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Modeling the foraging behavior of honey badgers, the Honey Badger Algorithm (HBA) is 
a recently proposed metaheuristic algorithm. In this study, a binary version of this 
algorithm that was proposed for solving continuous optimization problems was 
developed. The S-shaped transfer function and crossover strategy were used to 
transform the continuous algorithm into a binary algorithm. Eight S-shaped transfer 
functions with constant and time-varying features were used, and the most successful 
function was determined. Additionally, the effect of time-varying transfer functions was 
examined. Three strategies, single-point, two-point, and uniform, were applied as 
crossover strategies, and the uniform strategy, which was more successful than others, 
was integrated into the algorithm. The binary algorithm (BinHBA) developed in this 
way was tested on a total of twenty-seven knapsack problems, fifteen small-scale and 
twelve large-scale. Statistical tests were employed to analyze the results and compare 
them with methods found in the existing literature. The results showed that the 
proposed BinHBA for binary optimization problems is effective and preferable. 
 

 
 

ZAMANLA DEĞİŞEN SİGMOİD TRANSFER FONKSİYONU VE ÇAPRAZLAMA STRATEJİSİ İLE 
GELİŞTİRİLMİŞ İKİLİ BAL PORSUĞU ALGORİTMASI 

Anahtar Kelimeler Öz 
İkili optimization, 
Çaprazlama stratejisi,  
Bal porsuğu algoritması,  
Sırt çantası problemleri, 
Zamanla-değişen transfer 
fonksiyonu 

Bal porsuklarının yiyecek arama davranışını modelleyen Bal Porsuğu Algoritması 
(HBA), yakın zamanda önerilen bir meta-sezgisel algoritmadır. Bu çalışmada, sürekli 
optimizasyon problemlerinin çözümü için önerilen bu algoritmanın ikili versiyonu 
geliştirildi. Sürekli algoritmayı ikili bir algoritmaya dönüştürmek için S-şekilli transfer 
fonksiyonu ve çaprazlama stratejisi kullanıldı. Sabit ve zamanla değişen özelliklere 
sahip sekiz adet S-şekilli transfer fonksiyonu kullanıldı ve en başarılı fonksiyon 
belirlendi. Ayrıca zamanla değişen transfer fonksiyonlarının etkisi de incelendi. 
Çaprazlama stratejisi olarak tek nokta, iki nokta ve tekdüze olmak üzere üç strateji 
uygulandı ve diğerlerinden daha başarılı olan tekdüze stratejisi algoritmaya entegre 
edildi. Bu şekilde geliştirilen ikili algoritma (BinHBA), on beşi küçük ölçekli ve on ikisi 
büyük ölçekli olmak üzere toplam yirmi yedi sırt çantası problemi üzerinde test edildi. 
Sonuçları analiz etmek ve mevcut literatürde bulunan yöntemlerle karşılaştırmak için 
istatistiksel testler kullanıldı. Sonuçlar, ikili optimizasyon problemleri için önerilen 
BinHBA'nın etkili ve tercih edilebilir olduğunu gösterdi. 
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1. Introduction 

The 0-1 knapsack problem optimization problems are 
binary optimization problems (BOPs), which are an 
important class of combinatorial optimization 
problems. BOPs take the value 0 or 1 as the decision 
variable. The algorithms used to solve these problems, 
where the solution space is expressed as {0,1}𝑛, are 
inadequate, especially for large-scale problems. For this 
reason, researchers in this field have turned to non-
deterministic algorithms in recent years, and 
evolutionary algorithms have become the most 
prominent in this category (He, Zhang, Mirjalili, and 
Zhang, 2022). 

The number of evolutionary algorithms has been 
increasing rapidly in recent years. Most algorithms are 
initially proposed for continuous problems and then 
binarized to solve binary optimization problems. One 
of these algorithms is the Honey Badger Algorithm 
(Hashim, Houssein, Hussain, Mabrouk, and Al-Atabany, 
2022). The algorithm has advantages such as exhibiting 
a dynamic search behavior in searching for a food 
source, thus maintaining the balance between 
exploration and exploitation, and having few 
parameters that need to be adjusted (Yasear and  
Ghanimi, 2022). On the other hand, the local 
improvement ability of the algorithm is weak, and it is 
insufficient to escape from the local optimum in solving 
complex problems (Jin, Li, Zhang, and Zhang, 2023). 
Despite these drawbacks encountered in most 
metaheuristic algorithms, it has been used to solve 
many problems in the literature because it is simple 
and easy to implement. 

Hu et al. proposed a modified HBA algorithm based on 
the Bernoulli shift map, piecewise optimal decreasing 
neighborhood, and strategy-adaptive horizontal 
migration to solve the unmanned aerial vehicle path 
planning problem (Hu, Zhong and Wei, 2023). Abasi, 
Aloqaily, and Guizani proposed a modified HBA to 
optimize the hyperparameters of a convolutional 
neural network for sleep apnea detection (Abasi, 
Aloqaily, and Guizani, 2023). A novel honey badger 
optimization approach utilizing ensemble learning-
based vehicle detection and classification methods was 
presented by Aljebreen et al. (Aljebreen et al., 2023). 
Majumdar, Mitra, and Bhattacharya proposed a 
modified HBA using lens opposition-based learning in 
the initial stage to improve population quality and 
diversity and achieve better discovery, and they proved 
the success of the proposed algorithm on CEC functions 
(Majumdar, Mitra, and Bhattacharya, 2023). Jain, Ding, 
and Kotecha developed a new fuzzy deep neural 
network for cloud environments with HBA for privacy-
preserving intrusion detection techniques (Jain, Ding, 
and Kotecha, 2023). Altuwairiqi proposed a model to 
solve security and energy problems (Altuwairiqi, 
2024). He also created enhanced HBA-based multi-hop 

routing optimized for wireless sensor networks. In 
order to effectively forecast COVID-19 situations, 
Qasem proposed a hybrid intelligent model that 
combined an artificial neural network with HBA 
(Qasem, 2024). Huang et al. proposed an advanced HBA 
that utilizes orthogonal opposition-based learning, a 
balance pooling strategy, and differential evolution to 
improve the HBA's performance. The method was 
tested for CEC 2022 and engineering problems (Huang 
et al., 2024). Wang et al. developed a novel wrapper 
feature selection approach based on the binary honey 
badger algorithm, integrating chaotic sub-swarm and 
Lévy flight approaches, to identify a traffic-based 
Internet of Things device (Wang, Kang, Sun, and Li, 
2024). Büyüköz and Haklı discretized HBA using 
transfer functions and used it to solve 0-1 knapsack 
problems (Büyüköz and Haklı, 2023). To address the 
portfolio selection problem, Ni et al. created a novel 
hybrid method that combines quadratic programming 
and the binary honey-badger algorithm (Ni, Wang, 
Huang, and Li, 2022).  

As can be seen above, although HBA is preferred in 
many areas for solving continuous optimization 
problems, its use in solving binary optimization 
problems is less common. The scarcity of proposed 
binary HBA versions and the desire to contribute to the 
literature on the analysis of HBA's performance on 
binary problems were the motivations for this study. 

The following is a list of the study's contributions to the 
literature: 

 The effect of using time-varying transfer functions 
for the binarization of HBA was investigated for 
the first time. 

 The effect of constant and time-varying S-shaped 
transfer functions on the algorithm performance 
was examined. 

 The effect of integrating crossover strategies into 
HBA on performance was evaluated. 

 A new binary HBA algorithm was presented to the 
literature by integrating the most successful 
transfer function and crossover strategy 
determined into the algorithm. 

 Both small- and large-scale knapsack problems 
were used to test the proposed algorithm. As a 
result, it was possible to see how the dimension 
increase affected the proposed algorithm. 

 The results obtained were compared with the 
algorithms in the literature to demonstrate the 
success of the algorithm. 

The following study sections are arranged as follows: 
In Section 2, the HBA algorithm, the proposed binary 
HBA algorithm, and the knapsack problem are 
explained. Section 3 presents the experimental test 
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results performed to demonstrate the performance of 
BinHBA. Section 4 delineates conclusions and 
prospective works for further research. 

2. Material and Methods 
 
2.1. Honey Badger Algorithm 
 

The Honey Badger Algorithm (HBA) is a metaheuristic 
algorithm proposed by Hashim et al. (Hashim et al., 
2022) in 2022. The algorithm is inspired by the 
behavior of the honey badger when searching for food, 
such as smelling, digging, and following the honeyguide 
bird. HBA is divided into two phases, the “digging 
phase” and the “honey phase”, and is mathematically 
modeled as given below. 
 

 Initialization 

The algorithm is initialized with a population of 
possible solutions. Where 𝑁 is the number of honey 
badgers, each individual in the population is placed at 
their starting position according to Equation 1. 
 

𝑋𝑖 = 𝐿𝑏𝑖 + 𝑟1 × (𝑈𝑏𝑖 − 𝐿𝑏𝑖)                                (1) 
 

In the equation, 𝑟1 is a random number between 0 and 
1. 𝐿𝑏 and 𝑈𝑏 indicate the lower and upper bound 
values of the search space, respectively. 𝑋𝑖  represents 
the i.honey badger's position. 
 

 Intensity (𝐼) definition 

Density depends on the concentration power of the 
prey and the distance between it and the honey badger. 
The higher the scent, the faster the movement. The 
opposite situation is expressed in Equation 2 according 
to the Inverse Square Law (Kapner et al., 2007). 
 

𝐼𝑖 = 𝑟2 ×
𝑆

4𝜋𝐷𝑖
2                                                                           (2) 

𝑆 = (𝑋𝑖 − 𝑋𝑖+1)2                                                                     (3) 
𝐷𝑖 = 𝑋𝑃 − 𝑋𝑖                                                                             (4) 
 

where S is the concentration power. In Equation 2, 𝐷𝑖  
represents the distance between the prey and the ith 
honey badger. 𝑟2 is a random number in the range of 0 
to 1. Also, 𝑋𝑃  is the prey position. 
 

 Update density factor 

The density factor (𝛼) controls the transition from the 
exploration to the exploitation phase and has a 
character that reduces randomness by decreasing over 
time. It is formulated according to Equation 5. 

 

𝛼 = 𝐶 × 𝑒𝑥𝑝 (
−𝑡

𝑡𝑚𝑎𝑥
)                                                        (5) 

where  𝑐 is a constant value (𝐶 ≥ 1 (default = 2)). While 
𝑡 is the iteration number, 𝑡𝑚𝑎𝑥  indicates  the maximum 
iteration number.  

 
 Escaping from the local optimum 

This and the next two steps are used to get out of the 
local optimum. In order to fully discover the search 
space, the algorithm makes use of an F flag that permits 
changing it. 
 

 Updating the position of agents 

HBA's position update process is divided into two 
phases:  "digging phase" and "honey phase". 

 

Digging phase: In this phase, a honey badger moves in a 
manner similar to a cardioid, and this movement is 
formulated as in Equation 6. 
 
𝑋𝑛𝑒𝑤 = 𝑋𝑃 + 𝐹 × 𝛽 × 𝐼 × 𝑋𝑃 + 𝐹 × 𝑟3 × 𝛼 × 𝐷𝑖 ×
|cos(2𝜋𝑟4) × [1 − cos (2𝜋𝑟5)]|                                         (6) 
 

In the equation, 𝑋𝑛𝑒𝑤  is the new candidate position, and 
𝑋𝑃  is the best prey position found so far. The honey 
badger's ability to take in food is denoted by 𝛽 (𝛽 ≥  1 
(default = 6)). 𝑟3, 𝑟4, and 𝑟5 are random numbers 
between 0 and 1. 𝐷𝑖  represents the distance between 
the prey and the ith honey badger. 𝐹 is the flag that 
changes the search direction and is formulated using 
Equation 7. 
 

𝐹 = { 1          𝑟6 ≤ 0.5
−1 𝑒𝑙𝑠𝑒

                                                       (7) 

 

Honey phase: It is the phase in which a honey badger 
follows the honeyguide bird to reach the beehive and is 
formulated according to Equation 8. 
 
𝑋𝑛𝑒𝑤 = 𝑋𝑃 + 𝐹 × 𝑟7 × 𝛼 × 𝐷𝑖                                              (8) 
 

In the equation, 𝑟7 is a random number between 0 and 
1. At this phase, the search is affected by time-varying 
search behavior (𝛼). In addition, a honey badger might 
discover disturbance 𝐹. 

In Figure 1, the HBA pseudocode is presented. 

2.2. Binary Honey Badger Algorithm (BinHBA) 

The standard HBA is proposed for continuous 
optimization problems and needs to be redesigned to 
solve binary optimization problems. In binary 
optimization, decision variables have a search space 
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where they can take the value "0" or "1". In these 
problems, each solution is represented by a series of 
decision variables that take "0" or "1", where the value 
0 represents absence and the value 1 represents 
presence (Karakoyun and Ozkis, 2022).  

 
Figure 1. HBA's Pseudocode 

 

In this section, a binary HBA algorithm is proposed to 
solve binary optimization problems, and the steps 
followed in creating the proposed algorithm are listed 
below. 

 Transfer function 

The 0-1 knapsack problems chosen for this study are 
combinatorial problems, and for HBA to solve these 
problems, it must be transformed to work in the binary 
search space. The most common way to perform this 
transformation is to use the transfer function. Transfer 
functions are responsible for ensuring that if the 
candidate solution defined by 0 and 1 turns into a 
continuous value after the algorithm steps, this value is 
converted back to 0 or 1 according to Equation 9. In the 
equation, ∂ represents the value in a certain dimension 
of the solution, while F(∂) indicates the value obtained 
from the transfer function for the value ∂. Additionally, 
R is a random number in the range of 0 to 1 (Yildizdan 
and Bas, 2024; Yildizdan and Baş, 2023). 

 

𝐹(𝜕) = {
 1              𝑖𝑓 𝐹(𝜕)  >  ℛ
  0                                𝑒𝑙𝑠𝑒

                                       (9) 

 

More generally, transfer functions are used to 
determine the probability that a position value will 
change to 0 or 1 based on the value of the step vector 
(velocity) for a given dimension in the current 
iteration. The step vector is defined as the movement 

magnitude for the current individual. In the 
exploitation phase of the algorithm, the step vector 
value is small, and a detailed search is performed in 
small steps. On the contrary, in the exploration phase, 
the step vector value is large, and it explores different 
regions of the search space in large steps. In an 
algorithm where the probability of changing location is 
calculated using the transfer function, transfer 
functions significantly affect the balance between 
exploration and exploitation. If the transfer function 
does not change, the probability of changing positions 
remains the same throughout the optimization process. 
On the other hand, if the transfer function is changed, 
the effect of the step vector on position updating is 
utilized to explore and exploit the search space 
(Mafarja et al., 2018). 

To better balance exploration and exploitation, Mafarja 
et al. showed that using time-varying transfer functions 
is an effective strategy (Mafarja et al., 2018). One of the 
transfer functions frequently used in the literature is 
the S-shaped transfer function (Al-Betar, Hammouri, 
Awadallah, and Abu Doush, 2021; Feda et al., 2024). 
Based on what was mentioned above, in this study, the 
effect of using constant S-shaped and time-varying S-
shaped transfer functions on HBA was examined. Table 
1 lists the transfer functions that were employed in the 
study. Figures 2 and 3 depict these transfer functions 
graphically. In time-varying transfer functions, the 
value of 𝜏 is formulated as shown in Equation 10 and 
starts with an initial value and progressively decreases 
over the iterations, meaning it is a time-varying 
variable. 𝑡𝑚𝑎𝑥  is the maximum number of iterations, 𝑡 is 
the current iteration, and 𝜏𝑚𝑖𝑛  and 𝜏𝑚𝑎𝑥  are the min 
and max values of the control parameter 𝜏 in the 
equation. In this study, 𝜏𝑚𝑖𝑛= 0.01 and 𝜏𝑚𝑎𝑥  = 4 were 
used, as in Mafarja et al.'s study (Mafarja et al., 2018). 
 

𝜏 = (1 −
𝑡

𝑡𝑚𝑎𝑥
) 𝜏𝑚𝑎𝑥 + 𝜏𝑚𝑖𝑛( 

𝑡

𝑡𝑚𝑎𝑥
 )                                 (10) 

 
 

Table 1. S-Shaped Transfer Functions 
 

Constant  Time-varying 

S1  𝐹(𝑐) =
1

1+𝑒−𝜕  S1(tv)  𝐹(𝜕, 𝜏) =
1

1+𝑒
−𝜕

𝜏

 

S2  𝐹(𝜕) =
1

1+𝑒−2∗𝜕  S2(tv)   𝐹(𝜕, 𝜏) =
1

1+𝑒
−2∗𝜕

𝜏

 

S3  𝐹(𝜕) =
1

1+𝑒
−

𝜕
2

  S3(tv)   𝐹(𝜕, 𝜏) =
1

1+𝑒
−

𝜕
2𝜏

 

S4  𝐹(𝜕) =
1

1+𝑒
−

𝜕
3

  S4(tv)   𝐹(𝜕, 𝜏) =
1

1+𝑒
−

𝜕
3𝜏
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Figure 2. S-Shaped Transfer Functions (Constant) 

 
 

 
 

 
 

 
 

 
 
Figure 3. S-Shaped Transfer Functions (Time-varying 
(𝑡𝑚𝑎𝑥 = 50, 𝜏𝑚𝑖𝑛= 0.01 and 𝜏𝑚𝑎𝑥  = 4)) 
 

 Crossover strategy 

The crossover strategy was incorporated into the 
proposed BinHBA to strengthen its exploitation 
performance. In the crossover strategy, every solution 
in the population is combined with a different solution 
that has been chosen from the population based on the 
crossover method that has been specified (Awadallah, 
Hammouri, Al-Betar, Braik, and Elaziz, 2022). In this 
study, three different crossover strategies, which are 
frequently used in the literature, were integrated into 
the algorithm and their effects on performance were 
examined. The crossover operation is formulated as in 
Equation 11. In the equation, ⊗ denotes the crossover 
operator between two solutions. 𝑋(𝑡, 𝑖) is the existing 
solution at the ith position, and 𝑋(𝑡, 𝑏) is also the best 
solution in the population (for this study). 

 
     𝑋(𝑡, 𝑖) =⊗ (𝑋(𝑡, 𝑖) , 𝑋(𝑡, 𝑏))                         (11) 

 

The following is a list of the three kinds of crossover 
operators that BinHBA uses (Awadallah et al., 2022): 

 One-point crossover: In this crossover strategy, a 
random dimension is selected in the existing 
solution. All dimensions after this point are then 
swapped between the two solutions (Figure 4(a)). 

 Two-point crossover: In this crossover strategy, two 
dimensions are determined on the existing solution. 
Then the dimensions between these two points are 
swapped between the two solutions (Figure 4(b)). 

 Uniform crossover: The dimensions of the existing 
solution and the dimensions of the best solution are 
randomly selected in a determined ratio and 
swapped. For instance, if the ratio is 0.5, the 
elements of the optimal solution are swapped for 
half of the existing solution (Figure 4(c)). 
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Figure 4. Crossover Strategies 

 

The BinHBA algorithm proposed in this study was 
created using the transfer function and crossover 
strategy. In Figure 5, the BinHBA pseudocode is 
presented. 
 

 
 

Figure 5. BinHBA's Pseudocode 
 

2.3. 0-1 Knapsack Problems 
 

The 0-1 knapsack problem (KP) is an NP-hard 
optimization problem consisting of a knapsack and a 
set of items, each with its weight and profit, the aim of 
which is to place the items in the knapsack to maximize 
the total profit without exceeding the capacity of the 
knapsack. The following is a brief definition of the 
general 0-1 KP (Pisinger, 2005). Let 𝑛 be the item with 

weights 𝑤1, 𝑤2, … , 𝑤𝑛 and profits 𝑝1, 𝑝2, … , 𝑝𝑛, and let 𝐶 
denote the maximum capacity of the knapsack. In such 
a case, the items have two states: the jth item is put in 
the knapsack (𝑥𝑗 = 1) and it is not put (𝑥𝑗 = 0). The 

mathematical formulation of 0-1 KP is given in 
Equation 12 (Li, Fang, and Zhu, 2023). 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  ∑ 𝑝𝑗𝑥𝑗

𝑛

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    ∑ 𝑤𝑗𝑥𝑗 ≤ 𝐶, 𝑥𝑗𝜖{0,1}, 𝑗 = 1, … , 𝑛𝑛
𝑗=1     (12)         

     

3.  Experimental Results 

In this section, the performance of the proposed 
BinHBA algorithm is tested on small and large scale 0-1 
KPs. The results were evaluated using statistical tests 
and compared with methods found in the literature. In 
this study, the KPs used to analyze the performance of 
BinHBA are considered two different datasets, as 
follows: 
Dataset1: Includes fifteen small-scale 0–1 KP samples. 
The following link provides examples: 
https://pages.mtu.edu/~kreher/cages/Data.html. The 
dataset has between 16 and 24 items. 
Dataset2: Includes twelve large-scale 0–1 KP samples. 
The following link provides examples: 
http://artemisa.unicauca.edu.co/~johnyortega/instanc
es_01_KP. The dataset has between 100 and 1000 
items.  

Tables 2 and 3 include the tables for Datasets 1 and 2, 
respectively. 

 
Table 2. The Small-scale Knapsack Problems Dataset 

 

ID Capacity Size Optimum 

Kp1 3,780,355 16 7,850,983 

Kp2 4,426,945 16 9,352,998 

Kp3 4,323,280 16 9,151,147 

Kp4 4,550,938 16 9,348,889 

Kp5 3,760,429 16 7,769,117 

Kp6 5,169,647 20 10,727,049 

Kp7 4,681,373 20 9,818,261 

Kp8 5,063,791 20 10,714,023 

Kp9 4,286,641 20 8,929,156 

Kp10 4,476,000 20 9,357,969 

Kp11 6,404,180 24 13,549,094 

Kp12 5,971,071 24 12,233,713 

Kp13 5,870,470 24 12,448,780 

Kp14 5,762,284 24 11,815,315 

Kp15 6,654,569 24 13,940,099 

 

https://pages.mtu.edu/~kreher/cages/Data.html
http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP
http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP
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Table 3.  The Large-scale Knapsack Problems Dataset 
 

Characteristic ID Capacity Size Optimum 

Uncorrelated 
 

Kp16 995 100 9147 

Kp17 1008 200 11,238 

Kp18 2543 500 28,857 

Kp19 5002 1000 54,503 

Weakly correlated   
 

Kp20 995 100 1514 

Kp21 1008 200 1634 

Kp22 2543 500 4566 

Kp23 5002 1000 9052 

Strongly correlated   
 

Kp24 997 100 2397 

Kp25 997 200 2697 

Kp26 2517 500 7117 

Kp27 4990 1000 14,390 

 

The gathered results were compared using time and 
gap criteria, and the Wilcoxon signed-rank test 
(Woolson, 2007) was used for statistical evaluation. 
Equation 13 provides the formula for the gap, which 
establishes the percentage error between the optimum 
value and the obtained mean value. 
 

𝐺𝑎𝑝 =
𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒−𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒

𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒
∗ 100             (13) 

 

In all KPs, the population size was determined as 20 
and the maximum number of iterations was defined as 
5000. Additionally, each problem was run 
independently 20 times. These parameter values were 
selected to align with those of the algorithms being 
compared to guarantee a fair literature comparison. 

First, this section evaluated the results obtained by 
integrating eight different transfer functions, including 
constant S-shaped and time-varying S-shaped, into the 
HBA algorithm. The comparative results of the 
evaluations made according to gap and time are given 
in Tables 4 and 5, respectively. Based on the total gap 
values shown in Table 4, the smallest values were 
obtained from the S1 and S1(vt) transfer functions, 
respectively, and they were the most successful 
versions. Moreover, Table 5's total time values 
indicated that the versions using S4 and S2(vt) transfer 
functions execute all problems in the shortest time, 
respectively. In addition to the evaluation in Table 5, 
the run times are considered as two groups of constant 
and time-varying S-shaped transfer functions, and the 
total times obtained are given comparatively in Figure 
6. According to Figure 6, time-varying transfer 
functions solved problems in less time than constant 
ones.  

According to the results above, S1 was more successful 
in both constant and time-varying transfer functions. 

Although the versions using this transfer function lag 
behind other transfer functions in terms of run time, it 
can be said that the increase in time is tolerable and the 
difference between times is not too much. Upon 
analyzing the gap values, it was observed that the value 
0 could not yet be obtained for all problems. 
Accordingly, it was decided that the algorithm needed 
further improvement. To achieve this, solution 
diversity was increased by applying a crossover 
between the candidate solution and the best individual 
in the population after the transfer function. The 
crossover strategy was applied to the most successful 
versions, namely BinHBA_S1 and BinHBA_S1(vt). As 
mentioned in the sections above, three crossover 
strategies—one point, two point, and uniform—were 
selected, and their contribution to performance was 
examined. The gap and time results of the versions 
obtained by separately integrating three different 
crossover strategies into BinHBA_S1 are given in Table 
6. According to the table, the version in which the 
uniform crossover strategy was integrated obtained a 
gap value of 0 in all problems except KP10. 
Accordingly, it became the most successful version. 
When evaluated in terms of time, it was seen that the 
version in which the two-point crossover strategy was 
integrated found solutions faster in thirteen out of 
fifteen problems. A more detailed evaluation of the 
results is given in Figure 7. In the graphic, the total gap 
and run-time values of the versions obtained with 
different crossover strategies were compared. 
According to Figure 7, in terms of the total gap, the 
most successful crossover strategy was uniform, while 
the least successful strategy was two-point. In terms of 
total time, the crossover strategy that took the shortest 
time was two-point, while the strategy that required 
the longest time was one-point. Despite this, the total 
time values are quite close to each other and at a 
tolerable level. 

The gap and time results of the versions obtained by 
separately integrating three different crossover 
strategies into BinHBA_S1(vt) are given in Table 7. 
According to the table, the version integrated with the 
uniform crossover strategy was able to obtain 0 gap 
values in all problems, and it became the most 
successful version. When evaluated in terms of time, it 
was seen that the version with an integrated two-point 
crossover strategy was faster in eleven out of fifteen 
problems. A more detailed evaluation of the results is 
given in Figure 8. According to Figure 8, in terms of 
total gap, the most successful crossover strategy was 
uniform, while the least successful strategy was two-
point. In terms of total time, the crossover strategy that 
took the shortest time was two-point, while the 
strategy that required the longest time was uniform. 
Despite this, the total time values are quite close to 
each other and at a tolerable level. 
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Table 4. The Gap results of BinHBA for Transfer Functions on Small-scale KPs 
 

Gap S1 S2 S3 S4 S1 (tv) S2 (tv) S3 (tv) S4 (tv) 

Kp1 0 0 0 0 0 0 0 0 
Kp2 0 0 0 0 0 0 0 0 
Kp3 0 0 0 0 0 0 0 0 
Kp4 0 0 0 0 0 0 0 0 
Kp5 0 0 0 0 0 0 0 0 
Kp6 0 0 0.087087 0.100851 0 0 0 0.038023 
Kp7 0 0.021248 0.088065 0.198782 0 0.063744 0 0.063744 
Kp8 0 0.001354 0.012924 0.018281 0 0.002709 0.012496 0.001354 
Kp9 0 0.01541 0.068902 0.099723 0 0 0 0.01541 

Kp10 0 0 0.00083 0.016758 0.00083 0 0.00904 0.002491 
Kp11 0.059247 0.119325 0.283389 0.459879 0.155572 0.209475 0.15182 0.223807 
Kp12 0.010593 0.117434 0.339589 0.374163 0.016356 0.031779 0.083946 0.262456 
Kp13 0.010928 0.10126 0.28258 0.318272 0.136092 0.147541 0.089782 0.116231 
Kp14 0.017821 0.191986 0.338926 0.279588 0.075097 0.09552 0.134309 0.216103 
Kp15 0.0108 0.103534 0.177068 0.388096 0.02835 0.145135 0.084037 0.108163 
Total 0.109389 0.671551 1.67936 2.254393 0.412297 0.695903 0.56543 1.047782 
Rank 1 4 7 8 2 5 3 6 

 

 

Table 5. The Time Results of BinHBA for Transfer Functions on Small-scale KPs 
 

Time S1 S2 S3 S4 S1 (tv) S2 (tv) S3 (tv) S4 (tv) 

Kp1 6.65069 5.892792 4.872831 4.507016 5.325669 4.439543 4.711883 5.009465 
Kp2 6.629714 5.695539 4.969793 4.988711 5.406604 4.717382 4.504029 4.739923 
Kp3 6.816617 5.546846 4.890418 4.650769 4.84883 4.345735 4.752857 4.765454 
Kp4 6.473288 5.340374 5.351684 4.830218 5.092839 4.552444 4.545971 4.984927 
Kp5 4.426726 5.125402 5.242635 4.663558 5.073189 3.367428 4.722582 4.650742 
Kp6 6.769689 4.226241 5.458453 5.3677 5.85826 5.141575 4.849339 4.513609 
Kp7 6.829454 5.92239 5.33276 5.237071 5.711099 4.980693 5.152497 5.227866 
Kp8 5.370071 5.83809 5.747943 5.080702 6.837116 5.230434 3.731661 5.358518 
Kp9 5.594199 5.479169 5.235293 3.617332 5.73581 4.990484 3.734037 5.08305 

Kp10 4.867781 5.674898 5.373873 6.15694 5.507986 4.972808 5.199535 5.274221 
Kp11 5.383256 6.051872 5.466676 3.781263 6.052793 5.397622 5.741501 5.141686 
Kp12 7.892347 6.112406 5.473513 4.582532 6.19244 5.4342 5.995793 5.564137 
Kp13 5.694487 6.549463 5.34437 5.647101 6.579839 4.273229 5.385772 5.932589 
Kp14 6.157034 6.814908 5.487054 4.056518 4.467437 5.380495 4.934439 5.40607 
Kp15 8.141763 5.789737 5.381136 3.767247 4.834168 5.440346 5.683747 5.451694 
Total 93.69712 86.06012 79.62843 70.93468 83.52408 72.66442 73.64564 77.10395 
Rank 8 7 5 1 6 2 3 4 

 

 

 
Figure 6. Total Times for S-shaped and Time-varying S-shaped 
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Table 6. Comparison Results of BinHBA_S1 With Crossover Strategy 
 

BinHBA_S1 
Crossover One-point Two-point Uniform 

 Gap Time Gap Time Gap Time 

Kp1 0 4.38319 0.412793 4.03508 0 4.109804 
Kp2 0.033756 4.242462 1.056551 3.893201 0 4.080178 
Kp3 0.501881 4.175273 0.736159 3.89766 0 4.273908 
Kp4 0.130475 4.781753 0.374374 4.113133 0 4.076676 
Kp5 0 4.366115 0.680832 3.775772 0 4.078058 
Kp6 0 4.415716 0.088375 4.122253 0 4.608072 
Kp7 0.377662 4.837716 1.134329 4.277449 0 4.441237 
Kp8 0.071377 4.678485 0.187971 4.245522 0 4.478014 
Kp9 0 4.12813 0 4.179539 0 4.652959 

Kp10 0 4.495505 0.122016 4.293849 0.00083 4.51974 
Kp11 0.36519 4.729588 0.700267 4.580302 0 4.818838 
Kp12 0.2942 4.489277 0.555171 4.389614 0 4.824257 
Kp13 0.402994 4.891271 0.992989 4.696395 0 4.841823 
Kp14 0.839502 5.297324 0.275875 4.556759 0 4.822083 
Kp15 0.101273 4.712998 0.068385 4.306862 0 4.800877 

 
 

Table 7. Comparison Results of BinHBA_S1(vt) With Crossover Strategy 
 

BinHBA_S1(vt) 
Crossover One-point Two-point Uniform 

 Gap Time Gap Time Gap Time 

Kp1 0 3.790519 0.414203 3.358378 0 3.64086 
Kp2 0.033756 3.773799 0.776256 3.505204 0 3.768489 
Kp3 0.390352 3.609998 0.751007 3.554214 0 3.763693 
Kp4 0.117428 4.038579 0.38316 3.523191 0 3.800585 
Kp5 0 3.86185 0.680832 3.175116 0 3.657917 
Kp6 0.061043 3.786714 0.079537 3.583831 0 4.115571 
Kp7 0.188831 4.385487 0.446363 3.637944 0 4.060471 
Kp8 0.060578 5.494723 0.163389 4.383684 0 3.840681 
Kp9 0 4.661513 0.039671 4.290042 0 3.919826 

Kp10 0 4.743587 0.140522 4.344328 0 4.19987 
Kp11 0.47381 5.57457 0.490837 4.659348 0 4.20154 
Kp12 0.343233 4.892168 0.566566 4.09707 0 6.714814 
Kp13 0.301536 4.421041 0.831091 4.10336 0 4.204954 
Kp14 0.222046 4.381411 1.005966 4.309546 0 5.829603 
Kp15 0.121527 4.196752 0.068124 3.916412 0 5.96857 

 

 
Figure 7.  Total Gap and Time Graphics for BinHBA_S1 Version 
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Figure 8. Total Gap and Time graphics for BinHBA_S1(vt) Version 

 

Figure 9 shows the comparative convergence graphics 
of the best versions of BinHBA_S1 and BinHBA_S1(vt) 
algorithms using the uniform crossover strategy in 
small-scale KPs. Graphics are drawn according to the 
best value obtained. When the graphics were examined, 
it was determined that BinHBA_S1(vt) converged to the 
optimal value faster in KP1, KP3, KP4, KP10, KP11, 
KP12, KP13, and KP15. In six of the remaining 
problems, BinHBA_S1 converged to the optimal faster, 
while in KP8, the two algorithms converged to the 
optimal in similar iterations. 

The results obtained for the best BinHBA_S1 and 
BinHBA_S1(vt) versions were evaluated with the help 
of statistical testing. Wilcoxon signed rank test (García, 
Molina, Lozano, and Herrera, 2009) was used to 
determine whether the algorithms had a significant 
performance difference at the 5% confidence level 
when compared to each other and algorithms in other 
literature. In this study, the Wilcoxon signed-rank test 
was applied to gap values. In Table 8, the p and h values 
obtained as a result of the pairwise Wilcoxon signed 
rank test for the BinHBA_S1(vt) and BinHBA_S1 
algorithms were presented. An h value of 0 in the table 
indicates that the results of the two algorithms are 
similar (p-value >0.05), in contrast to an h value of 1 in 
the table, which indicates that there is a 
significant difference between the two algorithms and 
that their results are not similar (p-value <0.05). The 
results in Table 8 demonstrated that the algorithms 
performed similarly in all problems, with no significant 
differences between them. Because both algorithms 
found the optimum values in other problems except 
KP10. However, it can be concluded that the 
BinHBA_S1(vt) algorithm is more successful due to 
reasons such as finding the optimum values in all 
problems, converging faster in most of the problems, 
and taking a shorter total time. 

BinHBA_S1 and BinHBA_S1(vt) algorithms were also 
compared with algorithms in the literature. For this 
purpose, Binary Aquila Optimizer with Crossover and 
Mutation methods (BAO-CM) (Baş, 2023), Binary 
Artificial Jellyfish Search algorithm (Bin_AJS) (Yildizdan 

and Baş, 2023), Binary Equilibrium Optimization 
Algorithm with V3-shaped transfer function (BEOV3) 
(Abdel-Basset, Mohamed, and Mirjalili, 2021), Binary 
Slime Mould Algorithm (BSMA) (Abdollahzadeh, 
Barshandeh, Javadi, and Epicoco, 2022), and Enhanced 
Binary Coati Optimization Algorithm (EBinCOA) 
(Yildizdan and Bas, 2024) algorithms, which were run 
under the same conditions, were selected from the 
literature. Based on Table 9, which presents the 
comparison results according to the gap values, the 
Bin_AJS, EBinCOA, and BinHBA_S1(vt) algorithms, 
which found the value 0 in all problems, were the most 
successful and ranked first in the ranking. According to 
this result, it was revealed that the proposed time-
varying BinHBA version was a successful algorithm 
that competes with the algorithms in the literature. 
Table 10 shows the pairwise Wilcoxon-signed rank test 
results of the proposed BinHBA_S1(vt) with other 
algorithms. The '+', '-', and '=' lines indicate how many 
problems BinHBA_S1(vt) found better, worse, and 
equal gap values than the other algorithm, respectively. 
After analyzing the results, it was found that there was 
no significant difference between the algorithms' 
performance in most problems. 

 
Table 8. The Results of the Wilcoxon Signed-rank Tests 

for BinHBA_S1 and BinHBA_S1(vt) on Small-scale KPs 

ID 
BinHBA_S1(vt) – BinHBA_S1 

p-value h-value 
Kp1 1.0000 0 
Kp2 1.0000 0 
Kp3 1.0000 0 
Kp4 1.0000 0 
Kp5 1.0000 0 
Kp6 1.0000 0 
Kp7 1.0000 0 
Kp8 1.0000 0 
Kp9 1.0000 0 

Kp10 0.3173 0 
Kp11 1.0000 0 
Kp12 1.0000 0 
Kp13 1.0000 0 
Kp14 1.0000 0 
Kp15 1.0000 0 
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Figure 9. Convergence Graphics for BinHBA_S1 and BinHBA_S1 (vt) Versions 
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Table 9. Comparison of the Gap results of BinHBA_S1 and BinHBA_S1(vt) With Algorithms in the Literature 
 

 BAO-CM Bin_AJS BEOV3 BSMA EBinCOA BinHBA_S1 BinHBA_S1(vt) 

Kp1 0 0 0 0 0 0 0 

Kp2 0 0 0 0 0 0 0 

Kp3 0 0 0 0 0 0 0 

Kp4 0 0 0 0 0 0 0 

Kp5 0 0 0 0 0 0 0 

Kp6 0 0 0 0 0 0 0 

Kp7 0 0 0 0 0 0 0 

Kp8 0 0 0 0 0 0 0 

Kp9 0 0 0 0 0 0 0 

Kp10 0 0 0 0 0 0.00083 0 

Kp11 0 0 0 0 0 0 0 

Kp12 0 0 0 0 0 0 0 

Kp13 0 0 0 0 0 0 0 

Kp14 0.0017 0 0.0036 0.004 0 0 0 

Kp15 0 0 0 0 0 0 0 

Total 0.0017 0 0.0036 0.004 0 0.00083 0 
Rank 3 1 4 5 1 2 1 

 

 

Table 10. The pairwise Wilcoxon signed-rank Test Results of BinHBA_S1(vt) and Other Algorithms 
 

 BinHBA_S1(vt) 
BAO-CM 

BinHBA_S1(vt) 
Bin_AJS 

BinHBA_S1(vt) 
BEOV3 

BinHBA_S1(vt) 
BSMA 

BinHBA_S1(vt) 
EBinCOA 

BinHBA_S1(vt) 
BinHBA_S1 

+ 1 0 1 1 0 1 
- 0 0 0 0 0 0 
= 14 15 14 14 15 14 

p-value 0.317 1.000 0.317 0.317 1.000 0.317 
h-value 0 0 0 0 0 0 

 

Secondly, in this section, the performance of the 
proposed algorithms was tested on the large-scale KPs 
listed in Table 3. In Table 11, the gap and time values 
obtained as a result of these tests are presented for 
BinHBA_S1 and BinHBA_S1(vt). According to Table 11, 
BinHBA_S1(vt) was more successful by obtaining 
smaller gap values in eight of the twelve problems. In 
terms of time, BinHBA_S1 solved six problems more 
quickly, whereas BinHBA_S1(vt) resolved the other six 
in less time. The total gap and time graphics obtained 
according to the results in Table 11 are given in Figures 
10 and 11. According to the graphic in Figure 10, the 
total gap value obtained for BinHBA_S1(vt) was 
smaller. According to the time graphic in Figure 11, 
BinHBA_S1(vt) completed the problems in a shorter 
time. Accordingly, in large-scale KPs, BinHBA_S1(vt) 
was more successful by obtaining smaller gap values in 
a shorter time. The proposed algorithms and the 
algorithms found in the literature were compared as 
well. For this purpose, Binary Evolutionary Mating 
Algorithm (BinEMA) (Yildizdan and Bas, 2024), Binary 

Fire Hawk Optimizer (BinFHO) (Yildizdan and Bas, 
2024), and Binary Mountain Gazelle Optimizer 
(BinMGO) (Yildizdan and Bas, 2024) algorithms, which 
were run under the same conditions, were chosen. 
Comparison results are given in Table 12. In this 
comparison made according to gap values, the smallest 
values were mostly obtained from BinMGO. In the 
ranking, BinMGO was in first place, while 
BinHBA_S1(vt) was in second place. Based on the 
results of the pairwise Wilcoxon signed-rank test 
provided in Table 13, BinHBA_S1(vt) showed better 
performance by obtaining better gap values than 
BinEMA and BinFHO in all problems. When evaluated 
by p-values, it was seen that there was a significant 
difference between them. BinHBA_S1(vt) found better 
gap values than BinHBA_S1 in eight problems and 
showed better performance. There was a significant 
difference between the algorithms. On the other hand, 
BinMGO found a better gap value in ten of the problems 
and performed better than BinHBA_S1(vt). There was 
also a significant difference between the algorithms. 
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When all results are evaluated in general, the proposed 
BinHBA_S1 and BinHBA_S1(vt) algorithms achieve 
successful results in a reasonable time. BinHBA_S1(vt) 
achieved more successful results compared to 
BinHBA_S1 in both small and large-scale KPs. In 
comparisons made with the literature, BinHBA_S1(vt) 
generally showed better or similar performances than 
the compared algorithms. As encountered in most 

metaheuristics, the proposed BinHBA versions were 
also affected by the dimension increase. Despite this, 
BinHBA_S1(vt) ranked second in the literature 
comparison. This result revealed that new 
modifications may be needed to address the 
performance decrease caused by the dimension 
increase.  

 

Table 11. Comparison Results of BinHBA_S1 and BinHBA_S1(vt) on Large-scale KPs 

 

 Gap Time 

ID BinHBA_S1 BinHBA_S1(vt) BinHBA_S1 BinHBA_S1(vt) 

Kp16 0.90 1.59 361.02 360.56 

Kp17 1.67 2.22 1221.15 982.88 

Kp18 6.77 5.17 7142.54 2966.64 

Kp19 11.94 7.68 15539.14 17127.80 

Kp20 3.15 1.54 175.38 218.02 

Kp21 14.89 12.28 520.28 1440.49 

Kp22 22.47 12.64 3144.10 4588.00 

Kp23 23.75 20.08 17941.32 14898.59 

Kp24 4.23 4.27 239.53 170.82 

Kp25 8.69 9.89 523.32 1003.96 

Kp26 13.59 9.84 3491.35 6947.49 

Kp27 18.08 14.45 17215.86 12804.83 

 

 

 

Figure 10. Total Gap for BinHBA_S1 and BinHBA_S1(vt) Versions 
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Figure 11. Total Time for BinHBA_S1 and BinHBA_S1(vt) Versions 

 

Table 12. Comparison of the Gap results of BinHBA_S1 and BinHBA_S1(vt) With Algorithms in the Literature 

 

ID BinEMA BinFHO BinMGO BinHBA_S1 BinHBA_S1(vt) 

Kp16 2.79 2.98 0.00 0.90 1.59 

Kp17 5.18 20.03 2.29 1.67 2.22 

Kp18 13.59 38.95 2.94 6.77 5.17 

Kp19 26.09 49.80 5.88 11.94 7.68 

Kp20 6.26 15.85 1.47 3.15 1.54 

Kp21 19.47 19.23 11.13 14.89 12.28 

Kp22 24.59 33.53 13.54 22.47 12.64 

Kp23 29.50 37.04 14.62 23.75 20.08 

Kp24 7.63 10.96 3.40 4.23 4.27 

Kp25 11.49 24.90 5.24 8.69 9.89 

Kp26 18.62 36.31 8.74 13.59 9.84 

Kp27 25.48 40.88 12.51 18.08 14.45 

Total 190.70 330.46 81.75 130.13 101.65 

Rank 4 5 1 3 2 

 

Table 13. The Pairwise Wilcoxon Signed-rank Test Results of BinHBA_S1(vt) and Other Algorithms 

 

 
BinHBA_S1(vt) 

BinEMA 

BinHBA_S1(vt) 

BinFHO 

BinHBA_S1(vt) 

BinMGO 

BinHBA_S1(vt) 

BinHBA_S1 

+ 12 12 2 8 

- 0 0 10 4 

= 0 0 0 0 

p-value 0.002 0.002 0.009 0.023 

h-value 1 1 1 1 
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4. Conclusion and future works 

The Honey Badger Algorithm (HBA) is a metaheuristic 
algorithm proposed in 2022, inspired by the honey 
badger's foraging behaviors such as sniffing, digging, 
and following the honeyguide bird. In this study, a new 
binary version of the Honey Badger algorithm 
(BinHBA) was proposed. Transfer functions were used 
for the binarization of HBA, which was proposed for 
continuous optimization problems. S-shaped transfer 
functions, which are frequently used in the literature, 
were chosen as the transfer function. At the same time, 
time-varying S-shaped transfer functions were used for 
the HBA in this study to provide a better balance 
between exploration and exploitation. Binary HBA 
versions created with eight different transfer functions 
obtained this way were first tested on small-scale KPs. 
After this test, it was determined that the most 
successful transfer functions were S1 and time-varying 
S1. The results obtained revealed that using only the 
transfer function was insufficient in terms of 
performance. That's why the crossover strategy that 
supports diversity was integrated into the algorithm. 
The performance was examined by applying three 
different crossover strategies: one-point, two-point, 
and uniform. It was seen that the strategy that 
contributed the most was uniform. The BinHBA 
algorithm, which was finalized with the time-varying 
S1 transfer function and uniform crossover strategy, 
found the optimum value for all problems in small-
scale KPs. It has reached the performance of successful 
algorithms in the literature. The algorithm was 
secondary tested on large-scale KPs. The results 
obtained from the test revealed that the version of 
BinHBA using the time-varying S1 transfer function is 
more successful. In literature comparisons, the BinMGO 
algorithm ranked first, while the BinHBA_S1(vt) ranked 
second. The BinHBA_S1(vt) performed better than all 
the algorithms except BinMGO, and there was a 
statistically significant difference between them.  
 
Most algorithms in the literature find values that are 
very close to the optimum or optimal in small-scale 
KPs. Therefore, the performance differences between 
algorithms are revealed mostly by the tests performed 
in large-scale KPs. In this context, when the 
BinHBA_S1(vt) results are examined, the success of the 
algorithm in large-scale KPs compared to the literature 
proves that the algorithm is preferable and effective. In 
light of all these results, it can be said that the proposed 
algorithm is a promising algorithm for different binary 
optimization problems. 

Future research can apply the BinHBA to a variety of 
binary optimization problems, including uncapacitated 
facility location and set-union knapsack problems. 
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