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ABSTRACT:  

The 𝛼-series process is an important counting process commonly used to model 

data sets having monotonic trend. It is especially utilized in reliability analysis 

of deteriorating systems and warranty analysis of repairable systems. When a 

data set is compatible with the 𝛼-series process, it is important to make 

inference for model parameters of the process. All the studies in the literature 

only consider single realization of the process which only has complete 

samples. However, multi-sample of the process may be observed. In this 

situation, the data set includes both complete and censored samples. In this 

study, estimation problem for an 𝛼-series process under censored data is 

studied by assuming inter-arrival times of the process have exponential 

distribution and all samples are homogeneous. Maximum likelihood estimators 

of the model parameters are obtained and their asymptotic properties such as 

asymptotic normality and consistency are proved. Also, their small sample 

performances have been investigated by a simulation study.   
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INTRODUCTION 

Counting processes are basic examples of stochastic processes modeling the number of events 

randomly occurring in a specified period. One of the well-known counting processes is homogeneous 

Poisson process (HPP) in which the inter-arrival times of randomly occurred consecutive events are 

independent and identical exponentially distributed. For most data sets representing the inter-arrival 

times of certain events, the independency condition may hold but the exponential distribution 

assumption may be restrictive. So, it can be assumed that they have a general distribution. In such a 

case, the counting process turns out to a renewal process (RP) in which the inter-arrival times are 

independent and identically distributed with a general distribution function 𝐹. If 𝐹 is chosen as 

exponential distribution, the RP reduces to an HPP. Therefore, the RP is a generalization of HPP. The 

RP has been widely used in the fields of applied probability such as reliability analysis, warranty 

analysis, risk analysis etc. since its introduction in the 1950s. For basics and recent applications of RP, 

see (Barlow and Proschan, 1996; Chukova and Hayakawa, 2004; Blischke and Murthy, 2011; Fleming 

and Harrington, 2013; Jiang, 2020; Altındağ and Aydoğdu, 2021). If a data set representing the inter-

arrival times of consecutive events doesn’t hold identically distributed feature, the non-homogenous 

Poisson process (NHPP), in which the inter-arrival times are neither independent nor identically 

distributed, may be used. The non-identical property of inter-arrival times of NHPP allows us to model 

data sets having trend properly. However, the dependency between inter-arrival times of consecutive 

events may result in some difficulties in modeling the data set. To overcome the difficulty of 

dependency, (Lam, 1988) introduced a monotonic counting process model in which the inter-arrival 

times are assumed to be independent but may be stochastically monotone rather than identically 

distributed. This monotonic counting process model proposed by (Lam, 1988) is called as geometric 

process (GP). The formal definition of GP is given below. 

Let 𝑋1, 𝑋2, … be non-negative random variables representing the inter-arrival times of 

consecutive events, then the process {𝑋𝑘, 𝑘 = 1,2, … } said to be a GP with trend parameter 𝑎 > 0, if 

the random variables 𝑎𝑘−1𝑋𝑘, 𝑘 = 1,2, … are independent and identically distributed with a general 

distribution function 𝐹. The GP reduces to RP when 𝑎 = 1. Therefore, it may be considered as a 

generalization of RP allowing the inter-arrival times may not to be identically distributed. The GP is 

stochastically increasing when 𝑎 < 1 and, stochastically decreasing when 𝑎 > 1. This feature allows 

the GP to model data sets having monotonic trend in time. The GP has been utilized for many fields of 

applied probability such as reliability analysis, warranty analysis, medicine applications etc. For a 

comprehensive consideration of GP and its recent applications, we refer to (Lam, 2007; Aydoğdu and 

Altındağ, 2016; Pekalp and Aydoğdu, 2021).  

Although the GP is easily applicable for data sets having monotonic trend, it has some 

disadvantages. Let 𝑁(𝑡) = sup{𝑛: 𝑋1 + 𝑋2 +⋯𝑋𝑛 ≤ 𝑡}. Then, 𝐸[𝑁(𝑡)], which gives the expected 

number of events occurring in (0, 𝑡], is not defined when the GP is stochastically increasing, i.e. 𝑎 <

1. Further, the monotonic trend exhibited by GP is either logarithmically slow or exponentially fast. To 

overcome these disadvantages of GP, (Braun et al., 2005) introduced a monotonic counting process 

model, called as 𝛼-series process (ASP), as an alternative to GP. The ASP is defined as follows.  

Let 𝑋1, 𝑋2, … be non-negative random variables representing the inter-arrival times of 

consecutive events, then the process {𝑋𝑘, 𝑘 = 1,2, … } said to be an ASP with trend parameter 𝛼 ∈ ℝ 

if the random variables 𝑘𝛼𝑋𝑘, 𝑘 = 1,2, … are independent and identically distributed with a general 

distribution function 𝐹. It is obvious that, the ASP reduces to RP when 𝛼 = 0. So, the ASP is another 

generalization of RP like the GP. Note that, the ASP is stochastically increasing when 𝛼 < 0 and, 
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stochastically decreasing when 𝛼 > 0. But, unlike the GP, the 𝐸[𝑁(𝑡)] is defined for an ASP either the 

ASP is stochastically increasing or stochastically decreasing. Furthermore, the monotonic trend 

exhibited by ASP is moderate compared to GP, see for details (Braun et al., 2005; 2008).  

Let {𝑋𝑘, 𝑘 = 1,2, … } be an ASP with trend parameter 𝛼 and 𝐸(𝑋1) = 𝜇, 𝑉𝑎𝑟(𝑋1) = 𝜎
2. Then, 

𝐸(𝑋𝑘) = 𝜇𝑘
−𝛼 and 𝑉𝑎𝑟(𝑋𝑘) = 𝜎

2𝑘−2𝛼 for 𝑘 = 1,2, … . From a statistical point of view, it is 

important to estimate the parameters 𝛼, 𝜇 and 𝜎2 when there exists a data set compatible with ASP. 

The estimation problem of these parameters is well studied in the literature. (Aydoğdu and Kara, 2012) 

considered non-parametric estimation of the parameters by utilizing the linear regression method. 

(Kara et al., 2017a) studied statistical inference for ASP with gamma distributed inter-arrival times. 

(Kara et al., 2017b) considered statistical inference for ASP with inverse-Gaussian distributed inter-

arrival times. (Kara et al., 2019) studied parameter estimation for ASP with log-normal distributed 

inter-arrival times. In these studies, the data sets are assumed to consist of only complete observations 

coming from a single realization of the process. However, the data may come from multiple processes 

which yields that some inter-arrival times may be observed as censored. The data structure with 

censored observations is illustrated in Figure 1 below. 

 
Figure 1. Data structure for ASP with both complete and censored observations 

It is important to estimate the parameters 𝛼, 𝜇 and 𝜎2 based on both complete observations 𝑋𝑗𝑖 ,

𝑖 = 1, … , 𝑛𝑗 , 𝑗 = 1,… , 𝑟 and censored observations 𝑋𝑗𝑖
∗ , 𝑖 = 𝑛𝑗 + 1, 𝑗 = 1,… , 𝑟. There is no study in 

the literature considering this type of data structure for ASP. For this reason, we consider the censored 

data to estimate the model parameters of ASP by assuming the inter-arrival times are distributed as 

exponential and all the processes are homogeneous. 

MATERIALS AND METHODS  

Let 𝑟 homogeneous ASPs with common trend parameter 𝛼 are observed until a pre-determined 

time, say 𝑇, and {𝑋𝑗𝑖, 𝑖 = 1, . . , 𝑛𝑗 + 1}, 𝑗 = 1, … , 𝑟 be the inter-arrival times of 𝑗th process, 𝑋𝑗1 has 

distribution function 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥, 𝑥 ≥ 0; 𝜆 > 0, 𝜇 ≔ 𝐸(𝑋𝑗1) = 1/𝜆, 𝜎2 ≔ 𝑉𝑎𝑟(𝑋𝑗1) = 1/𝜆
2 for 

𝑗 = 1,… , 𝑟. Then, distribution function and probability density function of 𝑋𝑗𝑖 are given as 𝐹𝑖(𝑥) =

1 − 𝑒−𝑖
𝛼𝜆𝑥, 𝑥 ≥ 0; 𝜆 > 0, 𝑓𝑖(𝑥) = 𝑖

𝛼𝜆𝑒−𝑖
𝛼𝜆𝑥, 𝑥 ≥ 0; 𝜆 > 0, 𝑖 = 1, . . , 𝑛𝑗 + 1 for 𝑗 = 1, … , 𝑟. Therefore, 
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mean and variance of 𝑋𝑗𝑖 are 𝜇𝑖 ≔ 𝐸(𝑋𝑗𝑖) = 𝜇/𝑖
𝛼, 𝜎𝑖

2 ≔ 𝑉𝑎𝑟(𝑋𝑗𝑖) = 𝜎
2/𝑖2𝛼, 𝑖 = 1, . . , 𝑛𝑗 + 1 for 𝑗 =

1, … , 𝑟. Note that, the inter-arrival times {𝑋𝑗𝑖, 𝑖 = 1, . . , 𝑛𝑗} for 𝑗 = 1,… , 𝑟 are complete while 

{𝑋𝑗(𝑛𝑗+1)} for 𝑗 = 1, … , 𝑟 are right censored as demonstrated in Figure 1.  

To estimate the parameters 𝛼, 𝜇 and 𝜎2 based on the observations {𝑋𝑗𝑖, 𝑖 = 1, . . , 𝑛𝑗 + 1, 𝑗 =

1, … , 𝑟}, we will use maximum likelihood method due to its easy implementation and asymptotically 

well-behaviour.  

Maximum Likelihood Estimators 

Let’s denote the complete inter-arrival times as 𝑿𝑐𝑜𝑚 = {𝑋𝑗𝑖, 𝑖 = 1, … , 𝑛𝑗 , 𝑗 = 1,… , 𝑟}, censored 

inter-arrival times as 𝑿𝑐𝑒𝑛𝑠 = {𝑋𝑗(𝑛𝑗+1), 𝑗 = 1,… , 𝑟} and total data as 𝑿𝑡 = (𝑿𝑐𝑜𝑚, 𝑿𝑐𝑒𝑛𝑠). Let 𝒙𝑡 be 

the sample points of 𝑿𝑡. Then, the likelihood function based on the sample 𝒙𝑡 is obtained as 

𝐿(𝛼, 𝜆; 𝒙𝑡) =∏[∏𝑓𝑖(𝑥𝑗𝑖) [1 − 𝐹𝑛𝑗+1 (𝑥𝑗(𝑛𝑗+1))]

𝑛𝑗

𝑖=1

]

𝑟

𝑗=1

 

                    =∏[∏𝑖𝛼𝜆𝑒−𝑖
𝛼𝜆𝑥𝑗𝑖 [𝑒

−𝑖𝛼𝜆𝑥
𝑗(𝑛𝑗+1)]

𝑛𝑗

𝑖=1

]

𝑟

𝑗=1

. 

(1) 

Therefore, the log-likelihood function is  

ln𝐿(𝛼, 𝜆; 𝒙𝑡) = 𝛼∑∑ln(𝑖)

𝑛𝑗

𝑖=1

𝑟

𝑗=1

+ 𝜆∑𝑛𝑗

𝑟

𝑗=1

− 𝜆∑ ∑ 𝑖𝛼𝑥𝑗𝑖

𝑛𝑗+1

𝑖=1

.

𝑟

𝑗=1

 (2) 

By taking partial derivatives of the log-likelihood function with respect to 𝛼 and 𝜆 and equating 

them to zero, we obtain the following equations: 

1

𝜆
∑∑ln(𝑖)

𝑛𝑗

𝑖=1

𝑟

𝑗=1

−∑∑ 𝑖𝛼ln(𝑖)𝑥𝑗𝑖

𝑛𝑗+1

𝑖=1

= 0

𝑟

𝑗=1

 (3) 

∑∑ 𝑖𝛼𝑥𝑗𝑖

𝑛𝑗+1

𝑖=1

𝑟

𝑗=1

−
1

𝜆
∑𝑛𝑗 = 0

𝑟

𝑗=1

 (4) 

The common solution of these equations gives maximum likelihood estimators of the parameters 

𝛼 and 𝜆. If we take 𝜆 as (∑ 𝑛𝑗
𝑟
𝑗=1 )/(∑ ∑ 𝑖𝛼𝑥𝑗𝑖

𝑛𝑗+1

𝑖=1
𝑟
𝑗=1 ) in Equation (3), the following non-linear 

equation is obtained for 𝛼: 

∑∑ 𝑖𝛼𝑥𝑗𝑖 [
∑ ∑ ln(𝑖)

𝑛𝑗
𝑖=1

𝑟
𝑗=1

∑ 𝑛𝑗
𝑟
𝑗=1

− ln(𝑖)] = 0

𝑛𝑗+1

𝑖=1

𝑟

𝑗=1

 (5) 

Solution of Equation (5) gives the maximum likelihood estimator of 𝛼. It is clear that, this 

equation can’t be solved analytically. So, it must be solved numerically. To solve this non-linear 

equation, the Newton-Raphson method can be applied. Let 

𝑔(𝛼) =∑∑ 𝑖𝛼𝑥𝑗𝑖 [
∑ ∑ ln(𝑖)

𝑛𝑗
𝑖=1

𝑟
𝑗=1

∑ 𝑛𝑗
𝑟
𝑗=1

− ln(𝑖)]

𝑛𝑗+1

𝑖=1

.

𝑟

𝑗=1

 (6) 

Then, the first derivate of 𝑔(𝛼) is obtained as 
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𝑔′(𝛼) =∑ ∑ 𝑖𝛼ln(𝑖)𝑥𝑗𝑖 [
∑ ∑ ln(𝑖)

𝑛𝑗
𝑖=1

𝑟
𝑗=1

∑ 𝑛𝑗
𝑟
𝑗=1

− ln(𝑖)]

𝑛𝑗+1

𝑖=1

.

𝑟

𝑗=1

 (7) 

Let 𝛼(1) = 0 and 𝛼(𝑘 + 1) = 𝛼(𝑘) −
𝑔(𝛼(𝑘))

𝑔′(𝛼(𝑘))
 for = 1,2, , … . Then, numerical solution of 

Equation (5) is obtained by repeating the iterative steps until the condition |𝛼(𝑘 + 1) − 𝛼(𝑘)| < 𝜀 

holds where 𝜀 > 0 is a pre-defined tolerance level. Once the condition |𝛼(𝑘 + 1) − 𝛼(𝑘)| < 𝜀 holds, 

the maximum likelihood estimator of 𝛼 is obtained as   

�̂� = 𝛼(𝑘 + 1). (8) 

Hence, the maximum likelihood estimator of 𝜆 is 

�̂� =
∑ 𝑛𝑗
𝑟
𝑗=1

∑ ∑ 𝑖�̂�𝑥𝑗𝑖
𝑛𝑗+1

𝑖=1
𝑟
𝑗=1

. (9) 

Further, maximum likelihood estimators of the parameters 𝜇 and 𝜎2 are obtained as 

�̂� =
1

�̂�
, (10) 

�̂�2 =
1

�̂�2
. (11) 

The asymptotic properties of the estimators are given below.  

Theorem 1. Let �̂� and �̂� be maximum likelihood estimators of the parameters 𝛼 and 𝜆 based on the 

data 𝑿𝑡. Then,  

[
�̂�
�̂�
] ~𝐴𝑁 ([

�̂�
�̂�
] , 𝐼−1(𝛼, 𝜆; 𝑿𝑡)), (12) 

as 𝑇 → ∞, where AN stands for asymptotically normal and 𝐼−1(𝛼, 𝜆; 𝑿𝑡) is inverse of Fisher 

information such that  

𝐼(𝛼, 𝜆; 𝑿𝑡) =

[
 
 
 
 
 
 
∑[∑ln2(𝑖) + ln2(𝑛𝑗 + 1)𝐹𝑛𝑗+1(𝑡𝑗)

𝑛𝑗

𝑖=1

]

𝑟

𝑗=1

1

𝜆
∑[∑ln(𝑖) + ln(𝑛𝑗 + 1)𝐹𝑛𝑗+1(𝑡𝑗)

𝑛𝑗

𝑖=1

]

𝑟

𝑗=1

1

𝜆
∑[∑ln(𝑖) + ln(𝑛𝑗 + 1)𝐹𝑛𝑗+1(𝑡𝑗)

𝑛𝑗

𝑖=1

]

𝑟

𝑗=1

1

𝜆2
∑[𝑛𝑗 + 𝐹𝑛𝑗+1(𝑡𝑗)]

𝑟

𝑗=1 ]
 
 
 
 
 
 

. (13) 

Here, 𝑡𝑗 is the censoring time of 𝑋𝑗(𝑛𝑗+1) such that 𝑡𝑗 ≔ 𝑥𝑗(𝑛𝑗+1) = 𝑇 − ∑ 𝑥𝑗𝑖
𝑛𝑗
𝑖=1

 given 𝑋𝑗𝑖 = 𝑥𝑗𝑖  and 

𝐹𝑛𝑗+1(𝑡𝑗) = 1 − 𝑒
−(𝑛𝑗+1)

𝛼
𝜆𝑡𝑗  for 𝑗 = 1,… , 𝑟. 

Proof of Theorem 1. Let 𝐼(𝛼, 𝜆; 𝑿𝑐𝑜𝑚) be the Fisher information based on 𝑿𝑐𝑜𝑚 and 𝐼(𝛼, 𝜆; 𝑿𝑐𝑒𝑛𝑠) be 

the Fisher information based on 𝑿𝑐𝑒𝑛𝑠. Then, 𝐼(𝛼, 𝜆; 𝑿𝑡) = 𝐼(𝛼, 𝜆; 𝑿𝑐𝑜𝑚) + 𝐼(𝛼, 𝜆; 𝑿𝑐𝑒𝑛𝑠). So, we need 

to calculate  𝐼(𝛼, 𝜆; 𝑿𝑐𝑜𝑚) and 𝐼(𝛼, 𝜆; 𝑿𝑐𝑒𝑛𝑠) separately. Let 𝐿(𝛼, 𝜆; 𝑿𝑐𝑜𝑚) be the likelihood function 

based on 𝑿𝑐𝑜𝑚. Then, it is obtained that, 

𝐿(𝛼, 𝜆; 𝑿𝑐𝑜𝑚) =∏[∏𝑖𝛼𝜆𝑒−𝑖
𝛼𝜆𝑋𝑗𝑖

𝑛𝑗

𝑖=1

] ,

𝑟

𝑗=1

 (14) 

and  

ln𝐿(𝛼, 𝜆; 𝑿𝑐𝑜𝑚) = 𝛼∑∑ln(𝑖)

𝑛𝑗

𝑖=1

𝑟

𝑗=1

+ 𝜆∑𝑛𝑗

𝑟

𝑗=1

− 𝜆∑∑𝑖𝛼𝑋𝑗𝑖

𝑛𝑗

𝑖=1

.

𝑟

𝑗=1

 (15) 

If we take partial derivatives of ln𝐿(𝛼, 𝜆; 𝑿𝑐𝑜𝑚), it is obtained that, 
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𝜕2𝐿(𝛼, 𝜆; 𝑿𝑐𝑜𝑚)

𝜕𝛼2
= −𝜆∑∑𝑖𝛼 ln2(𝑖) 𝑋𝑗𝑖

𝑛𝑗

𝑖=1

,

𝑟

𝑗=1

 (16) 

𝜕2𝐿(𝛼, 𝜆; 𝑿𝑐𝑜𝑚)

𝜕𝜆2
= −

1

𝜆2
∑𝑛𝑗 ,

𝑟

𝑗=1

 (17) 

𝜕2𝐿(𝛼, 𝜆; 𝑿𝑐𝑜𝑚)

𝜕𝛼𝜕𝜆
= −∑∑𝑖𝛼 ln(𝑖) 𝑋𝑗𝑖

𝑛𝑗

𝑖=1

.

𝑟

𝑗=1

 (18) 

Therefore, negative expectations of partial derivates are obtained as  

𝐸 [−
𝜕2𝐿(𝛼, 𝜆; 𝑿𝑐𝑜𝑚)

𝜕𝛼2
] =∑∑ln2(𝑖)

𝑛𝑗

𝑖=1

,

𝑟

𝑗=1

 (19) 

𝐸 [−
𝜕2𝐿(𝛼, 𝜆; 𝑿𝑐𝑜𝑚)

𝜕𝜆2
] =

1

𝜆2
∑𝑛𝑗 ,

𝑟

𝑗=1

 (20) 

𝐸 [−
𝜕2𝐿(𝛼, 𝜆; 𝑿𝑐𝑜𝑚)

𝜕𝛼𝜕𝜆
] =

1

𝜆
∑∑ln(𝑖)

𝑛𝑗

𝑖=1

,

𝑟

𝑗=1

 (21) 

since 𝐸[𝑖𝛼𝑋𝑗𝑖] = 1/𝜆. Hence, 

𝐼(𝛼, 𝜆; 𝑿𝑐𝑜𝑚) =

[
 
 
 
 
 
 
∑∑ln2(𝑖)

𝑛𝑗

𝑖=1

𝑟

𝑗=1

1

𝜆
∑∑ln(𝑖)

𝑛𝑗

𝑖=1

𝑟

𝑗=1

1

𝜆
∑∑ln(𝑖)

𝑛𝑗

𝑖=1

𝑟

𝑗=1

1

𝜆2
∑𝑛𝑗

𝑟

𝑗=1 ]
 
 
 
 
 
 

. (22) 

As for the 𝐼(𝛼, 𝜆; 𝑿𝑐𝑒𝑛𝑠), we first introduce the Fisher information for a non-negative right censored 

random variable. Let ℎ𝑛𝑗+1(𝑥) be the hazard function and 𝑡𝑗 be the censoring time of censored variable 

𝑋𝑗(𝑛𝑗+1) for 𝑗 = 1,… , 𝑟. Then,  

𝐼 (𝛼, 𝜆; 𝑋𝑗(𝑛𝑗+1))11
= ∫ (

𝜕

𝜕𝛼 
ln (ℎ𝑛𝑗+1(𝑥)))

2

𝑓𝑛𝑗+1(𝑥)𝑑𝑥 = ln
2(𝑛𝑗 + 1)𝐹𝑛𝑗+1(𝑡𝑗),

𝑡𝑗

0

 (23) 

𝐼 (𝛼, 𝜆; 𝑋𝑗(𝑛𝑗+1))22
= ∫ (

𝜕

𝜕𝜆 
ln (ℎ𝑛𝑗+1(𝑥)))

2

𝑓𝑛𝑗+1(𝑥)𝑑𝑥 =
1

𝜆2
𝐹𝑛𝑗+1(𝑡𝑗),

𝑡𝑗

0

 (24) 

𝐼 (𝛼, 𝜆; 𝑋𝑗(𝑛𝑗+1))12
= ∫ (

𝜕

𝜕𝛼 
ln (ℎ𝑛𝑗+1(𝑥)))(

𝜕

𝜕𝜆 
ln (ℎ𝑛𝑗+1(𝑥)))𝑓𝑛𝑗+1(𝑥)𝑑𝑥

𝑡𝑗

0

  

                                    =
1

𝜆
ln(𝑛𝑗 + 1)𝐹𝑛𝑗+1(𝑡𝑗), (25) 

 since ln (ℎ𝑛𝑗+1(𝑥)) = 𝛼ln(𝑛𝑗 + 1) + ln(𝜆). For the Fisher information of right censored non-

negative random variables, see (Zheng and Gastwirth, 2001; Park et al., 2008.) Therefore, it is 

obtained that, 
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𝐼(𝛼, 𝜆; 𝑿𝑐𝑒𝑛𝑠) =

[
 
 
 
 
 ∑ ln2(𝑛𝑗 + 1)𝐹𝑛𝑗+1(𝑡𝑗)

𝑟

𝑗=1

1

𝜆
∑ ln(𝑛𝑗 + 1)𝐹𝑛𝑗+1(𝑡𝑗)

𝑟

𝑗=1

1

𝜆
∑ ln(𝑛𝑗 + 1) 𝐹𝑛𝑗+1(𝑡𝑗)

𝑟

𝑗=1

1

𝜆2
∑𝐹𝑛𝑗+1(𝑡𝑗)

𝑟

𝑗=1 ]
 
 
 
 
 

. (26) 

Consequently, the result is clear, and the proof is completed.  

Corollary 1. Let �̂� and �̂� be maximum likelihood estimators of the parameters 𝛼 and 𝜆 based on the 

data 𝑿𝑡. Then, as 𝑇 → ∞, 

�̂�~𝐴𝑁(𝛼, 𝜗11), (27) 

�̂�~𝐴𝑁(𝜆, 𝜗22), (28) 

where  

𝜗11 =
𝐷

𝐴𝐷 − 𝐵2
, (29) 

𝜗22 = 𝜆
2

𝐴

𝐴𝐷 − 𝐵2
, (30) 

𝐴 =∑[∑ ln2(𝑖) + ln2(𝑛𝑗 + 1)𝐹𝑛𝑗+1(𝑡𝑗)

𝑛𝑗

𝑖=1

]

𝑟

𝑗=1

, (31) 

𝐵 =∑[∑ ln(𝑖) + ln(𝑛𝑗 + 1) 𝐹𝑛𝑗+1(𝑡𝑗)

𝑛𝑗

𝑖=1

]

𝑟

𝑗=1

, (32) 

𝐷 =∑[𝑛𝑗 + 𝐹𝑛𝑗+1(𝑡𝑗)]

𝑟

𝑗=1

. (33) 

Proof of Corollary 1. The result is easily obtained by inverting the Fisher information matrix 

𝐼(𝛼, 𝜆; 𝑿𝑡). 

Corollary 2. Let �̂� and �̂� be maximum likelihood estimators of the parameters 𝛼 and 𝜆 based on the 

data 𝑿𝑡. Then, 

�̂�
    𝑃    
→   𝛼, (34) 

�̂�
    𝑃    
→   𝜆, (35) 

as 𝑇 → ∞, where 
    𝑃    
→    denotes convergence in probability, that is, the estimators �̂� and �̂� are 

consistent. 

Proof of Corollary 2. To prove consistencies of the estimators, it is sufficient to show that the 

asymptotic variances 𝜗11 and 𝜗22 converge to zero as 𝑇 → ∞. It is clear that, the number of completely 

observed inter-arrival times 𝑛𝑗  for each process increases as the observation ending time 𝑇 increases. 

That is, 𝑛𝑗 → ∞ for 𝑗 = 1,… , 𝑟 as 𝑇 → ∞. Then, 𝐹𝑛𝑗+1(𝑡𝑗) converges to 1 if 𝛼 > 0, or it converges to 

0 if 𝛼 < 0 as 𝑇 → ∞, regardless of the value of censoring time 𝑡𝑗, for 𝑗 = 1,… , 𝑟. It is obvious that, 

𝑛𝑗 ≃ 𝑛𝑗 + 1, where " ≃ " denotes asymptotic equivalence. (Kara et al., 2019) showed that, 

∑ln(𝑖)

𝑛

𝑖=1

≃ 𝑛(ln(𝑛) − 1), (36) 

∑ln2(𝑖)

𝑛

𝑖=1

≃ 𝑛(2 + ln2(𝑛) − 2ln(𝑛)). (37) 
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Furthermore, all 𝑛𝑗’s are asymptotically equal as 𝑇 → ∞. Let 𝑛∗ denotes an asymptotical equivalent of 

𝑛𝑗’s. Then,  

𝜗11 ≃
𝑟𝑛∗

[𝑟 ∑ ln2(𝑖)𝑛∗
𝑖=1 ]𝑟𝑛∗ − [𝑟 ∑ ln(𝑖)𝑛∗

𝑖=1 ]
2. (38) 

𝜗22 ≃ 𝜆
2

𝑟 ∑ ln2(𝑖)𝑛∗

𝑖=1

[𝑟 ∑ ln2(𝑖)𝑛∗
𝑖=1 ]𝑟𝑛∗ − [𝑟 ∑ ln(𝑖)𝑛∗

𝑖=1 ]
2. (39) 

By considering the asymptotic equivalences given in Equation (36) and (37), 𝜗11 → 0 and 𝜗22 → 0 as 

𝑇 → ∞, since the denominators of both terms are of higher order than the numerators. So, the proof is 

concluded.   

Asymptotic distributions of the maximum likelihood estimators of 𝜇 and 𝜎2 are given below. 

Corollary 3. Let �̂� and �̂�2 be maximum likelihood estimators of the parameters 𝜇 and 𝜎2 based on the 

data 𝑿𝑡. Then, as 𝑇 → ∞, 

�̂�~𝐴𝑁(𝜇, 𝜇4𝜗22), (40) 

�̂�2~𝐴𝑁(𝜎2, 4(𝜎2)3𝜗22). (41) 

Proof of Corollary 3. It is known that, �̂� = 1/�̂� and �̂�2 = 1/�̂�2. Let 𝑔1(𝑥) = 1/𝑥 and 𝑔2(𝑥) = 1/𝑥
2. 

Then, �̂� = 𝑔1(�̂�) and �̂�2 = 𝑔2(�̂�). First derivatives of the functions 𝑔1(𝑥) and 𝑔2(𝑥) are obtained as 

𝑔1
′ (𝑥) = −1/𝑥2 and 𝑔2

′ (𝑥) = −2/𝑥3. The result is clear via the well-known delta method since 

[𝑔1
′ (𝜆)]2 = 1/𝜆4 and [𝑔2

′ (𝜆)]2 = 4/𝜆6, 𝜇 = 1/𝜆 and 𝜎2 = 1/𝜆2.  

Corollary 4. Let �̂� and �̂�2 be maximum likelihood estimators of the parameters 𝜇 and 𝜎2 based on the 

data 𝑿𝑡. Then, as 𝑇 → ∞, 

�̂�
    𝑃    
→   𝜇, (42) 

�̂�2
    𝑃    
→   𝜎2, (43) 

that is, the estimators �̂� and �̂�2 are consistent. 

Proof of Corollary 4. The result is obvious by continuous mapping theorem since the estimators �̂� and 

�̂�2 are functions of �̂�, which is proved to be consistent in Corollary 2. 

It should be noted that, the maximum likelihood estimators of the parameters are derived under 

the ASP model. However, the goodness-of-fit of the ASP model for the data 𝑿𝑡 must be tested. For 

this purpose, the hypothesis 𝐻0: 𝛼 = 0 against 𝐻1: 𝛼 ≠ 0 may be tested with the following test statistic  

𝑆 = �̂�/�̂�11 to distinguish the ASP from its non-monotonic counterpart RP. Here, �̂�11 is obtained by 

replacing 𝐹𝑛𝑗+1(𝑡𝑗) with its estimation �̂�𝑛𝑗+1(𝑡𝑗) = 1 − 𝑒
−(𝑛𝑗+1)

�̂��̂�𝑡𝑗. From Slutsky and continuous 

mapping theorem, 𝑆~𝐴𝑁(0,1) under 𝐻0. Therefore, the hypothesis 𝐻0: 𝛼 = 0 is rejected at 

significance level 𝛼∗ if |𝑆| > 𝑧𝛼∗/2, where 𝑧𝛼∗/2 denotes upper 𝛼∗/2 tail of the standard normal 

distribution. Then, it is concluded that the data 𝑿𝑡 has a trend and it can be modelled by the ASP. 

Simulation Study 

In this section, we carry out a Monte Carlo simulation to observe small sample performances of 

the maximum likelihood estimators �̂�, �̂� and �̂�2. All the results are given in Table 1 below. 

In simulations, the number of replications is chosen as 𝑁 = 1000. The simulation has been 

conducted under different parameter settings but, for sake of simplicity, some of them are summarized 

in Table 1 since the results are similar. The number of independent samples is chosen as 𝑟 = 2, 3, 4 

and the observation ending time is chosen as 𝑇 = 20, 30, 50. In the numerical computation of �̂� while 

utilizing the Newton-Raphson algorithm, the tolerance level is chosen as 𝜀 = 1/1000.  
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Table 1. Results for the maximum likelihood estimators under different settings of parameters 

𝛼 = −0.8, 𝜆 = 5, 𝜇 = 0.2,  𝜎2 = 0.04  
 𝑛∗ �̂� �̂� �̂� �̂�2 

𝑟 = 2, 𝑇 = 20 18 -0.7964 5.4748 0.2317 0.1063 

  0.0448 4.4986 0.0527 0.5252 

𝑟 = 3, 𝑇 = 20  -0.7993 5.3398 0.2153 0.0647 

  0.0287 2.9050 0.0184 0.0806 

𝑟 = 4, 𝑇 = 20  -0.8056 5.2779 0.2073 0.0480 

  0.0189 2.2302 0.0050 0.0019 

𝑟 = 2, 𝑇 = 30 22 -0.8008 5.4757 0.2351 0.1449 

  0.0372 4.0617 0.0898 1.4882 

𝑟 = 3, 𝑇 = 30  -0.8095 5.3567 0.2073 0.0496 

  0.0178 2.6159 0.0067 0.0047 

𝑟 = 4, 𝑇 = 30  -0.8029 5.2474 0.2073 0.0474 

  0.0145 2.0981 0.0044 0.0014 

𝑟 = 2, 𝑇 = 50 30 -0.8007 5.3340 0.2153 0.0587 

  0.0191 3.0708 0.0124 0.0216 

𝑟 = 3, 𝑇 = 50  -0.7997 5.2027 0.2096 0.0485 

  0.0123 2.1538 0.0046 0.0014 

𝑟 = 4, 𝑇 = 50  -0.8031 5.1916 0.2059 0.0457 

  0.0096 1.6487 0.0033 0.0009 

𝛼 = 0.2, 𝜆 = 1, 𝜇 = 1,  𝜎2 = 1  
 𝑛∗ �̂� �̂� �̂� �̂�2 

𝑟 = 2, 𝑇 = 20 34 0.1504 1.1485 0.9203 0.8970 
  0.0082 0.0804 0.0555 0.2332 
𝑟 = 3, 𝑇 = 20  0.1668 1.1179 0.9748 1.0475 
  0.0090 0.1040 0.1080 0.5880 
𝑟 = 4, 𝑇 = 20  0.1845 0.9774 1.0365 1.0885 
  0.0025 0.0135 0.0158 0.0697 
𝑟 = 2, 𝑇 = 30 56 0.1929 1.0855 1.0333 1.2119 
  0.0115 0.1274 0.1602 0.9905 
𝑟 = 3, 𝑇 = 30  0.1949 0.9996 1.0316 1.1005 
  0.0022 0.0305 0.0402 0.1984 
𝑟 = 4, 𝑇 = 30  0.2029 1.0533 0.9749 0.9748 
  0.0027 0.0338 0.0272 0.1052 
𝑟 = 2, 𝑇 = 50 102 0.2065 1.0152 1.0707 1.2457 
  0.0077 0.0925 0.1102 0.6089 
𝑟 = 3, 𝑇 = 50  0.1941 1.0432 1.0242 1.1153 
  0.0050 0.0801 0.0736 0.3123 
𝑟 = 4, 𝑇 = 50  0.1977 1.0299 1.0117 1.0667 
  0.0033 0.0467 0.0480 0.2144 

It should be noted that, the number of inter-arrival times for each sample is random due to 

randomness of inter-arrival times although the observation ending time is pre-defined. That is, the 

sample sizes in each simulation are random. So, we give mean number of inter-arrival times in each 

sample as 𝑛∗. It is obvious that, the number of inter-arrival times in each sample increases as the 

observation ending time 𝑇 increases. In Table 1, the first rows give simulation mean of the estimators 

and the second rows give simulation variance of the estimators.  

RESULTS AND DISCUSSION  

The ASP is an important monotonic stochastic model commonly used in applied probability 

fields. It is more convenient than its some counterparts due to its moderate trend behaviour. When a 

data set having monotonic trend is analysed, it is important to estimate the parameters of model. In the 

literature, estimation problem for an ASP is well studied. All existing studies consider single 

realization of the process, that is, there is only one sample of data. However, there may occur multi-

sample of the process. There isn’t any study in the literature dealing with this situation. It should be 
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noted, all the existing studies only consider complete sample case though the multi-sample may 

include both complete and censored samples. For this purpose, the multi-sample case for an ASP has 

been considered statistically.  

When the results given in Table 1 are analysed, it is seen that the maximum likelihood estimators 

�̂�, �̂� and �̂�2 perform well regardless of the different parameter settings. All the estimators have small 

biases even if the observation ending time 𝑇 is relatively short. However, they seem to be 

asymptotically unbiased as the biases decrease as observation ending time 𝑇 or number of independent 

samples 𝑟 increases. Further, their variances decrease as 𝑇 or 𝑟 increases. Because the number of 

observed inter-arrival times increases as 𝑇 or 𝑟 increases. These results support the consistencies of the 

estimators which is theoretically proved above.  

It has been observed that, the model parameters of an ASP can be effectively estimated based on 

the multiple homogeneous samples which may include both complete and censored inter-arrival times. 

The maximum likelihood estimators perform well with different parameter settings.  

CONCLUSION 

In this study, the ASP has been analysed statistically by assuming that the inter-arrival times 

have exponential distribution and that the data available consists of multiple homogeneous samples 

which have both complete and censored samples. The maximum likelihood estimators for the 

parameters of ASP have been obtained and their asymptotic properties have been established. 

Asymptotic distributions have been derived and consistencies of the estimators have been proved. 

Besides the asymptotic properties of the estimators, their small sample behaviours have been 

investigated. Also, a test statistic to distinguish ASP from a RP has been introduced. It has been 

exhibited that, statistical estimation for an ASP based on multi-sample is quite efficient. It should be 

noted that, the multiple samples of an ASP have been assumed to be homogeneous. However, if there 

is not enough evidence to assume homogeneity, it must be tested statistically whether the samples are 

homogeneous. Further, the inter-arrival times are assumed to have exponential distribution. To widen 

the present study, some general distributions such as gamma distribution, Weibull distribution, log-

normal distribution, etc. may be taken as the distribution of inter-arrival times. These cases should be 

considered as a future study.  

ACKNOWLEDGEMENTS 

The authors thank the anonymous reviewers for their careful reading and contribution. 

Conflict of Interest 

The article authors declare that there is no conflict of interest between them. 

Author’s Contributions  

The authors declare that they have contributed equally to the article.  

REFERENCES  

Altındağ, Ö., & Aydoğdu, H. (2021). Estimation of renewal function under progressively censored 

data and its applications. Reliability Engineering & System Safety, 216, 107988. 

Aydoğdu, H., & Altındağ, Ö. (2016). Computation of the mean value and variance functions in 

geometric process. Journal of Statistical Computation and Simulation, 86(5), 986-995. 

Aydoğdu, H., & Kara, M. (2012). Nonparametric estimation in α-series processes. Computational 

statistics & data analysis, 56(1), 190-201. 



Ömer ALTINDAĞ et al. 14(3), 1280-1290, 2024 

Estimation in 𝜶-Series Processes with Exponential Inter-Arrival Times under Censored Data 

 

1290 

Barlow, R. E., & Proschan, F. (1996). Mathematical theory of reliability. Society for Industrial and 

Applied Mathematics. 

Blischke, W. R., & Murthy, D. P. (2011). Reliability: modeling, prediction, and optimization. John 

Wiley & Sons. 

Braun, W. J., Li, W., & Zhao, Y. Q. (2005). Properties of the geometric and related processes. Naval 

Research Logistics (NRL), 52(7), 607-616. 

Braun, W. J., Li, W., & Zhao, Y. Q. (2008). Some theoretical properties of the geometric and α-series 

processes. Communications in Statistics—Theory and Methods, 37(9), 1483-1496. 

Chukova, S., & Hayakawa, Y. (2004). Warranty cost analysis: Non‐zero repair time. Applied 

Stochastic Models in Business and Industry, 20(1), 59-71. 

Fleming, T. R., & Harrington, D. P. (2013). Counting processes and survival analysis (Vol. 625). John 

Wiley & Sons. 

Jiang, R. (2020). A novel two-fold sectional approximation of renewal function and its applications. 

Reliability Engineering & System Safety, 193, 106624 

Kara, M., Aydoğdu, H., & Şenoğlu, B. (2017a). Statistical inference for α-series process with gamma 

distribution. Communications in Statistics-Theory and Methods, 46(13), 6727-6736. 

Kara, M., Türkşen, Ö., & Aydoğdu, H. (2017b). Statistical inference for α-series process with the 

inverse Gaussian distribution. Communications in Statistics-Simulation and Computation, 46(6), 

4938-4950. 

Kara, M., Altındağ, Ö., Pekalp, M. H., & Aydoğdu, H. (2019). Parameter estimation in α-series 

process with lognormal distribution. Communications in Statistics-Theory and Methods, 48(20), 

4976-4998. 

Lam, Y. (1988). Geometric processes and replacement problem. Acta Mathematicae Applicatae Sinica, 

4, 366-377. 

Lam, Y. (2007). The geometric process and its applications. World Scientific. 

Park, S., Balakrishnan, N., & Zheng, G. (2008). Fisher information in hybrid censored data. Statistics 

& probability letters, 78(16), 2781-2786. 

Pekalp, M. H., & Aydoğdu, H. (2021). Power series expansions for the probability distribution, mean 

value and variance functions of a geometric process with gamma interarrival times. Journal of 

Computational and Applied Mathematics, 388, 113287. 

Zheng, G., & Gastwirth, J. L. (2001). On the Fisher information in randomly censored data. Statistics 

& probability letters, 52(4), 421-426. 


