12). There are 3 distinct regions, each of which
establishes a relationship between αs and es in an affine
manner:

Since es > ε implies as > 0, -ε ≤ es ≤ ε implies as = 0, and es
< -ε implies as < 0 equation (12) can be written as

 (14)

where,

Substituting equations (10) and (14) into equation (9)
and using equation (11) to eliminate variables es and w, the
optimization formulation of ε-LSSVR becomes:

(15)

(16)

Sigma J Eng Nat Sci, Vol. 42, No. 2, pp. 578−589, April, 2024582

The, the last term, in equation (15), , is
equal to . Similarly, third term, refers to the ε-in-
sensitive squared loss function and is equal to .
Under these conditions, equation (15) can be rearranged as
follows to compactly represent the dual minimization for
ε-LSSVR.

 (17)

(18)

The only difference observed when comparing equation

(3) with equation (17), is that the last term, appears

because in the ε-LSSVR optimization problem

of equation (17), does not seen in LSSVR model (8). In
other words, when ε = 0, classical LSSVR is obtained as a
particular scenario of ε-LSSVR. The ε-LSSVR optimization
problem can be solved using any convex algorithm that
doesn’t necessitate taking derivatives of the variables in the
optimization formulation. Finally, the b parameter can be
calculated using equation (13).

ε-insensitive Weighted Least Squares Support Vector
Regression

To increase robustness against outliers, it is a common
practice in the literature to employ weighting techniques
for training data points [13]. However, while ε-LSSVR sup-
presses noise compared to classical LSSVR, its performance
against outliers remains suboptimal owing to the inherent
quadratic error characteristic shared like LSSVR. In this
section, we apply the weighting technique to ε-insensitive
LSSVR to improve its performance against outliers, result-
ing in the following optimization formulation.

(19)

 (20)

In this formulation, the parameters δs are employed
to weight the influence of errors relative to data points on
the loss function. The * symbol distinguishes optimization
variables from those of ε-LSSVR. Initially, the δs remain
constant in the initial execute of ε-WLSSVR and are sub-
sequently determined as described in equation (24) to
calibrate the effects of data point errors based on their dis-
tribution. Employing a derivation akin to that in Section
2, we obtain the ε-LSSVR optimization regarding Lagrange
multipliers as follows.

(21)

By employing optimality conditions (first derivative
with respect to the optimization variables) and removing
and w*variables to solve the optimization problem in (21),
the ε-WLSSVR optimization problem can be expressed in
dual space as follows:

(22)

(23)

The robustness of the developed ε-WLSSVR model
against outliers is attained by appropriately selecting the δs
weights based on the relationship delineated in [13].

(24)

where the parameter is defined regarding Inter
Quartile Range (IQR) denoting the difference between
the the 25th percentile (lower quartile) and 75th percentile
(upper quartile) of the error distribution [13].

 (25)

The choices of c1 = 2.5 and c2 = 3 are recognized as
appropriate for a Gaussian error distribution.

The minimization problem of ε-WLSSVR, as described
by Equations (22) to (23), is convex, and therefore any con-
vex algorithm from the existing literature can be employed
for its solution, similar to ε-LSSVR.

PRUNED LEAST SQUARES SUPPORT VECTOR
REGRESSION

As can be seen from (4), the decision hyperplane of
LSSVR contains all the data in the training dataset. This
means that LSSVR loses sparsity. The pruning approach
for sparse LSSVR aims to obtain a sparse decision hyper-
plane with fewer data. For this, non-support vectors are
extracted recursively from the training dataset according
to some specified criteria (error rate, number of support
vectors, etc.). First, an initial model is built based on the

Sigma J Eng Nat Sci, Vol. 42, No. 2, pp. 578−589, April, 2024 583

entire training dataset and a spectrum of support vectors
is plotted. The data that contributes the least to the model
are omitted gradually. The reduced LSSVR is rebuilt with
the remaining data. These processes are continued until the
desired error value is reached [12], which is described in
algorithm 1.

Algorithm 1. PLSSVR
1. Train LSSVR (3) based on L training samples
2. Omit a small amount of training samples (5% of the

training set) with the smallest value in the sorted sup-
port vector spectrum.

3. Re-train the LSSVR based on the reduced training set.
4. Go to step 2, unless the user specified performance

index degrades.

WEIGHTED PRUNED LEAST SQUARES SUP-
PORT VECTOR REGRESSION

The weighted PLSSVR minimization problem in dual
space is as follows [13].

(26)

The difference between PLSSVR and WPLSSVR is
the δs parameter. The pruning approach is performed in
WPLSSVR as follows [13].

Algorithm 2. WPLSSVR
1. Set L = Ltot equal to the number of training samples.
2. Given Ltot training samples, find an optimal combina-

tion (kernel parameter and C) by solving (3).
3. Compute from the error distribution.
4. Determine the weights δs based upon es and
5. Solve the WLSSVR (equation 26) with respect to

6. Sort the support values,
7. Delete a small amount of N sample points (5% of the

Ltot samples) that have the smallest values in the sorted
spectrum.

Table 1. Optimization formulations for PLSSVR, WPLSSVR, ε-LSSVR, ε-WLSSVR, and LSSVR models in dual space
representations

Models Optimization formulations in dual space

LSSVR

ε-LSSVR

ε-WLSSVR

PLSSVR

WPLSSVR

Sigma J Eng Nat Sci, Vol. 42, No. 2, pp. 578−589, April, 2024584

8. Retain Ltot − N samples and set Ltot:= Ltot − N.
9. Go to step 2 and retrain on the reduced training set,

unless the user-specified performance index degrades.
Optimization formulations in dual space for PLSSVR,

WPLSSVR, ε-LSSVR, ε-WLSSVR, and LSSVR models, are
shown in Table 1.

From Table 1 it can be clearly seen that the only dif-

ference between ε-LSSVR and classical LSSVR is .

If ε=0, ε-LSSVR is equivalent to conventional LSSVR. In
addition, PLSSVR and classical LSSVR are shown with the
same optimization formula. However, an LSSVR model is
created based on the whole training dataset, and then the
number of samples is iteratively reduced until it reaches the
specified error value and the PLSSVR model is obtained.

On the other hand, the only difference between ε-WLSSVR

and WPLSSVR is again . When ε=0, ε-WLSSVR is

equivalent to WPLSSVR. Similarly, all samples are used
when creating the first model, and then the weighted and
pruned model (WPLSSVR) is provided.

Computational Complexity Analysis
In academic literature, the computational complexity

of algorithms is frequently evaluated by using Big-O nota-
tion. The computational complexity of the standard LSSVR
solution (i.e., Ax=B) is O(kL2) using the conjugate gradient
method [13]. Here, A=I+C and A∈RLxL with row(C)=k. As
discussed in [31], iterative algorithms (such as PLSSVR and
WPLSSVR) incur a cost around O(tL2); where t is considered
the number of iterations. Together with the SMO technique
[32], ε-WLSSVR and ε-LSSVR algorithms generate a cost
around (pL). Because p is generally less than k, it provides
an additional falling in the computational complexity of
ε-WLSSVR and ε-LSSVR algorithms. If the matrix A requires
a large amount of memory, it may be recomputed at each
iteration step. However, this incurs a cost of O(L2) per step
and decreases the memory requirement to O(L). It’s worth
noting that the computational complexity can vary depend-
ing on the chosen kernel type and regularization parameter.

RESULTS AND DISCUSSION

In this section, direct models (ε-LSSVR and ε-WLSSVR)
and iterative models (PLSSVR and WPLSSVR) are com-
paratively analyzed on synthetic and real-life benchmark
datasets. In order to ensure identical circumstances for all
models, experiments were conducted using SMO algorithm
[31, 32] in MATLAB 2012b environment on a PC with Intel
Core I5 processors clocked at 3.0 GHz, 4 GB RAM, 64-bit
Windows-7 operation system. The parameters and perfor-
mance metric used in the comparison are given in section
3.1. Their performance on synthetic and real-life data in
terms of number of support vectors, percentage of support
vectors, complexity parameter, training and testing times

are reported in Sections 3.2 and 3.3, respectively. Finally,
in Section 3.4, the effects of the compared models on per-
formance are discussed in detail and the observed findings
are reported.

Experimental Setup
In all the compared models, the Gaussian function

 was selected as the kernel
function [33]. Optimal values of regularization parameter
(C) and kernel parameter (σ) were determined from sets

 and , respectively, by employ-
ing classical LSSVR with 5-fold cross-validation approach.
Root Mean Square Error (RMSE), defined as follows, was
used as the performance index in the study.

where, f(xs) represents the estimation of the target value
ys when xs is entered, and L representing sample count.

Synthetic Data Sets
A synthetic data set was produced using the sinc

function, which is frequently preferred in machine learn-
ing-based regression problems [9, 33].

y sinc(x / π) with x ∊[-10,1 0].
Using the sinc function, 251 training and 250 test

instances were derived with both uniform and random
sampling techniques. This approach allowed the intro-
duced models to be evaluated on non-uniform data points.
Input data points were normalized to the range [0, 1],
while output data points remained unchanged. The train-

ing (output) samples were subjected to Gaussian noise

 with μ=0 and σ=0,1. To improve

robustness testing, nine artificial outliers were added to the
noisy training set, resulting in a total of 260 data points.

The experimental findings are illustrated through
Figure 2 and Figure 3, while a detailed numerical analysis,
including the number of support vectors, complexity (flat-
ness), and RMSE, is presented in Table 2.

The quantities of training and test data are detailed in
Table 2, with the dataset randomly split in each sample.
This procedure was repeated 10 times to remove sample
dependence and the results were averaged and entered in
Table 2.

Figure 2 compares the number of support vectors
obtained when the test accuracies (RMSE test values) of the
ε-LSSVR and PLSSVR models are equivalent. Both mod-
els achieved equal test accuracies under the conditions of
C = 23, σ = 2-3 for PLSSVR, and C = 23, ε = 0.12, σ = 2-3
for ε-LSSVR. From Figure 2 and Table 2, It is evident that
ε-LSSVR requires fewer support vectors (120) compared
to PLSSVR (174) to attain near the same test accuracy. In

Sigma J Eng Nat Sci, Vol. 42, No. 2, pp. 578−589, April, 2024 585

addition, Table 2 shows that ε-LSSVR demonstrates sparsity
both in the dual space, as indicated by the quantity of sup-
port vectors, and in the primary space, as evidenced by the
w. Accordingly, in randomly chosen training data points,
the ε-LSSVR exhibits fewer support vectors and lower w
value compared to PLSSVR.

The second comparison was conducted between
WPLSSVR with σ = 2-3, C = 23 and ε-WLSSVR with σ = 23,
C = 23, ε = 0.08 when the test accuracies of the LSSVR mod-
els are identical circumstances. From Figure 3 and Table 2,
it’s clear that ε-WLSSVR (117) demands a reduced num-
ber of support vectors compared to WPLSSVR (142), all
while retaining the same test accuracy. This indicates that
ε-WLSSVR achieves a significantly sparser solution com-
pared to WPLSSVR. Additionally, in the case of random
sampling, ε-WLSSVR requires fewer support vectors com-
pared to WPLSSVR.

As seen in Table 2, while whole training examples are
utilized in the LSSVR representation, only 40% of them are
used in the ε-LSSVR. Conversely, pruning-based algorithms
generally yield a solution according to user-specified error
tolerance, thus providing a near-optimal solution. This
means that pruning-based algorithms must be run again
and again to obtain the favored result. On the other hand,
ε-WLSSVR and ε-LSSVR models are quite advantageous as
they provide a globally optimal solution without the need
for repeated algorithms to achieve optimality. Based on the
simulation results above, it can be inferred that ε-WLSSVR
effectively reduces the impact of outliers while also yielding
a sparse solution in primary and dual spaces.

Real-Life Benchmark Data Sets
The direct models (ε-LSSVR and ε-WLSSVR) and iter-

ative models (PLSSVR and WPLSSVR) were comparatively

Figure 2. The experimental results for the artificial datasets, with parameters C = 23 and σ = 2-3 on almost the same value
of RMSE=0.0178 a) PLSSVR produces 174 support vectors b) ε-LSSVR yields 120 support vectors with ε = 0.12.

Figure 3. The experimental results for the artificial datasets, with parameters C = 23 and σ = 2-3 on almost the same value
of RMSE=0.0195 a) WPLSSVR generates 142 support vectors. b) ε-WLSSVR with ε = 0.08 gives 117 support vectors.

Sigma J Eng Nat Sci, Vol. 42, No. 2, pp. 578−589, April, 2024586

analyzed with 8 distinct real life benchmark datasets given
in Table 3. Space, CPU small, and Mg are from Statlib col-
lection1 while the remaining datasets are from the UCI
machine learning repository2. To provide consistency,
the inputs were normalized within the closed range [0,1].
However, no normalization was applied to the outputs, as
scaling is carried out by the C and ε model parameters. For
further evaluation, the performances of the ε-WLSSVR
and ε-LSSVR models were compared with WPLSSVR and
PLSSVR with respect to percentage of support vectors
(%SV), the flatness (w), number of support vectors (#SV),
computation time, and training and test approach error,
with test performances of all models nearly equivalent.

The experimental findings of LSSVR, ε-LSSVR,
ε-WLSSVR, PLSSVR, and WPLSSVR, models on each
dataset are presented in Table 4. The user-defined σ and C
parameters of the model used for each dataset are presented
under their respective names in the first column of Table 4.

From Table 4, it is evident that the sparseness of the
weighted and unvweighted ε-LSSVR models surpasses

1 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html.
2 http://archive.ics.uci.edu/ml/datasets.html.

that of PLSSVR, WPLSSVR and LSSVR, across all data-
sets. For instance, in the Concrete dataset, PLSSVR,
WPLSSVR, LSSVR, ε-LSSVR and ε-WLSSVR mod-
els required 356, 369, 450,197 and 103 support vectors,
respectively. This indicates that ε-LSSVR, and ε-WLSSVR
models require fewer support vectors to achieve almost
the same test performance. Furthermore, the flatness mea-
sure of ε-WLSSVR is lower compared to all LSSVR meth-
ods, resulting in a sparser solution within the input space.
For example, on the Boston dataset, PLSSVR, WPLSSVR,
LSSVR, ε-LSSVR, and ε-WLSSVR have flatness measures
of 246, 208, 258,172, and 141, respectively, under identical
circumstances. Moreover, ε-LSSVR outperforms all mod-
els in terms of computational time. Given the superior
performance of the ε-LSSVR and ε-WLSSVR methods,
they can be applied to any engineering field such as energy
[36] and mechanics [37].

It is evident from the last column of the Table 4 that
ε-LSSVR requires less training time compared to LSSVR,
PLSSVR and WPLSSVR. This difference can be attributed
to the iterative nature of pruning-based algorithms, which
continuously refine the objective function by removing less
significant training examples until the user-specified error
threshold is met. In contrast, during the training process,
ε-LSSVR disregards training samples situated within the
ε-insensitive region of the target function, all without the
necessity of employing recursive (and computationally
expensive) algorithms. The user-defined error tolerance
parameter ε directly affects the sparsity and computational
efficiency of the solution by controlling the number of sup-
port vectors. However, it’s important to note that ε-LSSVR,
like LSSVR, remains sensitive to outliers. To address this
limitation, the ε-WLSSVR model incorporates a weighting
technique to enhance its robustness.

Table 3. In-depth details regarding benchmark regression
datasets

Datasets Sample Size Number of Features
CPU Small 8192 12
Space 3107 6
Airfoil 1503 6
Mg 1385 6
Concrete 1030 9
Boston 506 13
Yatch 308 7
Servo 167 4

Table 2. Experimental results on synthetics dataset

Hyperparameters Algortihm ε #SV RMSE
test

#TS=260
σ=0.125
C=8
N (0, 0.01)

Random
Sampling

ε-LSSVR 0.08 124 1,305796 0,022351
ε-WLSSVR 0.08 118 1,358898 0,020651
LSSVR - 260 1,591505 0,027793
PLSSVR - 145 1,568524 0,026620
WPLSSVR - 142 1,399055 0,020790

Uniform
Sampling

ε-LSSVR 0.08 123 1,318347 0,020921
ε-WLSSVR 0.08 117 1,365382 0,019580
LSSVR - 260 1,682521 0,015634
PLSSVR - 168 1,642521 0,018634
WPLSSVR - 164 1,403433 0,019466

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
http://archive.ics.uci.edu/ml/datasets.html

Sigma J Eng Nat Sci, Vol. 42, No. 2, pp. 578−589, April, 2024 587

Table 4. Experimental results on real word regression benchmark datasets

Dataset Learning
Models

#TS #SV %SV RMSE
train

RMSE
test

Training
time

Servo
C=1024
σ=1,

LSSVR

100

100 100 65,24784 0,366781 0,584084 0,081989

PLSSVR 59,8 59,8 64,42886 0,478413 0,672223 0,798908

WPLSSVR 66,8 66,8 43,84360 0,568590 0,675431 0,946633

ε-LSSVR (ε=0.45) 43,6 43,6 47,38996 0,479219 0,674658 0,045995

ε-WLSSVR(ε=0.4) 39,2 39,2 23,12014 0,635481 0,671208 0,076589

Yatch
C=131072
σ=0.5

LSSVR

160

160 100 551,7821 0,085507 1,214634 3,34804

PLSSVR 156,1 97,5625 551,3142 0,277917 1,270256 6,796333

WPLSSVR 157,6 98,5 504,2195 0,338374 1,292471 9,248233

ε-LSSVR(ε=0.2) 110,1 68,8125 449,739 0,192999 1,262674 0,59776

ε-WLSSVR, ε=0.1 127,8 79.875 439,2768 0,340269 1,262524 4,118371

Boston
C=128
σ=1

LSSVR

400

400 100 258,0354 1,993912 2,851667 0,099069

PLSSVR 191,5 47,875 246,5892 2,68649 3,231517 1,551074

WPLSSVR 253,1 63,275 208,0421 2,760021 3,230102 1,709849

ε-LSSVR,ε=3 119,1 29,775 172,2871 2,581367 3,237997 0,068996

ε-WLSSVR(ε=2.6) 127,9 31,975 141,8667 2,649894 3,230158 0,146366

Concrete
C=4096
σ=1

LSSVR

450

450 100 2670,986 3,623914 6,319183 1,198805

PLSSVR 356,5 79,22222 2646,297 3,971043 6,58039 6,507052

WPLSSVR 369,9 82,2 2495,326 4,041854 6,571906 11,51769

ε-LSSVR,ε=4.8, 197,1 43,8 1564,716 4,644485 6,578823 0,489621

ε-WLSSVR,ε=4.7 193,1 42,91111 1380,526 4,777453 6,580034 1,344742

Mg
C=2
σ=0.125

LSSVR

800

799,9 99,9875 1,514474 0,104216 0,119987 0,095426

PLSSVR 391 48,875 1,431114 0,108516 0,122091 1,494786

WPLSSVR 708 88,5 1,461827 0,106925 0,122079 0,596783

ε-LSSVR,ε=0.9 364,3 45,5375 1,106773 0,112639 0,122211 0,072719

ε-WLSSVR,ε=0.9 348,3 43,5375 1,069306 0,112863 0,122406 0,14033

Airfoil
C=128
σ=0.125

LSSVR

900

900 100 280,2655 1,463983 2,665281 0,412481

PLSSVR 760 84,4444 278,2486 1,882925 2,875038 1,837134

WPLSSVR 886,8 98,53333 203,8609 1,932055 2,86893 1,677196

ε-LSSVR,ε=1.4 497,5 55,27778 211,7781 1,773606 2,87319 0,194541

ε-WLSSVR,ε=0.3 750 83,3333 190,6877 1,876238 2,874714 0,633096

Space
C=4096
σ=0.5

LSSVR

1600

1600 100 51,74661 0,089768 0,103348 10,84307

PLSSVR 1135,8 70,9875 51,07372 0,095491 0,107249 77,11352

WPLSSVR 1094,1 68,38125 47,60751 0,097645 0,10753 132,5333

ε-LSSVR,ε=0.09, 540,1 33,75625 33,2183 0,094133 0,106865 1,446744

ε-WLSSVR,ε=0.09 522,4 32,65 27,89796 0,094786 0,107426 12,03891

CPU Small
C=128
σ=0.5

LSSVR

2500

2500 100 504,8244 2,483706 3,080268 2,422676

PLSSVR 1855 74,2 497,1927 2,789671 3,222043 17,8483

WPLSSVR 1765 70,6 460,419 2,856357 3,224067 34,5773

ε-LSSVR, ε=2.5 969,7 38,788 346,417 2,738471 3,215779 0,517647

ε-WLSSVR, ε=3.1 673,7 26,948 276,9492 2,840616 3,218984 2,756323

Sigma J Eng Nat Sci, Vol. 42, No. 2, pp. 578−589, April, 2024588

CONCLUSION

LSSVR stands out as a computationally efficient method
for tackling regression problems. Nevertheless, it does have
two notable disadvantages. Firstly, LSSVR tends to lack of
sparsity, resulting in every input sample treated as a support
vector. Secondly, the solution obtained with LSSVR is sensitive
to outliers and noise within the training dataset. In order to
address these issues, theoretically derives ε-LSSVR from the
LSSVR model. In addition, a weighted version, ε-WLSSVR, is
introduced to improve robustness against outliers.

To improve the sparsity of classical LSSVR, the per-
formances of the PLSSVR, ε-LSSVR, WPLSSVR and
ε-WLSSVR methods are analyzed in terms of general-
ization ability, sparsity, and computation time on both
artificial and 8 different real-life datasets. Experimental
results show that ε-LSSVR and ε-WLSSVR models achieve
sparser solution representation compared to PLSSVR,
WPLSSVR, and LSSVR across all datasets while maintain-
ing nearly same generalization performance (RMSE test
values). These models exhibit advantages over PLSSVR,
WPLSSVR, and classical LSSVR regarding the number of
support vectors. For example, in the space dataset, PLSSVR,
WPLSSVR, LSSVR, ε-LSSVR and ε-WLSSVR models
required 1135, 1094, 1600, 540 and 522 support vectors,
respectively, to achieve almost the nearly identical circum-
stances. The norm of w (flatness measure) of both weighted
and unweighted ε-LSSVR models is lower than those of all
LSSVR models, indicating sparser solution representations
in the primal space. For instance, in the CPU Small dataset,
PLSSVR, WPLSSVR, LSSVR, ε-LSSVR, and ε-WLSSVR
demonstrates flatness measures of 497, 460, 504, 346, and
276, respectively. Additionally, ε-LSSVR outperforms all
models in terms of computational time.

The regression models introduced in this study can be
optimized using any optimization algorithm developed
for nonlinear convex large-scale quadratic problems sub-
ject to linear inequalities/equalities, potentially increasing
computational efficiency. Furthermore, these models can
be applied to various engineering problems in which other
regression models have shown success.

AUTHORSHIP CONTRIBUTIONS

Authors equally contributed to this work.

DATA AVAILABILITY STATEMENT

The authors confirm that the data that supports the
findings of this study are available within the article. Raw
data that support the finding of this study are available from
the corresponding author, upon reasonable request.

CONFLICT OF INTEREST

The author declared no potential conflicts of interest
with respect to the research, authorship, and/or publication
of this article.

ETHICS

There are no ethical issues with the publication of this
manuscript.

REFERENCES

 [1] Cortes C, Vapnik V. Support-vector networks. Mach
Learn 1995;20:273−297. [CrossRef]

 [2] Karal Ö. Compression of ECG data by support vec-
tor regression method. J Fac Eng Archit Gazi Univ
2018;33:743−755. [CrossRef]

 [3] Karadurmuş E, Göz E, Taşkın N, Yüceer M. Bromate
removal prediction in drinking water by using the
least squares support vector machine (LS-SVM).
Sigma J Eng Nat Sci 2020;38:2145−2153.

 [4] Filiz E, Ersoy ÖZ. Educational data mining methods
for TIMSS 2015 mathematics success: Turkey case.
Sigma J Eng Nat Sci 2020;38:963−977.

 [5] Bakay MS, Ağbulut Ü. Electricity production-based
forecasting of greenhouse gas emissions in Turkey
with deep learning, support vector machine and
artificial neural network algorithms. J Clean Prod
2021;285:125324. [CrossRef]

 [6] Mir AA, Çelebi FV, Alsolai H, Qureshi SA, Rafique
M, Alzahrani JS, et al. Anomalies prediction in
radon time series for earthquake likelihood using
machine learning based ensemble model. IEEE
Access 2022;10:1. [CrossRef]

 [7] Sonmez ME, Eczacıoglu N, Gumuş NE, Aslan MF,
Sabanci K, Aşikkutlu B. Convolutional neural net-
work-Support vector machine-based approach for
classification of cyanobacteria and chlorophyta
microalgae groups. Algal Res 2022;61:102568.
[CrossRef]

 [8] Vapnik, VN, Vapnik V. Statistical Learning Theory.
New York: Wiley; 1998.

 [9] Smola AJ, Schölkopf B. A tutorial on support vector
regression. Stat Comput 2004;14:199−222. [CrossRef]

[10] Suykens JA, Vandewalle J. Least squares support
vector machine classifiers. Neural Process Lett
1999;9:293−300. [CrossRef]

[11] Saunders C, Gammerman A, Vovk V. Ridge
regression learning algorithm in dual variables.
In: Proceedings of the Fifteenth International
Conference on Machine Learning (ICML); 1998 Jul
24-27; Madison, Wisconsin, USA. 1998.

[12] Suykens JA, Lukas L, Vandewalle J. Sparse approxi-
mation using least squares support vector machines.
In: Circuits and Systems, 2000. Proceedings.
ISCAS 2000 Geneva. The 2000 IEEE International
Symposium; 2000 Feb; Geneva. 2000. pp.757−760.

[13] Suykens JA, De Brabanter J, Lukas L, Vandewalle
J.bWeighted least squares support vector machines:
robustness and sparse approximation. Neurocomput
2002;48:85−105. [CrossRef]

https://doi.org/10.1007/BF00994018
https://doi.org/10.17341/gazimmfd.416527
https://doi.org/10.1016/j.jclepro.2020.125324
https://doi.org/10.1109/ACCESS.2022.3163291
https://doi.org/10.1016/j.algal.2021.102568
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1016/S0925-2312(01)00644-0

Sigma J Eng Nat Sci, Vol. 42, No. 2, pp. 578−589, April, 2024 589

[14] De Kruif BJ, De Vries TJ. Pruning error minimiza-
tion in least squares support vector machines. IEEE
Trans Neural Netw 2003;14:696−702. [CrossRef]

[15] Kuh A, De Wilde P. Comments on pruning error min-
imization in least squares support vector machines.
IEEE Trans Neural Netw 2007;18:606−609. [CrossRef]

[16] Hoegaerts L, Suykens JA, Vandewalle J, De Moor
B. (2004, November). A comparison of pruning
algorithms for sparse least squares support vector
machines. In: International Conference on Neural
Information Processing; 2004 Nov; Heidelberg,
Berlin: Springer; 2004. pp.1247−1253. [CrossRef]

[17] Zeng X, Chen XW. SMO-based pruning methods for
sparse least squares support vector machines. IEEE
Trans Neural Netw 2005;16:1541−1546. [CrossRef]

[18] Zhao Y, Sun J. Recursive reduced least squares
support vector regression. Pattern Recognit
2009;42:837−842. [CrossRef]

[19] Zhao YP, Sun JG, Du ZH, Zhang ZA, Zhang YC,
Zhang HB. An improved recursive reduced least
squares support vector regression. Neurocomput
2012;87:1−9. [CrossRef]

[20] Zhao YP, Wang KK, Li F. A pruning method of refin-
ing recursive reduced least squares support vector
regression. Inf Sci 2015;296:160−174. [CrossRef]

[21] Si G, Shi J, Guo Z, Jia L, Zhang Y. Reconstruct the sup-
port vectors to improve LSSVM sparseness for Mill
Load prediction. Math Probl Eng 2017;2017:1−12.
[CrossRef]

[22] Sun B, Ng WW, Chan PP. Improved sparse LSSVMS
based on the localized generalization error model.
Int J Mach Learn Cybern 2017;8:1853−1861. [CrossRef]

[23] Espinoza M, Suykens JA, Moor BD. Fixed-size least
squares support vector machines: a large scale appli-
cation in electrical load forecasting. Comput Manag
Sci 2006;3:113−129. [CrossRef]

[24] Mall R, Suykens JA. Sparse reductions for fixed-size
least squares support vector machines on large scale
data. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu,
G., editors. Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Heidelberg, Berlin:
Springer; 2013. [CrossRef]

[25] Yang L, Yang S, Zhang R, Jin H. Sparse least square
support vector machine via coupled compressive

pruning. Neurocomput 2014;131:77−86. [CrossRef]

[26] Zhou S. Sparse LSSVM in primal using Cholesky
factorization for large-scale problems. IEEE Trans
Neural Netws Learn Sys 2015;27:783−795. [CrossRef]

[27] Chen L, Zhou S. Sparse algorithm for robust LSSVM
in primal space. Neurocomput 2018;275:2880−2891.
[CrossRef]

[28] Xia XL. Training sparse least squares support vector
machines by the QR decomposition. Neural Netw
2018;106:175−184. [CrossRef]

[29] Ma Y, Liang X, Sheng G, Kwok JT, Wang M, Li G.
Noniterative sparse LS-SVM based on globally rep-
resentative point selection. IEEE Trans Neural Netw
Learn Sys 2020;32:788−798. [CrossRef]

[30] Karal Ö. Piecewise affine and support vector mod-
els for robust and low complex regression (Doctoral
dissertation). İzmir: DEÜ Fen Bilimleri Enstitüsü;
2011.

[31] Li K, Peng JX, Bai EW. A two-stage algorithm
for identification of nonlinear dynamic systems.
Automatica 2006;42:1189−1197. [CrossRef]

[32] Jiao L, Bo L, Wang L. Fast sparse approximation for
least squares support vector machine. IEEE Trans
Neural Netw 2007;18:685−697. [CrossRef]

[33] Fan RE, Chen PH, Lin CJ. Working set selection using
second order information for training support vec-
tor machines. J Mach Learn Res 2005;6:1889−1918.

[34] Keerthi SS, Shevade SK. SMO algorithm for least-
squares SVM formulations. Neural Comput
2003;15:487−507. [CrossRef]

[35] Karal O. Maximum likelihood optimal and robust
Support Vector Regression with lncosh loss func-
tion. Neural Netw 2017;94:1−12. [CrossRef]

[36] Armin M, Gholinia M, Pourfallah M, Ranjbar
AA. Investigation of the fuel injection angle/
time on combustion, energy, and emissions of a
heavy-duty dual-fuel diesel engine with reactivity
control compression ignition mode. Energy Rep
2021;7:5239−5247. [CrossRef]

[37] Zadeh MN, Pourfallah M, Sabet S, Gholinia M,
Mouloodi S, Ahangar AT. Performance assessment
and optimization of a helical Savonius wind tur-
bine by modifying the Bach's section. SN Appl Sci
2021;3:1−11. [CrossRef]

https://doi.org/10.1109/TNN.2003.810597
https://doi.org/10.1109/TNN.2007.891590
https://doi.org/10.1007/978-3-540-30499-9_194
https://doi.org/10.1109/TNN.2005.852239
https://doi.org/10.1016/j.patcog.2008.09.028
https://doi.org/10.1016/j.neucom.2012.01.015
https://doi.org/10.1016/j.ins.2014.10.058
https://doi.org/10.1155/2017/4191789
https://doi.org/10.1007/s13042-016-0563-6
https://doi.org/10.1007/s10287-005-0003-7
https://doi.org/10.1007/978-3-642-37453-1_14
https://doi.org/10.1016/j.neucom.2013.10.038
https://doi.org/10.1109/TNNLS.2015.2424684
https://doi.org/10.1016/j.neucom.2017.10.011
https://doi.org/10.1016/j.neunet.2018.07.008
https://doi.org/10.1109/TNNLS.2020.2979466
https://doi.org/10.1016/j.automatica.2006.03.004
https://doi.org/10.1109/TNN.2006.889500
https://doi.org/10.1162/089976603762553013
https://doi.org/10.1016/j.neunet.2017.06.008
https://doi.org/10.1016/j.egyr.2021.08.115
https://doi.org/10.1007/s42452-021-04731-0

