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Abstract: The production of aquatic products is a critical global industry that 

provides employment and livelihoods to millions of people, aiming to compensate 

for the increasing population and insufficient terrestrial resources. To bridge the 

demand–supply gap in seafood production, the use of production technologies in the 

industry has intensified, but has raised concerns about potential public health threats. 

For instance, increased stocking densities in aquaculture settings have increased fish 

stress, creating an environment conducive to pathogen proliferation. Antibiotics are 

widely used to treat and prevent infections in fish and other animals. The emergence 

of antibiotic-resistant bacteria in fish and other aquatic animals, as well as in the 

aquatic environment, has created reservoirs of resistant bacteria and resistance 

genes. To some extent, antibiotic resistance in aquaculture has contributed to 

resistance to antimicrobial agents in human pathogens thereby severely limiting 

therapeutic options during human infections. Therefore, responsible and monitored 

use of antibiotics in aquaculture is paramount. This review consolidates the 

knowledge on commonly used antibiotic types in aquaculture, antibiotic 

administration, antibiotic susceptibility test techniques, and antibiotic resistance in 

water, fish, and sediments. The challenges, strategies, and constraints in 

counteracting antibiotic resistance and prospects for antibiotic use in aquaculture are 

discussed. 
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Özet: Su ürünleri üretimi, artan nüfüs, karasal kaynakların yeterli olmamasına bağlı 

olarak açığı karşılamak adına milyonlarca insana istihdam ve geçim sağlayan kritik 

bir küresel endüstridir. Sektördeki üretim teknolojilerinin yoğunlaşması, deniz 

ürünleri üretimindeki arz-talep açığını kapatmak için ortaya çıkmıştır, ancak 

potansiyel halk sağlığı tehditlerine ilişkin endişeler gündeme gelmiştir. Örneğin, su 

ürünleri yetiştiriciliği ortamlarında artan stok yoğunlukları balıklarda stresin 

artmasına yol açarak patojen çoğalmasına elverişli bir ortam yaratmıştır. 

Antibiyotikler balıklarda ve diğer hayvanlarda bakteriyel enfeksiyonların 

tedavisinde ve önlenmesinde yaygın olarak kullanılmaktadır. Balıklarda ve diğer su 

canlılarında, ayrıca sucul ekosistemlerde antibiyotiklere dirençli bakterilerin ortaya 

çıkması, dirençli bakterilerin ve direnç genlerinin rezervuarlarını oluşturmuştur. 

İnsan patojenlerindeki antimikrobiyal maddelere karşı direnç, insan enfeksiyonları 

sırasında tedavi seçeneklerini ciddi şekilde sınırlamaktadır. Bu derleme, su ürünleri 

yetiştiriciliğinde yaygın olarak kullanılan antibiyotik türleri, antibiyotik uygulaması, 

antibiyotik duyarlılık test teknikleri ve su, balık ve sedimentteki antibiyotik direnci 

hakkındaki bilgileri bir araya getirmektedir. Antibiyotik direnciyle mücadelede 

karşılaşılan zorluklar, stratejiler ve kısıtlamaların yanı sıra su ürünleri 
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yetiştiriciliğinde antibiyotik kullanımına yönelik beklentiler de tartışılmaktadır. 

  

 

1. INTRODUCTION 
Seafood farming has long been a vital source of nutrition and income for people worldwide 

(Charlton et al., 2016; Nyboer et al., 2022; Popoola, 2022). Aquaculture has intensified to meet the 

growing global demand for seafood. Intensification increases production efficiency, yields, and 

enables more sustainable use of aquatic resources. It addresses the challenges of overfishing and 

provides a controlled environment for optimizing fish growth. Additionally, intensified aquaculture 

contributes to economic development by creating employment opportunities and supporting the 

livelihoods of millions of people worldwide (Kumar et al., 2020; Morshdy et al., 2022; Opiyo et al., 

2018). That notwithstanding, intensive aquaculture has consequently increased the frequency of fish 

stressors, including the proliferation of diverse disease-causing microorganisms, particularly 

pathogenic bacteria (Chang et al., 2020; Lulijwa et al., 2020; Oviedo-Bolaños et al., 2021; Romero et 

al., 2012; Zhang et al., 2023). Largely antibiotics have being widely used to prevent and treat bacterial 

diseases in fish culturevia fish feed, baths or immersion, and injections, amongst others (Gupta et al., 

2019; Hurdle et al., 2011; Imran et al., 2022; Shan et al., 2018; Terzi et al., 2020). There have been 

widespread reports of indiscriminate use of antibiotics in fish farming, leading to antibiotic resistance 

in the pathogen population (Capkin et al., 2015). Upon exposure to antibiotics, vulnerable bacteria 

perish allowing surviving ones to transmit resistance traits to future generations through biological 

mutations, DNA exchange, and rapid replication. (Begum et al., 2018; Frieri et al., 2017; MacGowan 

and Macnaughton, 2017; Ray et al., 2017). Antibiotic resistance in fish poses a global threat to public 

health. Resistant bacteria in fish can be transmitted to humans through the consumption of 

contaminated fish or environmental pathways (Fletcher, 2015; Skandalis et al., 2021). If not curtailed, 

the continued development of antibiotic resistance in fish may impede Sustainable Development Goal 

3, which aims to promote good health and well-being (MacGowan & Macnaughton, 2017).  

In this review, we discuss commonly used chemicals in fish health, routes of antibiotic 

administration, commonly used antimicrobial susceptibility testing techniques, and antibiotic 

resistance in water, fish, and sediment. The challenges, strategies, and constraints in counteracting 

antibiotic resistance, and prospects for antibiotic use in aquaculture are discussed as well. We hope 

that the knowledge shared in this review will enhance our understanding of antibiotic usage and 

pragmatic ways to help curb the growing menace associated with its use in aquaculture. 

1.1. Antibiotic Groups Used in Aquaculture 

Commonly used antibiotics in aquaculture include various substances. According to Schar et al. 

(2020), antibiotics such as quinolones, tetracyclines, amphenicols, and sulfonamides, which are 

classified as critically important for human medicine by the World Health Organization (WHO), 

account for 27%, 20%, 18%, and 14% use in aquaculture operations respectively. Other classes of 

antibiotics such as cephalosporins, lincosamides, and macrolides are less used in aquaculture. 

Enrofloxacin (Dawoodet al., 2018), chloramphenicol and amoxicillin ( Apenteng et al., 2022; Abarike 

et al., 2023) are emerging antibiotics currently used in aquaculture settings (Corum et al., 2022; Uney 

et al., 2021). The choice of antibiotics in aquaculture is influenced by susceptibility of the fish species 

to various bacterial diseases, availability and accessibility of different antibiotics, ability to accurately 

diagnose diseases, presence of antibiotic-resistant bacteria, and regulations in the target markets for 

fish products, especially those related to food safety and certifications. 

1.2. Antibiotic Administration in Aquaculture  

In aquaculture, various fish species are commonly treated with antibiotics to manage bacterial 

infections and ensure their health. In Table 1, fish species, commonly used and routes/mode of 

antibiotic administration methods in aquaculture are shown.  
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Table 1. Examples of culture fish, antibiotic types, and route of administration.  

Fish Species Antibiotic (s) Used 
Mode of 

Administering 
References 

Catfish (Clarias gariepinus) 
Oxytetracycline and 

furasol 
Oral 

(Lawal, et al., 

2012) 

European sea bass larvae 

(Dicentrarchus labrax L.,) 
Oxolinic acid Bath 

(Touraki et al., 

2012) 

Nile tilapia (Oreochromis 

niloticus) 
Florfenicol Oral 

(Gaikowski, et al., 

2013) 

Fairy shrimp (Branchinella 

thailandensis) 

Sodium hypochlorite, 

oxytetracycline dehydrate 

and chloramphenicol 

Bath 
(Saejung et al., 

2014) 

Pangasius catfish  
Enrofloxacin and 

ciprofloxacin 
Oral 

(Andrieu et al., 

2015) 

Nile tilapia (O. niloticus) 

Chlortetracycline, 

doxycycline, florfenicol 

flumequine, nalidixic acid 

sulfadiazine sulfathiazole  

Oral and injection  
(Mostafa et al., 

2017) 

Nile tilapia 

(Oreochromis niloticus) 
Oxytetracycline (OTC)  Oral and bath 

(Julinta et al., 

2017) 

Crucian carp (Carassius 

auratus gibelio) 
Enrofloxacin 

Oral, intramuscular 

and bath  
(Shan et al., 2018) 

Nile tilapia (Oreochromis 

niloticus) 
Oxytetracycline Oral 

(Limbu, et al., 

2019) 

Nile tilapia (Oreochromis 

niloticus) 
Emamectin benzoate Oral 

(Julinta et al., 

2020) 

Rainbow trout (Oncorhynchus 

mykiss) 
Danofloxacin 

Oral and injection 

(intravenous, 

intramuscular)  

(Terzi et al., 2020) 

Rainbow trout 

(Oncorhynchus mykiss) 
Enrofloxacin Implantation 

(Hjelmstedt et al., 

2020) 

Yellow catfish 

(Pelteobagrus fulvidraco) 
Doxycycline Oral (Xu, et al., 2021) 

Olive flounders (Paralichthys 

olivaceus) 
Lincomycin Injection (Lee et al., 2022) 

Rainbow trout 

(Oncorhynchus mykiss) 
Doxycycline 

Injection (IV), (IM) 

and oral gavage 
Altan et al., 2024 

Rainbow trout 

(Oncorhynchus mykiss) 
Doxycycline Injection (oral gavage) Corum et al., 2023 

Rainbow trout 

(Oncorhynchus mykiss) 
Oxytetracycline Injection (oral gavage) Corum et al., 2023 

Nile tilapia (Oreochromis 

niloticus) 
Enrofloxacin 

Injection (IV), (IP) and 

oral gavage 
Corum et al., 2022 

Rainbow trout 

(Oncorhynchus mykiss) 
Cefquinome 

Injection (IV), (IP) and 

oral gavage 

Durna Corum et 

al., 2022 

 

1.3. Oral Route 

Oral administration is done by adding antibiotics to the water in which fish live or by mixing it 

with the feed administered (Shan et al., 2018; Terzi et al., 2020). The majority of practitioners use this 

method though there are concerns. For instance, oral administration of antibiotics leaves large amounts 

of antibiotic residues in the environment. In addition, fish do not effectively metabolize antibiotics and 

will pass approximately 75% of unused antibiotics back into the environment through feces (Okocha 

et al., 2018). Thus, this method has several disadvantages. Oral methods invariably contribute to the 

development of drug-resistant bacteria. Resistant bacteria can survive and multiply in the presence of 

those antibiotics, whereas susceptible bacteria can be eliminated. This can lead to the proliferation of 

resistant strains, thereby increasing the overall level of antibiotic resistance in aquaculture 

environments (Watts et al., 2017). The oral administration of antibiotics in aquaculture can facilitate 
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the transfer of resistance genes from antibiotic-exposed bacteria to others present in aquatic 

environments, thus increasing bacterial resistance (Sáenz et al., 2019). Other theoretical perspectives 

indicate that orally administered antibiotics could remain in the water and can contribute to the 

contamination of aquatic ecosystems when discharged through effluents from aquaculture facilities, 

promoting the development and persistence of antibiotic resistance in environmental bacteria (Okon et 

al., 2022). Oral antibiotics used in aquaculture can also affect non-target organisms, including bacteria 

that are beneficial or part of the natural microbial community. Disruption of the normal microbiota in 

aquatic environments can create ecological imbalances, allowing opportunistic or resistant bacteria to 

thrive. 

1.4. Injection 

Antibiotics could be injected intramuscularly, intraperitoneally, or intravenously into individual 

fish in response to a diseases situation. This enables precise dosage delivery and quicker action than 

other administration methods (Lee et al., 2022; Mostafa et al., 2017). Similarly, injecting antibiotics 

into fish can also contribute to the development of increased antibiotic resistance in aquaculture 

through various means, as described previously for oral administration. Moreso the injection method 

may not reach all infected fish in the population. This is because infections in aquaculture settings can 

spread rapidly, and treating individual fish can be logistically challenging. Thus, pathogenic bacteria 

may still persist and can potentially develop resistance to the antibiotics used. Unsuccessful 

eradication creates opportunities for bacterial transmission to other fish, further spreading antibiotic-

resistant strains (Skandalis et al., 2021). In addition, administering an appropriate dosage of antibiotics 

through injection can be challenging. Sometimes, underdosing occurs when the antibiotic 

concentration is insufficient to eliminate bacteria, which can again lead to the development of resistant 

strains (Pereira et al., 2022; Rossiter et al., 2017). Conversely, overdosing a times occurs leading to the 

selection and survival of more resistant bacteria that can withstand higher antibiotic concentrations 

(Manyi-Loh et al., 2018; Raju et al., 2022). 

1.5. Bath Administration 

This method of administration works well for skin and gill infections but may contaminate the 

environment and lead to the growth of antibiotic-resistant bacteria (Saejung et al., 2014; Touraki et al., 

2012). Also, bath treatments may result in variable doses and exposure levels in individual fish within 

a population (Jansen et al., 2016; Limbu et al., 2018). Factors such as fish size, behavior, and water 

flow can affect the amount of antibiotics absorbed by fish (Yukgehnaish et al., 2020). This can lead to 

inconsistent treatment outcomes and inconsistent effectiveness in controlling infections. Bath 

treatments expose the target pathogens and the normal microbiota and non-target organisms of fish in 

the aquatic environment to antibiotics. This exposure can disrupt the natural microbial balance, 

potentially leading to the development of antibiotic resistance in non-target bacteria and impacting the 

overall ecological health of the system. The exposure of bacteria to sub-lethal concentrations of 

antibiotics during bath treatments can promote the selection and survival of antibiotic-resistant strains. 

Resistant bacteria can emerge and spread within a treated population or be released into the 

environment, thereby contributing to the overall problem of antibiotic resistance (Bengtsson-Palme et 

al., 2018; Serwecińska, 2020; Ye et al., 2021). 

Aquaculture operators and researchers need to carefully consider the specific requirements of the 

aquaculture system and adhere to the regulations and best practices for responsible antibiotic use to 

address the challenges associated with the oral, injection, and bath methods of administering 

antibiotics to cultured fish. In addition, antibiotic resistance can be minimized by using antibiotics 

only when necessary, adhering to proper dosage guidelines, following withdrawal periods, and 

considering alternative disease management strategies, such as using probiotics and prebiotics, which 

minimize the use of antibiotics.  

Implementing good aquaculture management practices, such as improving water quality, 

optimizing nutrition, and enhancing biosecurity measures, can also help reduce the reliance on 

antibiotics and promote a healthier and more sustainable aquaculture industry (Treves-Brown, 2013). 

1.6. Common Antibiotic Susceptibility Tests used in Aquaculture  

Antibiotic susceptibility testing is essential for controlling bacterial infections in fish (Syal et al., 

2017; Terzi et al., 2020). This test helps to monitor the emergence of antibiotic-resistant bacteria and 
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determine which antibiotics should be used to treat bacterial infections (Baltekin et al., 2017; Syal et 

al., 2017). This examination has shown promise in aquaculture environments and is crucial for 

controlling bacterial infections in fish populations. Finding the best antibiotics to treat bacterial 

infections in fish is paramount for breeding healthy fish for consumption. To date, disk diffusion and 

microdilution are the two predominant techniques used to analyze antibiotic susceptibility tests (Goel 

et al., 2009; Jayachandran et al., 2018). Generally, antibiotic susceptibility test (AST) methods have 

major limitations. This includes the constantly evolving bacteria antibiotic resistance mechanisms of 

bacteria that enable them to adapt and develop new mechanisms to evade antibiotics. As traditional 

AST methods rely on established resistance patterns, continually evolving can evade these methods as 

they become outdated and fail to detect emerging resistance. Therefore, traditional susceptibility test 

methods may not accurately detect certain types of resistance, such as low-level resistance, inducible 

resistance, or specific mechanisms, such as efflux pumps or enzymatic inactivation of antibiotics. This 

can lead to the misinterpretation of susceptibility results and inappropriate antibiotic selection. Testing 

the susceptibility of certain bacteria is inherently challenging because of their slow growth and 

fastidious nature. Examples include certain species of Mycobacterium and anaerobic bacteria (Van 

Belkum et al., 2020). These organisms may require specialized test methods or prolonged incubation 

periods, further adding to the time and complexity of susceptibility testing. Bacteria with biofilm 

features can exhibit increased antibiotic resistance compared with their planktonic counterparts. 

Therefore, standard susceptibility test methods may not adequately capture the antibiotic resistance 

displayed by biofilm-associated bacteria. Antibiotic susceptibility testing is typically performed under 

laboratory conditions, which may not completely represent the complex environment encountered in 

fish bodies during infection. Factors such as the host immune response, bacterial interactions, and 

tissue penetration of antibiotics cannot be fully simulated in vitro. As a result, susceptibility test results 

may not always accurately predict the clinical response to antibiotics (Ahmed et al., 2018; Berlanga et 

al., 2017; Sønderholm et al., 2017). 

1.7. Disc Diffusion Method 

The disk diffusion method, a longstanding approach in AST, remains widely used due to its 

versatility and applicability for testing most bacterial pathogens (Matuschek et al., 2014). To interpret 

AST results, critical values called breakpoints are employed. These breakpoints define the boundary 

between susceptibility and resistance for each antimicrobial agent International organizations, such as 

the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial 

Susceptibility Testing (EUCAST), establish these breakpoints (Satlin et al., 2020). While various 

European national antimicrobial breakpoint committees (e.g., BSAC, CA-SFM, DIN, and SRGA) 

have developed their own disk diffusion methods, there was no standardized method calibrated to 

European breakpoints. Consequently, EUCAST initiated the development of a harmonized disk 

diffusion method calibrated to the minimum inhibitory concentration (MIC) for accurate interpretation 

of results (Matuschek et al., 2014). 

In the disc diffusion method, a petri dish containing isolated fish-derived bacterial colonies is 

positioned on sterile paper discs with a specific antibiotic concentration (Jonasson et al., 2020). As the 

antibiotics diffused out of the disc and into the agar medium, the zone of inhibition surrounding the 

disc is measured. The susceptibility of bacteria to antibiotics can be determined by the size of the zone 

of inhibition (Bakht et al., 2011; Jonasson et al., 2020). Several aquaculture studies have used the disk 

diffusion assay as a model to study antibiotic susceptibility potency against isolates from fish species. 

Recently, Wanja et al. (2020) used the disk diffusion assay to study the susceptibility rate of some 

selected antibiotics (including ampicillin, tetracycline, co-trimoxazole, streptomycin, kanamycin, 

gentamicin, and chloramphenicol) on some 48 isolates belonging to Aeromonas, Proteus, Klebsiella, 

Citrobacter, Salmonella, Streptococcus, Pseudomonas, Escherichia, Serratia, and Micrococcus. They 

reported that the overall susceptibility rates for each antibiotic for all the bacterial isolates were the 

highest for gentamicin (100%, n = 48) and kanamycin (92%, n = 44). In addition, Wamala et al. 

(2018) used a disk diffusion assay to evaluate the susceptibility of 14 antibiotics against isolates 

(Aeromonas hydrophila, Aeromonas sobria, Edwardsiella tarda, Flavobacterium spp, and 

Streptococcus spp.) from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African 

catfish). This study revealed that all isolates tested were susceptible to at least ten of the 14 antibiotics 
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evaluated. Through a disc diffusion assay, they further revealed that all isolates expressed high levels 

of resistance to penicillin, oxacillin, and ampicillin. Moreover, using a disc diffusion assay, Pauzi et al. 

(2020) reported the antibiotic resistance of A. hydrophila to amikacin, ampicillin, cefotaxime, 

amoxicillin, trimethoprim-sulfamethoxazole, erythromycin, and streptomycin, with a multiple 

antibiotic resistance index of 0.5. This indicates that these drugs are not sufficiently potent to kill the 

aforementioned isolates, making it imperative to look for alternative antibiotics when the disease 

persists. We are optimistic that studies of this nature will provide baseline information for future 

reference and fish disease management. 

1.8. Broth Microdilution Method 

The broth microdilution method involves evaluating the resistance of bacteria to various antibiotic 

concentrations in a liquid medium. Following incubation, the bacteria are cultured in wells containing 

antibiotics at different concentrations and bacterial growth evaluated. The concentration at which 

bacterial growth is inhibited is known as the minimum inhibitory concentration (MIC) of that 

antibiotic (Indira, 2014; Pfaller & Diekema, 2012). It is important to note that the appropriate 

antibiotic susceptibility test depends on the type of bacteria being examined. Microdilution assays 

provide valuable information regarding the sensitivity of pathogens to antimicrobial substances and 

aid in determining appropriate treatment regimens in aquaculture. For example, Assane et al. (2021) 

used a broth microdilution method to evaluate the susceptibility of A. jandaei isolates from tilapia to 

enrofloxacin, florfenicol, oxytetracycline and thiamphenicol. They reported that strains isolated from 

tilapia in an earthen pond were resistant to oxytetracycline, whereas strains isolated from fiberglass 

tanks were sensitive to all antimicrobials. Monitoring changes in inhibition concentration values over 

time can help detect emerging resistance trends, allowing for the early implementation of appropriate 

management strategies and the development of alternative treatment options. 

1.9. Multidrug Resistance Bacteria in Aquaculture  

The rise of multidrug-resistant (MDR) strains poses a significant global challenge in both 

veterinary medicine and human health. An isolate is classified as MDR if it exhibits resistance to three 

or more classes of antimicrobials (Leal et al 2023). Bacteria exposed to antibiotics or other 

antimicrobials may develop resistance through a variety of mechanisms, such as mutations and 

bacterial acquisition of resistance genes (Algammal et al., 2022; Sivaraman et al., 2020). Antibiotics 

are commonly detected in aquaculture water with geographical variations due to different farming 

practices and species composition (Yuan et al 2023). The prevalence and distribution of MDRisolates 

in water sources represent a critical global issue with significant implications for public health. 

Numerous surveillance studies have highlighted the alarming presence of MDR bacteria in various 

water bodies, including rivers, lakes, and municipal water supplies. For example, bacterial strains 

including Salmonella, Escherichia coli, Pseudomonas spp., Aeromonas spp., and Vibrio spp. have 

been identified as the most prevalent MDR found in water (Legario et al., 2020; Patil et al., 2016; 

Yang et al., 2017). Antibiotic presence in water could be affected by solubility, frequency of use, and 

growth stages of cultured organisms. Environmental conditions such as dry seasons and extreme 

temperatures, also influence antibiotic concentrations (Yuan et al 2023). Factors such as antibiotic 

pollution, contamination from human and animal waste, and the potential for horizontal gene transfer 

contribute to the emergence and persistence of MDR isolates in the aquatic environment. Martínez 

(2015) and Chen et al. (2019) demonstrated that antibiotic residues in water can create selective 

pressures, driving the evolution of antibiotic resistance in aquatic environments. A report by Ikhrami 

et al. (2024) showed that antibiotic resistance genes have recently emerged as environmental 

contaminants. Water from irrigation canals, which receives contamination from river pollutants, can 

become a hotspot for antimicrobial resistant genes such as sulfonamide (sul1), tetracycline (tetA), 

beta-lactam (blaGES), and multidrug resistance.  

In addition to the immediate health risks posed by MDR isolates in water, there are broader 

concerns regarding their impacts on ecosystems and the environment. The presence of antibiotic-

resistant bacteria in aquatic ecosystems can disrupt the ecological balance and biodiversity, potentially 

leading to long-term environmental consequences. Studies conducted by D'Costa et al. (2011) and 

Wright (2016) highlighted the role of aquatic environments in facilitating the transfer of resistance 

genes between bacteria and accelerating the spread of antibiotic resistance. Furthermore, the spread of 



 
Abarike et al., 2024 Acta Aquat. Turc., 20(4): 367-387 373 

 

 
 

 
 

antibiotic resistance through water sources has implications beyond human health and affects 

agriculture and animal husbandry. Aquaculture serves as a hotspot for the transfer of resistance genes. 

In a review by Hossain et al (2022), MDR strains are increasingly detected in fish and the aquaculture 

environment, posing a significant threat to medical treatment options and contributing to unwanted 

deaths. Also, effluents from wastewater treatment plants on farm ways can increase the prevalence of 

antibiotic resistance bacteria in waterbodies. It has been found that MDR bacteria isolates persist in 

aquatic environments and these bacteria isolates possess genes associated with resistance. In some 

studies, for instance, Aeromonas spp. strains from urban wastewater treatment and Clostridium 

perfringens from water samples have been reported. Sustainable solutions should prioritize the 

protection of public health, the preservation of ecosystems, and the promotion of responsible antibiotic 

usage across various sectors, as emphasized by Larsson (2014) and Collignon et al. (2018). 

Considering all of the above, a conclusion can be made that the interconnectedness of aquaculture, 

terrestrial environments, and human populations facilitates bacterial transmission. The One Health 

concept, recognizing links between human, animal, and environmental health, offers a holistic 

approach to tackle antimicrobial resistance. By embracing this approach, we can safeguard the future 

of aquaculture while ensuring health, food safety, and environmental protection (Milijasevic et al., 

2024). Understanding these factors and their geographical and seasonal variations is essential for 

devising effective mitigation strategies. Such strategies include improving water treatment processes, 

promoting antibiotic stewardship, and adopting a One Health approach that integrates efforts across 

human and veterinary medicine, agriculture, and environmental sciences. By collectively addressing 

this issue, as proposed by Wang et al. (2021), we can work towards safeguarding water quality and 

minimizing the risks associated with MDR bacteria in water sources, ensuring access to safe and clean 

water. Some other fish-related bacteria with antibiotic resistance genes have also been isolated from 

fish. For example, Listeria innocua isolated from catfish fillets and Enterococcus faecium strain 

isolated from ready-to-eat raw fish have been reported in rainbow trout. The dissemination of 

antibiotic resistance genes in the environment poses a significant concern (Chen et al., 2010). Table 2 

shows bacteria isolates with antimicrobial resistance from commonly cultured fish.  
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Table 2. Bacterial isolates with antimicrobial resistance from commonly cultured fish. 

Fish Species Isolates 
Aquaculture 

Facility 
Resistance to Antibiotic (s) References 

Catfish 
Aeromonas 

hydrophila 
Pond Tetracycline 

(Nawaz et al., 

2006) 

Nile tilapia 
Aeromonas 

caviae 
Wet market 

Tetracycline, nitrofurantoin 

and augmentin 

(Ashiru, et al., 

2011) 

Catfish (Clarias 

gariepinus) and 

Tilapia (Tilapia 

mossambica) 

Salmonella spp. 
Wet market and 

ponds 

Chloramphenicol, 

clindamycin, rifampicin, 

spectinomycin, and 

tetracycline 

 

(Budiati et al., 

2013) 

Diseased catfish 

(Clarias 

gariepinus)  

Aeromonas 

hydrophila 
River  Ampicillin 

(Laith & 

Najiah, 2014) 

African catfish 

(Clarias 

gariepinus) 

Salmonella Spp. 
Fish farm and wet 

market 

Penicillin, clindamycin, 

tetracycline, and rifampicin  

 

(Sing et al., 

2016) 

Common carp 

(Cyprinus carpio 

carpio) fingerlings 

Aeromonas Spp. Pond 
Sulfadiazine-trimethoprim, 

oxytetracycline, florfenicol 

(Patil et al., 

2016) 

Channel catfish 
Aeromonas 

veronii 
River 

Ciprofloxacin, levofloxacin, 

and norfloxacin 

(Yang et al., 

2017) 

Red hybrid tilapia 

(Oreochromis spp.) 

Aeromonas 

hydrophila and 

Edwardsiella 

tarda 

River 

Novobiocin, ampicillin, 

spiramycin, and 

chloramphenicol 

(Lee & 

Wendy, 2017) 

Nile tilapia 

(Oreochromis 

niloticus) 

Streptococcus 

iniae and 

Streptococcus 

agalactiae 

Grow-out cages, 

ponds and 

hatcheries 

Oxolinic acid, 

sulphamethoxazole-

trimethoprim 

(Legario et al., 

2020) 

Pangasius catfish 

(Pangasius 

hypophthalmus) 

 

Escherichia coli 

 
Freezing factories 

Colistin, ampicillin, 

cefotaxime, streptomycin, 

meropenem, tetracycline, 

sulfamethoxazole/trimethopr

im and nalidixic acid  

(Salako et al., 

2020) 

Nile tilapia 

Aeromonas 

hydrophila, A. 

veronii, 

Pseudomonas 

fluorescens and 

P. aeruginosa 

Fish farm 
Sulphonamide and 

tetracycline 

(Sherif et al., 

2021) 

Nile tilapia 
Streptococcus 

Spp. 
Fish farm Florfenicol and tetracycline 

(Oviedo-

Bolaños et al., 

2021) 

Yellow catfish 
Aeromonas vero

nii 
Pond 

Ampicillin, tetracycline, 

trimethoprim-

sulfamethoxazole 

(Li, et al., 

2022) 

 

Verner-Jeffreys et al. (2009) observed a high prevalence of MDR bacteria and associated 

antimicrobial resistance genes in ornamental fish. For example, 47 of 94 Aeromonas spp. isolates 

recovered from tropical ornamental fish were tolerant to 15 or more antibiotics, representing seven or 

more classes of antimicrobials. The quinolone and fluoroquinolone resistance gene, qnrS2, was 

detected at a high frequency (37% of tested recent isolates were positive using PCR). In addition, the 

study found that (17.7%) of the isolates were identified as target microorganisms (high and critical 

priority pathogens on the WHO list). The same study reported that 80% of 628 strains of tetracycline-
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resistant (Tetr) and sulphamethoxazole-resistant (Sulr) bacteria associated with fish and shrimp 

samples were found resistant to more than one antibiotic. These findings suggest that ornamental fish 

act as reservoirs for both MDR bacteria and their resistance genes. Aeromonas pathogens were found 

in the gut and skin of treated fish, and biofilms became MDR to streptomycin, sulfamethoxazole, 

quinolones, fluoroquinolones, oxytetracycline, florfenicol, chloramphenicol, and trimethoprim. This 

increases the transfer of relevant genes to wider aquatic environments during harvesting (Naviner et 

al., 2011). These findings suggest that aquaculture fish also act as a reservoir for both MDR bacteria 

and resistance genes (Arias-Andres et al., 2018). The prevalence and distribution of MDR isolates in 

fish can be attributed to various factors, including the use of antibiotics in aquaculture. Miranda et al. 

(2018) highlighted the role of antibiotic use in fish farming as a major driver of antibiotic resistance in 

aquatic systems. Additionally, the interconnectedness of aquatic ecosystems enables the exchange of 

resistance genes between bacteria, facilitating the spread of resistance, as demonstrated in a study on 

fish by Bhullar et al. (2012). There is a correlation between the prevalence and distribution of MDR 

isolates in fish and their habitats. We hypothesized that lay aquaculture practitioners may have 

difficulty understanding the aetiology of these isolates and may misapply antibiotics to which the 

isolates have developed drug resistance. It is clear that efforts to reduce the prevalence of MDR 

bacteria in fish must take into account both environmental and human health impacts. Generally, 

antibiotic concentrations and ARG abundance in sediment are much higher than those in water (Yuan 

et al 2023). Antibiotics present in the water column can adhere to suspended particulate matter and 

eventually settle into sediment. Sediments tend to accumulate antibiotics due to their gradual 

hydrolysis in water. Numerous studies have demonstrated that antibiotic concentrations in sediments 

are higher than in water, primarily because of greater stability. In aquaculture settings, antibiotic 

residues may progressively accumulate in sediment, potentially contributing to the evolution of 

antibiotic-resistant pathogens (Yuan et al., 2023). 

The presence and distribution of MDR bacteria in aquatic sediments represent a critical 

environmental concern with potential implications for both ecosystems and human health. Factors 

contributing to the emergence and persistence of MDR bacteria in sediment environments are 

multifaceted. Sediments can act as sinks for antibiotic residues and resistance genes, providing 

favorable conditions for the selection and maintenance of antibiotic-resistant bacteria. Munir et al. 

(2011) demonstrated the accumulation of resistance genes in the sediments of a river receiving 

effluents from wastewater treatment plants. Additionally, sediment bacteria can exchange resistance 

genes through horizontal gene transfer, as shown in the research by Ma et al. (2019). Several studies 

have examined the prevalence of MDR bacteria in sediment samples collected from aquatic 

environments. For example, Amos et al. (2015) reported a high prevalence of antibiotic-resistant 

bacteria in sediment samples from rivers, lakes, and coastal areas, highlighting the extensive 

distribution of MDR bacteria in sediment matrices (Amos et al., 2015). Furthermore, a study 

conducted by Czekalski et al. (2016) investigated sediment samples from wastewater treatment plants 

and identified MDR bacteria, suggesting that these treatment systems may serve as reservoirs for 

antibiotic-resistance genes in sediment environments (Czekalski et al., 2016). Mitigating the 

prevalence of MDR bacteria in sediments is crucial for protecting aquatic ecosystems and minimizing 

potential human health risks.  

1.10. Challenges Associated with Antibiotic Resistance in Aquaculture  

The effects of antibiotic resistance in cultured fish are diverse. This poses a challenge for fish 

farmers, as it becomes increasingly difficult to treat infections effectively and maintain fish health 

(Algammal et al., 2022; Lafferty et al., 2015; Minich et al., 2018; Wamala et al., 2018). This can lead 

to higher mortality rates, slower growth rates, and financial losses for the fish farmers. Antibiotic-

resistant bacteria present in aquaculture systems have the potential to spread to surrounding water 

bodies, potentially affecting other aquatic organisms, such as wild fish, and disrupting the ecological 

balance, aggravating the issue on a broader scale (Okeke et al., 2022; Preena et al., 2020).  

Antibiotic-resistant bacteria in aquaculture pose a risk to human health. If fish-carrying resistant 

bacteria are not properly processed before consumption, transfer of antibiotic-resistance genes to 

humans is possible. This can compromise the effectiveness of antibiotics in treating human infections 

and contribute to the overall burden of antibiotic resistance in humans. The transmission of antibiotic-
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resistant bacteria from aquaculture to humans raises concerns regarding the risk of treatment failure 

and the limited availability of effective antibiotics to combat bacterial infections in both medical and 

agricultural contexts (Bengtsson-Palme et al., 2014; Collignon et al., 2018). 

Addressing antibiotic resistance in aquaculture requires a holistic approach emphasizing antibiotic 

use, disease prevention strategies, and robust surveillance systems. It is important to address the 

problem of antibiotic resistance in fish culture through open discussions among aquaculture farmers, 

governments, and researchers. These discussions should aim to develop and promote sustainable 

aquaculture practices that prioritize fish health and environmental and human well-being. 

Implementing responsible and careful use of antibiotics, strengthening biosecurity measures, 

promoting disease prevention through effective management practices, exploring alternative strategies 

for disease control, such as vaccines and probiotics, and improving the management of water quality 

in aquaculture systems should be priorities (Barnes et al., 2022; Desbois et al., 2021; Garza et al., 

2022). Additionally, there is a need to increase the surveillance and monitoring of antibiotic resistance 

in aquaculture settings to guide evidence-based interventions and policy decisions (Hoa et al., 2011). 

1.11. Strategies to Deal with Antibiotic Resistance in Aquaculture 
Addressing antibiotic resistance in aquaculture is a critical challenge for the industry and public 

health. According to WHO 2014, there is a need to encourage and promote responsible antibiotic use 

in human and veterinary medicine to minimize unnecessary antibiotic use. Various strategies include: 

1. Reduced antibiotic use. This is considered a fundamental strategy and includes limiting the 

prophylactic and growth-promoting use of antibiotics. In a study by Li et al. (2018), the impact of 

increasing antibiotic resistance in water was reduced by regularly monitoring water sources for the 

presence of antibiotics and resistant bacteria to identify contamination and track changes in resistance 

patterns. This information can be useful for implementing appropriate control measures. Belkina et al. 

(2017) stressed the need to raise public awareness and conduct educational campaigns on antibiotic 

resistance and its environmental impact, as this could lead to impactful behavioral changes. 

2. Alternative disease management practices. Adopting alternative disease management practices is 

crucial. Research suggests the potency of probiotics, immune stimulants, and herbal remedies as 

alternatives to antibiotics (Dangtip et al., 2019). Medicinal plants are gaining recognition as 

sustainable alternatives to antibiotics in aquaculture. Recent studies underscore the effectiveness of 

these natural compounds in boosting the immune response of aquatic species, thereby reducing 

dependence on synthetic antibiotics (Bondad-Reantaso et al., 2023). These plants provide eco-friendly 

solutions with minimal environmental impact and help address the issue of antibiotic resistance 

(Rahimi et al., 2022). The presence of phytogenic compounds such as phenolics, essential oils, 

pigments, alkaloids, terpenoids, tannins, polypeptides, polysaccharides, steroids, and flavonoids has 

shown promising results as immunostimulants, antibacterials, antioxidants, antiparasitics, and 

antivirals (Abdallah et al., 2023). 

3. Enhanced monitoring and surveillance. There is a need for better data collection and reporting of 

antibiotic usage to track resistance patterns in aquaculture settings (Cabello,2006).  

4. Improved farm management. Practices, such as improved water quality control and reduced 

stocking densities, can help prevent disease outbreaks, reducing the need for antibiotics (Mohanty et 

al., 2019).  

5. Regulatory measures. Regulating the use of certain antibiotics in aquaculture is pertinent and has 

been proposed by several research studies. For instance, Rico et al. (2014a) discuss the potential 

benefits of stricter regulations on antibiotic use in fish farming.  

6. Design of novel antibiotics to mitigate antibiotic resistance in aquaculture systems. 

Nanotechnology has emerged as a promising tool for biomedical applications to treat diseases. Shine 

et al. (2020) explored the antimicrobial potential of Parkia biglobosa-mediated gold nanoparticles, 

which effectively inhibited the growth of some clinical isolates. Another study by Cai et al. (2016) 

explored the potential of novel antimicrobial peptides in aquaculture disease management.  

7. To effectively combat antibiotic resistance, we must recognize it as both an environmental 

concern and a challenge related to livestock and wildlife. Integrating the One Health approach into the 

public health system is crucial for effectively addressing the emergence and spread of antibiotic-

resistant bacteria and resistance genes (Ajayi et al., 2024) 
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By adopting these strategies, aquaculture can move towards a more sustainable and responsible 

approach to antibiotic use, reducing the risk of antibiotic resistance in fish and promoting healthier 

aquatic ecosystems. 

Constraints to the Adoption of Antibiotic Resistance Strategies 

Although multiple strategies have been proposed to combat antibiotic resistance in aquatic 

environments, implementing these strategies may differ. However, these strategies face several 

constraints and challenges that hinder their adoption and effectiveness. There may be limited 

resources, infrastructure, or the political will to enforce regulations and best practices in some regions. 

This can lead to inconsistent results and a continued increase in antibiotic resistance. Transitioning 

away from antibiotics may require investment in infrastructure, research, and the development of new 

techniques, which aquaculture farmers or aquaculturists may not be able to fund. Rico et al. (2014b) 

addressed the economic considerations related to reducing antibiotic use in aquaculture. Additionally, 

the limited availability of alternatives has become a challenge. In some cases, viable alternatives to 

antibiotics are limited or underdeveloped. This underscores the need for research and innovation to 

identify and develop effective non-antibiotic disease management strategies (Dangtip et al., 2019).  

Lack of awareness and education among fish farmers and aquaculture practitioners is a dwindling 

factor. Practitioners and farmers may lack knowledge of antibiotic-related issues and alternative 

strategies. To understand the etiology and pathogenesis of disease outbreaks in an aquaculture setting, 

it is imperative to know the type of antibiotics to administer and the manufacturer’s requirements, such 

as the effective mode of administration, dosage required, and application time. It is important to 

recognise that regulatory and political challenges may not adequately address the use of antibiotics in 

aquaculture in some countries (Cabello,2006). One of the constraints that has gained prominence is the 

persistence of microbial resistance in aquaculture. Several studies investigated the resistant traits in 

isolated microbes. Genes responsible for antibiotic resistance may continue to circulate in bacterial 

populations and the environment, thus posing ongoing challenges (Ma et al., 2019).  

Addressing these constraints requires collaborative efforts among governments, industry 

stakeholders, researchers, and policymakers. Strategies to promote responsible antibiotic use and 

alternative disease management practices must consider economic, educational, regulatory, and 

cultural factors influencing adoption. 

1.12. Conclusion and Future Outlook 

Fish products are of great economic value and provide important nutrients. Against this 

background, aquaculture farmers have shifted from traditional fish-rearing methods to more intensive 

methods. However, the increasing incidence of bacterial transmission during intensive fish farming is 

a concern. Aquaculture is a contributing factor in spreading bacteria, as has been made evident in the 

majority of the studies analyzed. Although antibiotics are effective in the treatment of bacterial 

infections, surprisingly, it is evident that the isolates obtained are resistant to the most commonly used 

antibiotics (colistin, ampicillin, cefotaxime, streptomycin, meropenem, tetracycline, 

sulfamethoxazole/trimethoprim and nalidixic acid) as reported in most of the literature reviewed.This 

calls for immediate actions to reduce the growing risk of antibiotic resistance. 

Although numerous studies have investigated multidrug resistance in many cultured fish there has 

not been a promising proposal to curb microbial antibiotic resistance. Against this background, we 

outline the following recommendations that would be valuable in curbing the issues of microbial 

resistance to boost modern aquaculture practices: 

1. Diversifying intensive farming methods to limit or prevent the spread of bacteria is pertinent and 

should be an area of research interest. 

2. Understanding disease development in aquaculture is crucial. This understanding is essential, as 

some bacteria may originate from fish feed, enabling accurate administration of the appropriate 

antibiotic dosage. 

3. Model studies to understand the cellular activity of most antibiotic drugs have shown that 

antibiotic and bacterial membrane interactions observed in vitro do not occur in the same way in 

physiological environments. Due to the complexities and uncertainties that exist during the transition 

from in vitro to in vivo with the regularly used mode of antibiotic administration, it would be valuable 
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to strategically develop a paradigm that can decipher the in vitro efficacy of antibiotics, has the 

capacity to accurately predict their physiological consequences in vivo, and can kill bacteria without 

developing any resistance, such as nanotechnology. 
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