
ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

Bu eser, Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/)
hükümlerine göre açık erişimli bir makaledir.
This is an open access article under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/).

BINARY HONEY BADGER ALGORITHM ENHANCED WITH TIME-VARYING SIGMOID TRANSFER
FUNCTION AND CROSSOVER STRATEGY

Gülnur YILDIZDAN1*, Emine BAŞ2

1 Selcuk University, Kulu Vocational School, Department of Computer Tecnologies, Konya
ORCID No: https://orcid.org/0000-0001-6252-9012

2 Konya Technical University, Faculty of Engineering and Nature Sciences, Department of Software Engineering, Konya
ORCID No: https://orcid.org/0000-0003-4322-6010

Keywords Abstract
Binary optimization,
Crossover strategy,
Honey badger algorithm,
Knapsack problems,
Time-varying transfer
function

Modeling the foraging behavior of honey badgers, the Honey Badger Algorithm (HBA) is
a recently proposed metaheuristic algorithm. In this study, a binary version of this
algorithm that was proposed for solving continuous optimization problems was
developed. The S-shaped transfer function and crossover strategy were used to
transform the continuous algorithm into a binary algorithm. Eight S-shaped transfer
functions with constant and time-varying features were used, and the most successful
function was determined. Additionally, the effect of time-varying transfer functions was
examined. Three strategies, single-point, two-point, and uniform, were applied as
crossover strategies, and the uniform strategy, which was more successful than others,
was integrated into the algorithm. The binary algorithm (BinHBA) developed in this
way was tested on a total of twenty-seven knapsack problems, fifteen small-scale and
twelve large-scale. Statistical tests were employed to analyze the results and compare
them with methods found in the existing literature. The results showed that the
proposed BinHBA for binary optimization problems is effective and preferable.

ZAMANLA DEĞİŞEN SİGMOİD TRANSFER FONKSİYONU VE ÇAPRAZLAMA STRATEJİSİ İLE
GELİŞTİRİLMİŞ İKİLİ BAL PORSUĞU ALGORİTMASI

Anahtar Kelimeler Öz
İkili optimization,
Çaprazlama stratejisi,
Bal porsuğu algoritması,
Sırt çantası problemleri,
Zamanla-değişen transfer
fonksiyonu

Bal porsuklarının yiyecek arama davranışını modelleyen Bal Porsuğu Algoritması
(HBA), yakın zamanda önerilen bir meta-sezgisel algoritmadır. Bu çalışmada, sürekli
optimizasyon problemlerinin çözümü için önerilen bu algoritmanın ikili versiyonu
geliştirildi. Sürekli algoritmayı ikili bir algoritmaya dönüştürmek için S-şekilli transfer
fonksiyonu ve çaprazlama stratejisi kullanıldı. Sabit ve zamanla değişen özelliklere
sahip sekiz adet S-şekilli transfer fonksiyonu kullanıldı ve en başarılı fonksiyon
belirlendi. Ayrıca zamanla değişen transfer fonksiyonlarının etkisi de incelendi.
Çaprazlama stratejisi olarak tek nokta, iki nokta ve tekdüze olmak üzere üç strateji
uygulandı ve diğerlerinden daha başarılı olan tekdüze stratejisi algoritmaya entegre
edildi. Bu şekilde geliştirilen ikili algoritma (BinHBA), on beşi küçük ölçekli ve on ikisi
büyük ölçekli olmak üzere toplam yirmi yedi sırt çantası problemi üzerinde test edildi.
Sonuçları analiz etmek ve mevcut literatürde bulunan yöntemlerle karşılaştırmak için
istatistiksel testler kullanıldı. Sonuçlar, ikili optimizasyon problemleri için önerilen
BinHBA'nın etkili ve tercih edilebilir olduğunu gösterdi.

Araştırma Makalesi Research Article
Başvuru Tarihi
Kabul Tarihi

: 02.05.2024
: 23.01.2025

Submission Date
Accepted Date

: 02.05.2024
: 23.01.2025

* Sorumlu yazar: gavsar@selcuk.edu.tr
https://doi.org/10.31796/ogummf.1477088

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6252-9012
https://orcid.org/0000-0003-4322-6010
mailto:gavsar@selcuk.edu.tr
https://doi.org/10.31796/ogummf.1477088

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1696

1. Introduction

The 0-1 knapsack problem optimization problems are
binary optimization problems (BOPs), which are an
important class of combinatorial optimization
problems. BOPs take the value 0 or 1 as the decision
variable. The algorithms used to solve these problems,
where the solution space is expressed as {0,1}𝑛, are
inadequate, especially for large-scale problems. For this
reason, researchers in this field have turned to non-
deterministic algorithms in recent years, and
evolutionary algorithms have become the most
prominent in this category (He, Zhang, Mirjalili, and
Zhang, 2022).

The number of evolutionary algorithms has been
increasing rapidly in recent years. Most algorithms are
initially proposed for continuous problems and then
binarized to solve binary optimization problems. One
of these algorithms is the Honey Badger Algorithm
(Hashim, Houssein, Hussain, Mabrouk, and Al-Atabany,
2022). The algorithm has advantages such as exhibiting
a dynamic search behavior in searching for a food
source, thus maintaining the balance between
exploration and exploitation, and having few
parameters that need to be adjusted (Yasear and
Ghanimi, 2022). On the other hand, the local
improvement ability of the algorithm is weak, and it is
insufficient to escape from the local optimum in solving
complex problems (Jin, Li, Zhang, and Zhang, 2023).
Despite these drawbacks encountered in most
metaheuristic algorithms, it has been used to solve
many problems in the literature because it is simple
and easy to implement.

Hu et al. proposed a modified HBA algorithm based on
the Bernoulli shift map, piecewise optimal decreasing
neighborhood, and strategy-adaptive horizontal
migration to solve the unmanned aerial vehicle path
planning problem (Hu, Zhong and Wei, 2023). Abasi,
Aloqaily, and Guizani proposed a modified HBA to
optimize the hyperparameters of a convolutional
neural network for sleep apnea detection (Abasi,
Aloqaily, and Guizani, 2023). A novel honey badger
optimization approach utilizing ensemble learning-
based vehicle detection and classification methods was
presented by Aljebreen et al. (Aljebreen et al., 2023).
Majumdar, Mitra, and Bhattacharya proposed a
modified HBA using lens opposition-based learning in
the initial stage to improve population quality and
diversity and achieve better discovery, and they proved
the success of the proposed algorithm on CEC functions
(Majumdar, Mitra, and Bhattacharya, 2023). Jain, Ding,
and Kotecha developed a new fuzzy deep neural
network for cloud environments with HBA for privacy-
preserving intrusion detection techniques (Jain, Ding,
and Kotecha, 2023). Altuwairiqi proposed a model to
solve security and energy problems (Altuwairiqi,
2024). He also created enhanced HBA-based multi-hop

routing optimized for wireless sensor networks. In
order to effectively forecast COVID-19 situations,
Qasem proposed a hybrid intelligent model that
combined an artificial neural network with HBA
(Qasem, 2024). Huang et al. proposed an advanced HBA
that utilizes orthogonal opposition-based learning, a
balance pooling strategy, and differential evolution to
improve the HBA's performance. The method was
tested for CEC 2022 and engineering problems (Huang
et al., 2024). Wang et al. developed a novel wrapper
feature selection approach based on the binary honey
badger algorithm, integrating chaotic sub-swarm and
Lévy flight approaches, to identify a traffic-based
Internet of Things device (Wang, Kang, Sun, and Li,
2024). Büyüköz and Haklı discretized HBA using
transfer functions and used it to solve 0-1 knapsack
problems (Büyüköz and Haklı, 2023). To address the
portfolio selection problem, Ni et al. created a novel
hybrid method that combines quadratic programming
and the binary honey-badger algorithm (Ni, Wang,
Huang, and Li, 2022).

As can be seen above, although HBA is preferred in
many areas for solving continuous optimization
problems, its use in solving binary optimization
problems is less common. The scarcity of proposed
binary HBA versions and the desire to contribute to the
literature on the analysis of HBA's performance on
binary problems were the motivations for this study.

The following is a list of the study's contributions to the
literature:

 The effect of using time-varying transfer functions
for the binarization of HBA was investigated for
the first time.

 The effect of constant and time-varying S-shaped
transfer functions on the algorithm performance
was examined.

 The effect of integrating crossover strategies into
HBA on performance was evaluated.

 A new binary HBA algorithm was presented to the
literature by integrating the most successful
transfer function and crossover strategy
determined into the algorithm.

 Both small- and large-scale knapsack problems
were used to test the proposed algorithm. As a
result, it was possible to see how the dimension
increase affected the proposed algorithm.

 The results obtained were compared with the
algorithms in the literature to demonstrate the
success of the algorithm.

The following study sections are arranged as follows:
In Section 2, the HBA algorithm, the proposed binary
HBA algorithm, and the knapsack problem are
explained. Section 3 presents the experimental test

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1697

results performed to demonstrate the performance of
BinHBA. Section 4 delineates conclusions and
prospective works for further research.

2. Material and Methods

2.1. Honey Badger Algorithm

The Honey Badger Algorithm (HBA) is a metaheuristic
algorithm proposed by Hashim et al. (Hashim et al.,
2022) in 2022. The algorithm is inspired by the
behavior of the honey badger when searching for food,
such as smelling, digging, and following the honeyguide
bird. HBA is divided into two phases, the “digging
phase” and the “honey phase”, and is mathematically
modeled as given below.

 Initialization

The algorithm is initialized with a population of
possible solutions. Where 𝑁 is the number of honey
badgers, each individual in the population is placed at
their starting position according to Equation 1.

𝑋𝑖 = 𝐿𝑏𝑖 + 𝑟1 × (𝑈𝑏𝑖 − 𝐿𝑏𝑖) (1)

In the equation, 𝑟1 is a random number between 0 and
1. 𝐿𝑏 and 𝑈𝑏 indicate the lower and upper bound
values of the search space, respectively. 𝑋𝑖 represents
the i.honey badger's position.

 Intensity (𝐼) definition

Density depends on the concentration power of the
prey and the distance between it and the honey badger.
The higher the scent, the faster the movement. The
opposite situation is expressed in Equation 2 according
to the Inverse Square Law (Kapner et al., 2007).

𝐼𝑖 = 𝑟2 ×
𝑆

4𝜋𝐷𝑖
2 (2)

𝑆 = (𝑋𝑖 − 𝑋𝑖+1)2 (3)
𝐷𝑖 = 𝑋𝑃 − 𝑋𝑖 (4)

where S is the concentration power. In Equation 2, 𝐷𝑖
represents the distance between the prey and the ith
honey badger. 𝑟2 is a random number in the range of 0
to 1. Also, 𝑋𝑃 is the prey position.

 Update density factor

The density factor (𝛼) controls the transition from the
exploration to the exploitation phase and has a
character that reduces randomness by decreasing over
time. It is formulated according to Equation 5.

𝛼 = 𝐶 × 𝑒𝑥𝑝 (
−𝑡

𝑡𝑚𝑎𝑥
) (5)

where 𝑐 is a constant value (𝐶 ≥ 1 (default = 2)). While
𝑡 is the iteration number, 𝑡𝑚𝑎𝑥 indicates the maximum
iteration number.

 Escaping from the local optimum

This and the next two steps are used to get out of the
local optimum. In order to fully discover the search
space, the algorithm makes use of an F flag that permits
changing it.

 Updating the position of agents

HBA's position update process is divided into two
phases: "digging phase" and "honey phase".

Digging phase: In this phase, a honey badger moves in a
manner similar to a cardioid, and this movement is
formulated as in Equation 6.

𝑋𝑛𝑒𝑤 = 𝑋𝑃 + 𝐹 × 𝛽 × 𝐼 × 𝑋𝑃 + 𝐹 × 𝑟3 × 𝛼 × 𝐷𝑖 ×
|cos(2𝜋𝑟4) × [1 − cos (2𝜋𝑟5)]| (6)

In the equation, 𝑋𝑛𝑒𝑤 is the new candidate position, and
𝑋𝑃 is the best prey position found so far. The honey
badger's ability to take in food is denoted by 𝛽 (𝛽 ≥ 1
(default = 6)). 𝑟3, 𝑟4, and 𝑟5 are random numbers
between 0 and 1. 𝐷𝑖 represents the distance between
the prey and the ith honey badger. 𝐹 is the flag that
changes the search direction and is formulated using
Equation 7.

𝐹 = { 1 𝑟6 ≤ 0.5
−1 𝑒𝑙𝑠𝑒

 (7)

Honey phase: It is the phase in which a honey badger
follows the honeyguide bird to reach the beehive and is
formulated according to Equation 8.

𝑋𝑛𝑒𝑤 = 𝑋𝑃 + 𝐹 × 𝑟7 × 𝛼 × 𝐷𝑖 (8)

In the equation, 𝑟7 is a random number between 0 and
1. At this phase, the search is affected by time-varying
search behavior (𝛼). In addition, a honey badger might
discover disturbance 𝐹.

In Figure 1, the HBA pseudocode is presented.

2.2. Binary Honey Badger Algorithm (BinHBA)

The standard HBA is proposed for continuous
optimization problems and needs to be redesigned to
solve binary optimization problems. In binary
optimization, decision variables have a search space

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1698

where they can take the value "0" or "1". In these
problems, each solution is represented by a series of
decision variables that take "0" or "1", where the value
0 represents absence and the value 1 represents
presence (Karakoyun and Ozkis, 2022).

Figure 1. HBA's Pseudocode

In this section, a binary HBA algorithm is proposed to
solve binary optimization problems, and the steps
followed in creating the proposed algorithm are listed
below.

 Transfer function

The 0-1 knapsack problems chosen for this study are
combinatorial problems, and for HBA to solve these
problems, it must be transformed to work in the binary
search space. The most common way to perform this
transformation is to use the transfer function. Transfer
functions are responsible for ensuring that if the
candidate solution defined by 0 and 1 turns into a
continuous value after the algorithm steps, this value is
converted back to 0 or 1 according to Equation 9. In the
equation, ∂ represents the value in a certain dimension
of the solution, while F(∂) indicates the value obtained
from the transfer function for the value ∂. Additionally,
R is a random number in the range of 0 to 1 (Yildizdan
and Bas, 2024; Yildizdan and Baş, 2023).

𝐹(𝜕) = {
 1 𝑖𝑓 𝐹(𝜕) > ℛ
 0 𝑒𝑙𝑠𝑒

 (9)

More generally, transfer functions are used to
determine the probability that a position value will
change to 0 or 1 based on the value of the step vector
(velocity) for a given dimension in the current
iteration. The step vector is defined as the movement

magnitude for the current individual. In the
exploitation phase of the algorithm, the step vector
value is small, and a detailed search is performed in
small steps. On the contrary, in the exploration phase,
the step vector value is large, and it explores different
regions of the search space in large steps. In an
algorithm where the probability of changing location is
calculated using the transfer function, transfer
functions significantly affect the balance between
exploration and exploitation. If the transfer function
does not change, the probability of changing positions
remains the same throughout the optimization process.
On the other hand, if the transfer function is changed,
the effect of the step vector on position updating is
utilized to explore and exploit the search space
(Mafarja et al., 2018).

To better balance exploration and exploitation, Mafarja
et al. showed that using time-varying transfer functions
is an effective strategy (Mafarja et al., 2018). One of the
transfer functions frequently used in the literature is
the S-shaped transfer function (Al-Betar, Hammouri,
Awadallah, and Abu Doush, 2021; Feda et al., 2024).
Based on what was mentioned above, in this study, the
effect of using constant S-shaped and time-varying S-
shaped transfer functions on HBA was examined. Table
1 lists the transfer functions that were employed in the
study. Figures 2 and 3 depict these transfer functions
graphically. In time-varying transfer functions, the
value of 𝜏 is formulated as shown in Equation 10 and
starts with an initial value and progressively decreases
over the iterations, meaning it is a time-varying
variable. 𝑡𝑚𝑎𝑥 is the maximum number of iterations, 𝑡 is
the current iteration, and 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 are the min
and max values of the control parameter 𝜏 in the
equation. In this study, 𝜏𝑚𝑖𝑛= 0.01 and 𝜏𝑚𝑎𝑥 = 4 were
used, as in Mafarja et al.'s study (Mafarja et al., 2018).

𝜏 = (1 −
𝑡

𝑡𝑚𝑎𝑥
) 𝜏𝑚𝑎𝑥 + 𝜏𝑚𝑖𝑛(

𝑡

𝑡𝑚𝑎𝑥
) (10)

Table 1. S-Shaped Transfer Functions

Constant Time-varying

S1 𝐹(𝑐) =
1

1+𝑒−𝜕 S1(tv) 𝐹(𝜕, 𝜏) =
1

1+𝑒
−𝜕

𝜏

S2 𝐹(𝜕) =
1

1+𝑒−2∗𝜕 S2(tv) 𝐹(𝜕, 𝜏) =
1

1+𝑒
−2∗𝜕

𝜏

S3 𝐹(𝜕) =
1

1+𝑒
−

𝜕
2

 S3(tv) 𝐹(𝜕, 𝜏) =
1

1+𝑒
−

𝜕
2𝜏

S4 𝐹(𝜕) =
1

1+𝑒
−

𝜕
3

 S4(tv) 𝐹(𝜕, 𝜏) =
1

1+𝑒
−

𝜕
3𝜏

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1699

Figure 2. S-Shaped Transfer Functions (Constant)

Figure 3. S-Shaped Transfer Functions (Time-varying
(𝑡𝑚𝑎𝑥 = 50, 𝜏𝑚𝑖𝑛= 0.01 and 𝜏𝑚𝑎𝑥 = 4))

 Crossover strategy

The crossover strategy was incorporated into the
proposed BinHBA to strengthen its exploitation
performance. In the crossover strategy, every solution
in the population is combined with a different solution
that has been chosen from the population based on the
crossover method that has been specified (Awadallah,
Hammouri, Al-Betar, Braik, and Elaziz, 2022). In this
study, three different crossover strategies, which are
frequently used in the literature, were integrated into
the algorithm and their effects on performance were
examined. The crossover operation is formulated as in
Equation 11. In the equation, ⊗ denotes the crossover
operator between two solutions. 𝑋(𝑡, 𝑖) is the existing
solution at the ith position, and 𝑋(𝑡, 𝑏) is also the best
solution in the population (for this study).

 𝑋(𝑡, 𝑖) =⊗ (𝑋(𝑡, 𝑖) , 𝑋(𝑡, 𝑏)) (11)

The following is a list of the three kinds of crossover
operators that BinHBA uses (Awadallah et al., 2022):

 One-point crossover: In this crossover strategy, a
random dimension is selected in the existing
solution. All dimensions after this point are then
swapped between the two solutions (Figure 4(a)).

 Two-point crossover: In this crossover strategy, two
dimensions are determined on the existing solution.
Then the dimensions between these two points are
swapped between the two solutions (Figure 4(b)).

 Uniform crossover: The dimensions of the existing
solution and the dimensions of the best solution are
randomly selected in a determined ratio and
swapped. For instance, if the ratio is 0.5, the
elements of the optimal solution are swapped for
half of the existing solution (Figure 4(c)).

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1700

Figure 4. Crossover Strategies

The BinHBA algorithm proposed in this study was
created using the transfer function and crossover
strategy. In Figure 5, the BinHBA pseudocode is
presented.

Figure 5. BinHBA's Pseudocode

2.3. 0-1 Knapsack Problems

The 0-1 knapsack problem (KP) is an NP-hard
optimization problem consisting of a knapsack and a
set of items, each with its weight and profit, the aim of
which is to place the items in the knapsack to maximize
the total profit without exceeding the capacity of the
knapsack. The following is a brief definition of the
general 0-1 KP (Pisinger, 2005). Let 𝑛 be the item with

weights 𝑤1, 𝑤2, … , 𝑤𝑛 and profits 𝑝1, 𝑝2, … , 𝑝𝑛, and let 𝐶
denote the maximum capacity of the knapsack. In such
a case, the items have two states: the jth item is put in
the knapsack (𝑥𝑗 = 1) and it is not put (𝑥𝑗 = 0). The

mathematical formulation of 0-1 KP is given in
Equation 12 (Li, Fang, and Zhu, 2023).

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑝𝑗𝑥𝑗

𝑛

𝑗=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑗𝑥𝑗 ≤ 𝐶, 𝑥𝑗𝜖{0,1}, 𝑗 = 1, … , 𝑛𝑛
𝑗=1 (12)

3. Experimental Results

In this section, the performance of the proposed
BinHBA algorithm is tested on small and large scale 0-1
KPs. The results were evaluated using statistical tests
and compared with methods found in the literature. In
this study, the KPs used to analyze the performance of
BinHBA are considered two different datasets, as
follows:
Dataset1: Includes fifteen small-scale 0–1 KP samples.
The following link provides examples:
https://pages.mtu.edu/~kreher/cages/Data.html. The
dataset has between 16 and 24 items.
Dataset2: Includes twelve large-scale 0–1 KP samples.
The following link provides examples:
http://artemisa.unicauca.edu.co/~johnyortega/instanc
es_01_KP. The dataset has between 100 and 1000
items.

Tables 2 and 3 include the tables for Datasets 1 and 2,
respectively.

Table 2. The Small-scale Knapsack Problems Dataset

ID Capacity Size Optimum

Kp1 3,780,355 16 7,850,983

Kp2 4,426,945 16 9,352,998

Kp3 4,323,280 16 9,151,147

Kp4 4,550,938 16 9,348,889

Kp5 3,760,429 16 7,769,117

Kp6 5,169,647 20 10,727,049

Kp7 4,681,373 20 9,818,261

Kp8 5,063,791 20 10,714,023

Kp9 4,286,641 20 8,929,156

Kp10 4,476,000 20 9,357,969

Kp11 6,404,180 24 13,549,094

Kp12 5,971,071 24 12,233,713

Kp13 5,870,470 24 12,448,780

Kp14 5,762,284 24 11,815,315

Kp15 6,654,569 24 13,940,099

https://pages.mtu.edu/~kreher/cages/Data.html
http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP
http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1701

Table 3. The Large-scale Knapsack Problems Dataset

Characteristic ID Capacity Size Optimum

Uncorrelated

Kp16 995 100 9147

Kp17 1008 200 11,238

Kp18 2543 500 28,857

Kp19 5002 1000 54,503

Weakly correlated

Kp20 995 100 1514

Kp21 1008 200 1634

Kp22 2543 500 4566

Kp23 5002 1000 9052

Strongly correlated

Kp24 997 100 2397

Kp25 997 200 2697

Kp26 2517 500 7117

Kp27 4990 1000 14,390

The gathered results were compared using time and
gap criteria, and the Wilcoxon signed-rank test
(Woolson, 2007) was used for statistical evaluation.
Equation 13 provides the formula for the gap, which
establishes the percentage error between the optimum
value and the obtained mean value.

𝐺𝑎𝑝 =
𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒−𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒

𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒
∗ 100 (13)

In all KPs, the population size was determined as 20
and the maximum number of iterations was defined as
5000. Additionally, each problem was run
independently 20 times. These parameter values were
selected to align with those of the algorithms being
compared to guarantee a fair literature comparison.

First, this section evaluated the results obtained by
integrating eight different transfer functions, including
constant S-shaped and time-varying S-shaped, into the
HBA algorithm. The comparative results of the
evaluations made according to gap and time are given
in Tables 4 and 5, respectively. Based on the total gap
values shown in Table 4, the smallest values were
obtained from the S1 and S1(vt) transfer functions,
respectively, and they were the most successful
versions. Moreover, Table 5's total time values
indicated that the versions using S4 and S2(vt) transfer
functions execute all problems in the shortest time,
respectively. In addition to the evaluation in Table 5,
the run times are considered as two groups of constant
and time-varying S-shaped transfer functions, and the
total times obtained are given comparatively in Figure
6. According to Figure 6, time-varying transfer
functions solved problems in less time than constant
ones.

According to the results above, S1 was more successful
in both constant and time-varying transfer functions.

Although the versions using this transfer function lag
behind other transfer functions in terms of run time, it
can be said that the increase in time is tolerable and the
difference between times is not too much. Upon
analyzing the gap values, it was observed that the value
0 could not yet be obtained for all problems.
Accordingly, it was decided that the algorithm needed
further improvement. To achieve this, solution
diversity was increased by applying a crossover
between the candidate solution and the best individual
in the population after the transfer function. The
crossover strategy was applied to the most successful
versions, namely BinHBA_S1 and BinHBA_S1(vt). As
mentioned in the sections above, three crossover
strategies—one point, two point, and uniform—were
selected, and their contribution to performance was
examined. The gap and time results of the versions
obtained by separately integrating three different
crossover strategies into BinHBA_S1 are given in Table
6. According to the table, the version in which the
uniform crossover strategy was integrated obtained a
gap value of 0 in all problems except KP10.
Accordingly, it became the most successful version.
When evaluated in terms of time, it was seen that the
version in which the two-point crossover strategy was
integrated found solutions faster in thirteen out of
fifteen problems. A more detailed evaluation of the
results is given in Figure 7. In the graphic, the total gap
and run-time values of the versions obtained with
different crossover strategies were compared.
According to Figure 7, in terms of the total gap, the
most successful crossover strategy was uniform, while
the least successful strategy was two-point. In terms of
total time, the crossover strategy that took the shortest
time was two-point, while the strategy that required
the longest time was one-point. Despite this, the total
time values are quite close to each other and at a
tolerable level.

The gap and time results of the versions obtained by
separately integrating three different crossover
strategies into BinHBA_S1(vt) are given in Table 7.
According to the table, the version integrated with the
uniform crossover strategy was able to obtain 0 gap
values in all problems, and it became the most
successful version. When evaluated in terms of time, it
was seen that the version with an integrated two-point
crossover strategy was faster in eleven out of fifteen
problems. A more detailed evaluation of the results is
given in Figure 8. According to Figure 8, in terms of
total gap, the most successful crossover strategy was
uniform, while the least successful strategy was two-
point. In terms of total time, the crossover strategy that
took the shortest time was two-point, while the
strategy that required the longest time was uniform.
Despite this, the total time values are quite close to
each other and at a tolerable level.

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1702

Table 4. The Gap results of BinHBA for Transfer Functions on Small-scale KPs

Gap S1 S2 S3 S4 S1 (tv) S2 (tv) S3 (tv) S4 (tv)

Kp1 0 0 0 0 0 0 0 0
Kp2 0 0 0 0 0 0 0 0
Kp3 0 0 0 0 0 0 0 0
Kp4 0 0 0 0 0 0 0 0
Kp5 0 0 0 0 0 0 0 0
Kp6 0 0 0.087087 0.100851 0 0 0 0.038023
Kp7 0 0.021248 0.088065 0.198782 0 0.063744 0 0.063744
Kp8 0 0.001354 0.012924 0.018281 0 0.002709 0.012496 0.001354
Kp9 0 0.01541 0.068902 0.099723 0 0 0 0.01541

Kp10 0 0 0.00083 0.016758 0.00083 0 0.00904 0.002491
Kp11 0.059247 0.119325 0.283389 0.459879 0.155572 0.209475 0.15182 0.223807
Kp12 0.010593 0.117434 0.339589 0.374163 0.016356 0.031779 0.083946 0.262456
Kp13 0.010928 0.10126 0.28258 0.318272 0.136092 0.147541 0.089782 0.116231
Kp14 0.017821 0.191986 0.338926 0.279588 0.075097 0.09552 0.134309 0.216103
Kp15 0.0108 0.103534 0.177068 0.388096 0.02835 0.145135 0.084037 0.108163
Total 0.109389 0.671551 1.67936 2.254393 0.412297 0.695903 0.56543 1.047782
Rank 1 4 7 8 2 5 3 6

Table 5. The Time Results of BinHBA for Transfer Functions on Small-scale KPs

Time S1 S2 S3 S4 S1 (tv) S2 (tv) S3 (tv) S4 (tv)

Kp1 6.65069 5.892792 4.872831 4.507016 5.325669 4.439543 4.711883 5.009465
Kp2 6.629714 5.695539 4.969793 4.988711 5.406604 4.717382 4.504029 4.739923
Kp3 6.816617 5.546846 4.890418 4.650769 4.84883 4.345735 4.752857 4.765454
Kp4 6.473288 5.340374 5.351684 4.830218 5.092839 4.552444 4.545971 4.984927
Kp5 4.426726 5.125402 5.242635 4.663558 5.073189 3.367428 4.722582 4.650742
Kp6 6.769689 4.226241 5.458453 5.3677 5.85826 5.141575 4.849339 4.513609
Kp7 6.829454 5.92239 5.33276 5.237071 5.711099 4.980693 5.152497 5.227866
Kp8 5.370071 5.83809 5.747943 5.080702 6.837116 5.230434 3.731661 5.358518
Kp9 5.594199 5.479169 5.235293 3.617332 5.73581 4.990484 3.734037 5.08305

Kp10 4.867781 5.674898 5.373873 6.15694 5.507986 4.972808 5.199535 5.274221
Kp11 5.383256 6.051872 5.466676 3.781263 6.052793 5.397622 5.741501 5.141686
Kp12 7.892347 6.112406 5.473513 4.582532 6.19244 5.4342 5.995793 5.564137
Kp13 5.694487 6.549463 5.34437 5.647101 6.579839 4.273229 5.385772 5.932589
Kp14 6.157034 6.814908 5.487054 4.056518 4.467437 5.380495 4.934439 5.40607
Kp15 8.141763 5.789737 5.381136 3.767247 4.834168 5.440346 5.683747 5.451694
Total 93.69712 86.06012 79.62843 70.93468 83.52408 72.66442 73.64564 77.10395
Rank 8 7 5 1 6 2 3 4

Figure 6. Total Times for S-shaped and Time-varying S-shaped

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1703

Table 6. Comparison Results of BinHBA_S1 With Crossover Strategy

BinHBA_S1
Crossover One-point Two-point Uniform

 Gap Time Gap Time Gap Time

Kp1 0 4.38319 0.412793 4.03508 0 4.109804
Kp2 0.033756 4.242462 1.056551 3.893201 0 4.080178
Kp3 0.501881 4.175273 0.736159 3.89766 0 4.273908
Kp4 0.130475 4.781753 0.374374 4.113133 0 4.076676
Kp5 0 4.366115 0.680832 3.775772 0 4.078058
Kp6 0 4.415716 0.088375 4.122253 0 4.608072
Kp7 0.377662 4.837716 1.134329 4.277449 0 4.441237
Kp8 0.071377 4.678485 0.187971 4.245522 0 4.478014
Kp9 0 4.12813 0 4.179539 0 4.652959

Kp10 0 4.495505 0.122016 4.293849 0.00083 4.51974
Kp11 0.36519 4.729588 0.700267 4.580302 0 4.818838
Kp12 0.2942 4.489277 0.555171 4.389614 0 4.824257
Kp13 0.402994 4.891271 0.992989 4.696395 0 4.841823
Kp14 0.839502 5.297324 0.275875 4.556759 0 4.822083
Kp15 0.101273 4.712998 0.068385 4.306862 0 4.800877

Table 7. Comparison Results of BinHBA_S1(vt) With Crossover Strategy

BinHBA_S1(vt)
Crossover One-point Two-point Uniform

 Gap Time Gap Time Gap Time

Kp1 0 3.790519 0.414203 3.358378 0 3.64086
Kp2 0.033756 3.773799 0.776256 3.505204 0 3.768489
Kp3 0.390352 3.609998 0.751007 3.554214 0 3.763693
Kp4 0.117428 4.038579 0.38316 3.523191 0 3.800585
Kp5 0 3.86185 0.680832 3.175116 0 3.657917
Kp6 0.061043 3.786714 0.079537 3.583831 0 4.115571
Kp7 0.188831 4.385487 0.446363 3.637944 0 4.060471
Kp8 0.060578 5.494723 0.163389 4.383684 0 3.840681
Kp9 0 4.661513 0.039671 4.290042 0 3.919826

Kp10 0 4.743587 0.140522 4.344328 0 4.19987
Kp11 0.47381 5.57457 0.490837 4.659348 0 4.20154
Kp12 0.343233 4.892168 0.566566 4.09707 0 6.714814
Kp13 0.301536 4.421041 0.831091 4.10336 0 4.204954
Kp14 0.222046 4.381411 1.005966 4.309546 0 5.829603
Kp15 0.121527 4.196752 0.068124 3.916412 0 5.96857

Figure 7. Total Gap and Time Graphics for BinHBA_S1 Version

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1704

Figure 8. Total Gap and Time graphics for BinHBA_S1(vt) Version

Figure 9 shows the comparative convergence graphics
of the best versions of BinHBA_S1 and BinHBA_S1(vt)
algorithms using the uniform crossover strategy in
small-scale KPs. Graphics are drawn according to the
best value obtained. When the graphics were examined,
it was determined that BinHBA_S1(vt) converged to the
optimal value faster in KP1, KP3, KP4, KP10, KP11,
KP12, KP13, and KP15. In six of the remaining
problems, BinHBA_S1 converged to the optimal faster,
while in KP8, the two algorithms converged to the
optimal in similar iterations.

The results obtained for the best BinHBA_S1 and
BinHBA_S1(vt) versions were evaluated with the help
of statistical testing. Wilcoxon signed rank test (García,
Molina, Lozano, and Herrera, 2009) was used to
determine whether the algorithms had a significant
performance difference at the 5% confidence level
when compared to each other and algorithms in other
literature. In this study, the Wilcoxon signed-rank test
was applied to gap values. In Table 8, the p and h values
obtained as a result of the pairwise Wilcoxon signed
rank test for the BinHBA_S1(vt) and BinHBA_S1
algorithms were presented. An h value of 0 in the table
indicates that the results of the two algorithms are
similar (p-value >0.05), in contrast to an h value of 1 in
the table, which indicates that there is a
significant difference between the two algorithms and
that their results are not similar (p-value <0.05). The
results in Table 8 demonstrated that the algorithms
performed similarly in all problems, with no significant
differences between them. Because both algorithms
found the optimum values in other problems except
KP10. However, it can be concluded that the
BinHBA_S1(vt) algorithm is more successful due to
reasons such as finding the optimum values in all
problems, converging faster in most of the problems,
and taking a shorter total time.

BinHBA_S1 and BinHBA_S1(vt) algorithms were also
compared with algorithms in the literature. For this
purpose, Binary Aquila Optimizer with Crossover and
Mutation methods (BAO-CM) (Baş, 2023), Binary
Artificial Jellyfish Search algorithm (Bin_AJS) (Yildizdan

and Baş, 2023), Binary Equilibrium Optimization
Algorithm with V3-shaped transfer function (BEOV3)
(Abdel-Basset, Mohamed, and Mirjalili, 2021), Binary
Slime Mould Algorithm (BSMA) (Abdollahzadeh,
Barshandeh, Javadi, and Epicoco, 2022), and Enhanced
Binary Coati Optimization Algorithm (EBinCOA)
(Yildizdan and Bas, 2024) algorithms, which were run
under the same conditions, were selected from the
literature. Based on Table 9, which presents the
comparison results according to the gap values, the
Bin_AJS, EBinCOA, and BinHBA_S1(vt) algorithms,
which found the value 0 in all problems, were the most
successful and ranked first in the ranking. According to
this result, it was revealed that the proposed time-
varying BinHBA version was a successful algorithm
that competes with the algorithms in the literature.
Table 10 shows the pairwise Wilcoxon-signed rank test
results of the proposed BinHBA_S1(vt) with other
algorithms. The '+', '-', and '=' lines indicate how many
problems BinHBA_S1(vt) found better, worse, and
equal gap values than the other algorithm, respectively.
After analyzing the results, it was found that there was
no significant difference between the algorithms'
performance in most problems.

Table 8. The Results of the Wilcoxon Signed-rank Tests

for BinHBA_S1 and BinHBA_S1(vt) on Small-scale KPs

ID
BinHBA_S1(vt) – BinHBA_S1

p-value h-value
Kp1 1.0000 0
Kp2 1.0000 0
Kp3 1.0000 0
Kp4 1.0000 0
Kp5 1.0000 0
Kp6 1.0000 0
Kp7 1.0000 0
Kp8 1.0000 0
Kp9 1.0000 0

Kp10 0.3173 0
Kp11 1.0000 0
Kp12 1.0000 0
Kp13 1.0000 0
Kp14 1.0000 0
Kp15 1.0000 0

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1705

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1706

Figure 9. Convergence Graphics for BinHBA_S1 and BinHBA_S1 (vt) Versions

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1707

Table 9. Comparison of the Gap results of BinHBA_S1 and BinHBA_S1(vt) With Algorithms in the Literature

 BAO-CM Bin_AJS BEOV3 BSMA EBinCOA BinHBA_S1 BinHBA_S1(vt)

Kp1 0 0 0 0 0 0 0

Kp2 0 0 0 0 0 0 0

Kp3 0 0 0 0 0 0 0

Kp4 0 0 0 0 0 0 0

Kp5 0 0 0 0 0 0 0

Kp6 0 0 0 0 0 0 0

Kp7 0 0 0 0 0 0 0

Kp8 0 0 0 0 0 0 0

Kp9 0 0 0 0 0 0 0

Kp10 0 0 0 0 0 0.00083 0

Kp11 0 0 0 0 0 0 0

Kp12 0 0 0 0 0 0 0

Kp13 0 0 0 0 0 0 0

Kp14 0.0017 0 0.0036 0.004 0 0 0

Kp15 0 0 0 0 0 0 0

Total 0.0017 0 0.0036 0.004 0 0.00083 0
Rank 3 1 4 5 1 2 1

Table 10. The pairwise Wilcoxon signed-rank Test Results of BinHBA_S1(vt) and Other Algorithms

 BinHBA_S1(vt)
BAO-CM

BinHBA_S1(vt)
Bin_AJS

BinHBA_S1(vt)
BEOV3

BinHBA_S1(vt)
BSMA

BinHBA_S1(vt)
EBinCOA

BinHBA_S1(vt)
BinHBA_S1

+ 1 0 1 1 0 1
- 0 0 0 0 0 0
= 14 15 14 14 15 14

p-value 0.317 1.000 0.317 0.317 1.000 0.317
h-value 0 0 0 0 0 0

Secondly, in this section, the performance of the
proposed algorithms was tested on the large-scale KPs
listed in Table 3. In Table 11, the gap and time values
obtained as a result of these tests are presented for
BinHBA_S1 and BinHBA_S1(vt). According to Table 11,
BinHBA_S1(vt) was more successful by obtaining
smaller gap values in eight of the twelve problems. In
terms of time, BinHBA_S1 solved six problems more
quickly, whereas BinHBA_S1(vt) resolved the other six
in less time. The total gap and time graphics obtained
according to the results in Table 11 are given in Figures
10 and 11. According to the graphic in Figure 10, the
total gap value obtained for BinHBA_S1(vt) was
smaller. According to the time graphic in Figure 11,
BinHBA_S1(vt) completed the problems in a shorter
time. Accordingly, in large-scale KPs, BinHBA_S1(vt)
was more successful by obtaining smaller gap values in
a shorter time. The proposed algorithms and the
algorithms found in the literature were compared as
well. For this purpose, Binary Evolutionary Mating
Algorithm (BinEMA) (Yildizdan and Bas, 2024), Binary

Fire Hawk Optimizer (BinFHO) (Yildizdan and Bas,
2024), and Binary Mountain Gazelle Optimizer
(BinMGO) (Yildizdan and Bas, 2024) algorithms, which
were run under the same conditions, were chosen.
Comparison results are given in Table 12. In this
comparison made according to gap values, the smallest
values were mostly obtained from BinMGO. In the
ranking, BinMGO was in first place, while
BinHBA_S1(vt) was in second place. Based on the
results of the pairwise Wilcoxon signed-rank test
provided in Table 13, BinHBA_S1(vt) showed better
performance by obtaining better gap values than
BinEMA and BinFHO in all problems. When evaluated
by p-values, it was seen that there was a significant
difference between them. BinHBA_S1(vt) found better
gap values than BinHBA_S1 in eight problems and
showed better performance. There was a significant
difference between the algorithms. On the other hand,
BinMGO found a better gap value in ten of the problems
and performed better than BinHBA_S1(vt). There was
also a significant difference between the algorithms.

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1708

When all results are evaluated in general, the proposed
BinHBA_S1 and BinHBA_S1(vt) algorithms achieve
successful results in a reasonable time. BinHBA_S1(vt)
achieved more successful results compared to
BinHBA_S1 in both small and large-scale KPs. In
comparisons made with the literature, BinHBA_S1(vt)
generally showed better or similar performances than
the compared algorithms. As encountered in most

metaheuristics, the proposed BinHBA versions were
also affected by the dimension increase. Despite this,
BinHBA_S1(vt) ranked second in the literature
comparison. This result revealed that new
modifications may be needed to address the
performance decrease caused by the dimension
increase.

Table 11. Comparison Results of BinHBA_S1 and BinHBA_S1(vt) on Large-scale KPs

 Gap Time

ID BinHBA_S1 BinHBA_S1(vt) BinHBA_S1 BinHBA_S1(vt)

Kp16 0.90 1.59 361.02 360.56

Kp17 1.67 2.22 1221.15 982.88

Kp18 6.77 5.17 7142.54 2966.64

Kp19 11.94 7.68 15539.14 17127.80

Kp20 3.15 1.54 175.38 218.02

Kp21 14.89 12.28 520.28 1440.49

Kp22 22.47 12.64 3144.10 4588.00

Kp23 23.75 20.08 17941.32 14898.59

Kp24 4.23 4.27 239.53 170.82

Kp25 8.69 9.89 523.32 1003.96

Kp26 13.59 9.84 3491.35 6947.49

Kp27 18.08 14.45 17215.86 12804.83

Figure 10. Total Gap for BinHBA_S1 and BinHBA_S1(vt) Versions

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1709

Figure 11. Total Time for BinHBA_S1 and BinHBA_S1(vt) Versions

Table 12. Comparison of the Gap results of BinHBA_S1 and BinHBA_S1(vt) With Algorithms in the Literature

ID BinEMA BinFHO BinMGO BinHBA_S1 BinHBA_S1(vt)

Kp16 2.79 2.98 0.00 0.90 1.59

Kp17 5.18 20.03 2.29 1.67 2.22

Kp18 13.59 38.95 2.94 6.77 5.17

Kp19 26.09 49.80 5.88 11.94 7.68

Kp20 6.26 15.85 1.47 3.15 1.54

Kp21 19.47 19.23 11.13 14.89 12.28

Kp22 24.59 33.53 13.54 22.47 12.64

Kp23 29.50 37.04 14.62 23.75 20.08

Kp24 7.63 10.96 3.40 4.23 4.27

Kp25 11.49 24.90 5.24 8.69 9.89

Kp26 18.62 36.31 8.74 13.59 9.84

Kp27 25.48 40.88 12.51 18.08 14.45

Total 190.70 330.46 81.75 130.13 101.65

Rank 4 5 1 3 2

Table 13. The Pairwise Wilcoxon Signed-rank Test Results of BinHBA_S1(vt) and Other Algorithms

BinHBA_S1(vt)

BinEMA

BinHBA_S1(vt)

BinFHO

BinHBA_S1(vt)

BinMGO

BinHBA_S1(vt)

BinHBA_S1

+ 12 12 2 8

- 0 0 10 4

= 0 0 0 0

p-value 0.002 0.002 0.009 0.023

h-value 1 1 1 1

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1710

4. Conclusion and future works

The Honey Badger Algorithm (HBA) is a metaheuristic
algorithm proposed in 2022, inspired by the honey
badger's foraging behaviors such as sniffing, digging,
and following the honeyguide bird. In this study, a new
binary version of the Honey Badger algorithm
(BinHBA) was proposed. Transfer functions were used
for the binarization of HBA, which was proposed for
continuous optimization problems. S-shaped transfer
functions, which are frequently used in the literature,
were chosen as the transfer function. At the same time,
time-varying S-shaped transfer functions were used for
the HBA in this study to provide a better balance
between exploration and exploitation. Binary HBA
versions created with eight different transfer functions
obtained this way were first tested on small-scale KPs.
After this test, it was determined that the most
successful transfer functions were S1 and time-varying
S1. The results obtained revealed that using only the
transfer function was insufficient in terms of
performance. That's why the crossover strategy that
supports diversity was integrated into the algorithm.
The performance was examined by applying three
different crossover strategies: one-point, two-point,
and uniform. It was seen that the strategy that
contributed the most was uniform. The BinHBA
algorithm, which was finalized with the time-varying
S1 transfer function and uniform crossover strategy,
found the optimum value for all problems in small-
scale KPs. It has reached the performance of successful
algorithms in the literature. The algorithm was
secondary tested on large-scale KPs. The results
obtained from the test revealed that the version of
BinHBA using the time-varying S1 transfer function is
more successful. In literature comparisons, the BinMGO
algorithm ranked first, while the BinHBA_S1(vt) ranked
second. The BinHBA_S1(vt) performed better than all
the algorithms except BinMGO, and there was a
statistically significant difference between them.

Most algorithms in the literature find values that are
very close to the optimum or optimal in small-scale
KPs. Therefore, the performance differences between
algorithms are revealed mostly by the tests performed
in large-scale KPs. In this context, when the
BinHBA_S1(vt) results are examined, the success of the
algorithm in large-scale KPs compared to the literature
proves that the algorithm is preferable and effective. In
light of all these results, it can be said that the proposed
algorithm is a promising algorithm for different binary
optimization problems.

Future research can apply the BinHBA to a variety of
binary optimization problems, including uncapacitated
facility location and set-union knapsack problems.

Conflict of Interest

No conflict of interest was declared by the author.

References

Abasi, A. K., Aloqaily, M., and Guizani, M. (2023).
Optimization of CNN using modified Honey Badger
Algorithm for Sleep Apnea detection. Expert
Systems with Applications, 229, 120484. doi:
https://doi.org/10.1016/j.eswa.2023.120484

Abdel-Basset, M., Mohamed, R., and Mirjalili, S. (2021).
A Binary Equilibrium Optimization Algorithm for 0–
1 Knapsack Problems. Computers & Industrial
Engineering, 151, 106946. doi:
https://doi.org/10.1016/j.cie.2020.106946

Abdollahzadeh, B., Barshandeh, S., Javadi, H., and
Epicoco, N. (2022). An enhanced binary slime mould
algorithm for solving the 0–1 knapsack problem.
Engineering with Computers, 1-22.

Al-Betar, M. A., Hammouri, A. I., Awadallah, M. A., and
Abu Doush, I. (2021). Binary β-hill climbing
optimizer with S-shape transfer function for feature
selection. Journal of Ambient Intelligence and
Humanized Computing, 12(7), 7637-7665.

Aljebreen, M., Alabduallah, B., Mahgoub, H., Allafi, R.,
Hamza, M. A., Ibrahim, S. S., . . . Alsaid, M. I. (2023).
Integrating IoT and honey badger algorithm based
ensemble learning for accurate vehicle detection
and classification. Ain Shams Engineering Journal,
14(11), 102547. doi:
https://doi.org/10.1016/j.asej.2023.102547

Altuwairiqi, M. (2024). An optimized multi-hop routing
protocol for wireless sensor network using
improved honey badger optimization algorithm for
efficient and secure QoS. Computer
Communications, 214, 244-259. doi:
https://doi.org/10.1016/j.comcom.2023.08.011

Awadallah, M. A., Hammouri, A. I., Al-Betar, M. A., Braik,
M. S., and Elaziz, M. A. (2022). Binary Horse herd
optimization algorithm with crossover operators
for feature selection. Computers in Biology and
Medicine, 141, 105152. doi:
https://doi.org/10.1016/j.compbiomed.2021.1051
52

Baş, E. (2023). Binary aquila optimizer for 0–1
knapsack problems. Engineering Applications of
Artificial Intelligence, 118, 105592. doi:
https://doi.org/10.1016/j.engappai.2022.105592

Büyüköz, G. O., and Haklı, H. (2023). Binary Honey
Badger Algorithm for 0-1 Knapsack Problem.
Journal of Intelligent Systems: Theory and
Applications, 6(2), 108-118. doi:
https://doi.org/10.38016/jista.1200225

Feda, A. K., Adegboye, M., Adegboye, O. R., Agyekum, E.
B., Mbasso, W. F., and Kamel, S. (2024). S-shaped
grey wolf optimizer-based FOX algorithm for
feature selection. Heliyon, 10(2).

ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1) 1695-1711 J ESOGU Eng. Arch. Fac. 2025, 33(1), 1695-1711

1711

García, S., Molina, D., Lozano, M., and Herrera, F. (2009).
A study on the use of non-parametric tests for
analyzing the evolutionary algorithms’ behaviour: a
case study on the CEC’2005 special session on real
parameter optimization. Journal of Heuristics, 15,
617-644.

Hashim, F. A., Houssein, E. H., Hussain, K., Mabrouk, M.
S., and Al-Atabany, W. (2022). Honey Badger
Algorithm: New metaheuristic algorithm for solving
optimization problems. Mathematics and
Computers in Simulation, 192, 84-110. doi:
https://doi.org/10.1016/j.matcom.2021.08.013

He, Y., Zhang, F., Mirjalili, S., and Zhang, T. (2022). Novel
binary differential evolution algorithm based on
Taper-shaped transfer functions for binary
optimization problems. Swarm and evolutionary
computation, 69, 101022. doi:
https://doi.org/10.1016/j.swevo.2021.101022

Hu, G., Zhong, J., and Wei, G. (2023). SaCHBA_PDN:
Modified honey badger algorithm with multi-
strategy for UAV path planning. Expert Systems
with Applications, 223, 119941. doi:
https://doi.org/10.1016/j.eswa.2023.119941

Huang, P., Zhou, Y., Deng, W., Zhao, H., Luo, Q., and Wei,
Y. (2024). Orthogonal opposition-based learning
honey badger algorithm with differential evolution
for global optimization and engineering design
problems. Alexandria Engineering Journal, 91, 348-
367. doi: https://doi.org/10.1016/j.aej.2024.02.024

Jain, D. K., Ding, W., and Kotecha, K. (2023). Training
fuzzy deep neural network with honey badger
algorithm for intrusion detection in cloud
environment. International Journal of Machine
Learning and Cybernetics, 14(6), 2221-2237.
doi:10.1007/s13042-022-01758-6

Jin, C., Li, S., Zhang, L., and Zhang, D. (2023). The
Improvement of the Honey Badger Algorithm and
Its Application in the Location Problem of Logistics
Centers. Applied Sciences, 13(11), 6805. doi:
https://doi.org/10.3390/app13116805

Kapner, D. J., Cook, T. S., Adelberger, E. G., Gundlach, J.
H., Heckel, B. R., Hoyle, C., and Swanson, H. E.
(2007). Tests of the gravitational inverse-square
law below the dark-energy length scale. Physical
review letters, 98(2), 021101. doi:
https://doi.org/10.1103/PhysRevLett.98.021101

Karakoyun, M., and Ozkis, A. (2022). A binary tree seed
algorithm with selection-based local search
mechanism for huge-sized optimization problems.
Applied Soft Computing, 129, 109590. doi:
https://doi.org/10.1016/j.asoc.2022.109590

Li, X., Fang, W., and Zhu, S. (2023). An improved binary
quantum-behaved particle swarm optimization

algorithm for knapsack problems. Information
Sciences, 648, 119529. doi:
https://doi.org/10.1016/j.ins.2023.119529

Mafarja, M., Aljarah, I., Heidari, A. A., Faris, H., Fournier-
Viger, P., Li, X., and Mirjalili, S. (2018). Binary
dragonfly optimization for feature selection using
time-varying transfer functions. Knowledge-Based
Systems, 161, 185-204. doi:
https://doi.org/10.1016/j.knosys.2018.08.003

Majumdar, P., Mitra, S., and Bhattacharya, D. (2023).
Honey Badger algorithm using lens opposition
based learning and local search algorithm. Evolving
Systems, 1-26. doi:
https://doi.org/10.1007/s12530-023-09495-z

Ni, B., Wang, Y., Huang, J., and Li, G. (2022). Hybrid
Enhanced Binary Honey Badger Algorithm with
Quadratic Programming for Cardinality Constrained
Portfolio Optimization. International Journal of
Foundations of Computer Science, 33(06n07), 787-
803. doi:
https://doi.org/10.1142/S0129054122420151

Pisinger, D. (2005). Where are the hard knapsack
problems? Computers & Operations Research,
32(9), 2271-2284. doi:
https://doi.org/10.1016/j.cor.2004.03.002

Qasem, S. N. (2024). A novel honey badger algorithm
with multilayer perceptron for predicting COVID-19
time series data. The Journal of Supercomputing,
80(3), 3943-3969. doi:
https://doi.org/10.1007/s11227-023-05560-1

Wang, B., Kang, H., Sun, G., and Li, J. (2024). Efficient
traffic-based IoT device identification using a
feature selection approach with Lévy flight-based
sine chaotic sub-swarm binary honey badger
algorithm. Applied Soft Computing, 155, 111455.
doi: https://doi.org/10.1016/j.asoc.2024.111455

Woolson, R. F. (2007). Wilcoxon signed‐rank test. Wiley
encyclopedia of clinical trials, 1-3.

Yasear, S. A., and Ghanimi, H. M. (2022). A modified
honey badger algorithm for solving optimal power
flow optimization problem. International Journal of
Intelligent Engineering and Systems, 15(4), 142-
155.

Yildizdan, G., and Bas, E. (2024). A new binary coati
optimization algorithm for binary optimization
problems. Neural Computing and Applications,
36(6), 2797-2834.

Yildizdan, G., and Baş, E. (2023). A novel binary
artificial jellyfish search algorithm for solving 0–1
knapsack problems. Neural Processing Letters,
55(7), 8605-8671.

