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Abstract. In this article, we investigate magic type labelings of zero-divisor

graphs. In particular, we turn our attention to semi-magic, magic, and super-

magic labelings. We are able to construct infinitely many rings which admit

these magic type labelings as well as infinitely many rings which do not have

these magic type labeling. We further proceed to classify the magic type

labeling properties for all of the rings which have zero-divisor graphs with

up to 14 vertices. We then conclude with some conjectures about how these

patterns may extend for larger zero-divisor graphs.
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1. Introduction

In this article, we investigate a property called magic labeling, as well as several

related labeling types such as semi-magic and super-magic labelings on the zero-

divisor graph of a commutative ring with unity, 1 ̸= 0. The zero-divisor graph

of a commutative ring R was originally defined by I. Beck in [3] in 1988 as a

graph with vertex set R and edges between distinct vertices x and y if and only

if xy = 0. After observing that 0 is always adjacent to every other vertex in

R, the more modern treatment, as in [2], is to use the vertex set Z(R)∗, where

Z(R) = {a ∈ R | ∃b ∈ R, b ̸= 0 such that ab = 0}, the nonzero zero-divisors and

the same edge relation for distinct x, y ∈ Z(R)∗, x is adjacent to y if and only if

xy = 0. This new zero-divisor graph is denoted Γ(R). Thus, Γ(R) is an undirected

and simple graph (no multi-edges or loops) and will be the graph we are interested

in for this article. We will discuss further properties of the zero-divisor graph in

Section 2.

Much of the initial interest in these zero-divisor graphs surrounded an early

conjecture of Beck as to whether zero-divisor graphs were perfect (the coloring

number is the same as the clique number). This was shown to not be true in

general in [1]. This interest in coloring zero-divisor graphs motivates us to continue

the investigation of labelings of zero-divisor graphs. Here, we turn our attention
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to a labeling introduced by J. Sedláček in [7] in 1976 called magic labeling and

some variations of this labeling. We will define these magic type labelings more

formally in the next section, but for now one can think of a magic labeling as an

edge labeling such that we label edges so that for every vertex, the sum of the labels

of the incident edges is the same fixed number, the magic constant for the graph.

Recently, graceful and harmonious labeling of zero-divisor graphs were studied by

the third author in [4] so we have continued the investigation of labeling zero-divisor

graphs with perhaps the next most well-studied and popular labelings, the magic

type labelings.

The article is organized as follows. In Section 2, we formally define the zero-

divisor graph and the magic type labelings of interest throughout the article as well

as provide the known results that will be of use to us. In Section 3, we are able

to construct some infinite families of commutative rings which admit the various

magic type labelings as well as infinitely many commutative rings which have no

such magic type labelings. This leads us to Section 4 where we are able to prove

several results which allow us to determine which commutative rings will have these

various magic type zero-divisor graphs for many commutative rings. In Section 5,

we begin the process of determining which rings satisfy these different magic type

conditions for their zero-divisor graphs by utilizing the results in [5,6] where the

author was able to find all possible zero-divisor graphs on up to 14 vertices. We are

able to determine whether a magic type labeling exists on every zero-divisor graph

which is possible on up to 14 vertices. We conclude the paper with several open

questions about how these patterns may extend to larger zero-divisor graphs.

2. Preliminaries

We begin with some important definitions and results about the zero-divisor

graph of a commutative ring R with unity 1 ̸= 0. As in [2], given a commutative ring

R, we construct an associated graph Γ(R) = (V,E) whose vertex set is V = Z(R)∗

and whose edge set, E, is defined by distinct vertices x, y ∈ V which are adjacent if

and only if xy = 0. This graph is simple as Γ(R) is undirected (R is commutative),

has no multi-edges, and has no loops. If R is an integral domain, then this graph

is empty, so we will generally insist that there are non-trivial zero-divisors present

in our rings R.

We pause briefly to provide an example of a zero-divisor graph for the ring

R = Z2 × Z4 below to illustrate how these graphs can be constructed for the

reader.
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Example 2.1. Let R = Z2 × Z4. The nonzero zero-divisors of the ring R are

Z(R)∗ = {(0, 1), (0, 2), (0, 3), (1, 0), (1, 2)}. Then, by pairwise multiplying each

nonzero zero-divisor together, we are able to determine the edge relationship for

Γ(R) shown below.

Figure 1. Γ(Z2 × Z4)

Notice that we see why it is nice to not include the zero element of the ring since

not much information is gained. This zero vertex would simply be always adjacent

to all other vertices.

We begin with a proposition where we collect some well-known and useful results

about the zero-divisor graph of a commutative ring.

Proposition 2.2. Let R be a commutative ring with 1 ̸= 0. Then we have the

following results about Γ(R).

(1) Γ(R) is connected.

(2) Γ(R) has diam(Γ(R)) ≤ 3.

(3) Γ(R) is finite if and only if R is an integral domain or R is finite.

Proof. (1)-(3) are proven in [2]. □

We now formally define the various magic type labelings of interest to us. For a

graph, G = (V,E), we say a function, f : V → S is a vertex labeling from S and

g : E → S is an edge labeling from S. Then, let m ∈ Z be a constant, called the

magic constant. For a graph G, an edge labeling g : E → Z is a semi-magic labeling

if for every v ∈ V ,
∑

g(ei) = m where the sum is taken over all edges ei which are

incident to v as introduced in [8]. We shall refer to a graph G as trivially semi-magic

if there is only one semi-magic labeling, the trivial labeling of G, given by g(e) = 0

for all edges e ∈ E. Any graph G which admits a semi-magic labeling is sometimes

called a semi-magic graph; however, because every graph always admits at least the

trivially semi-magic labeling, we will consider a graph G to be a semi-magic graph

when the graph admits at least one non-trivial semi-magic labeling. We will often
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use the phrase non-trivially semi-magic to stress that we mean a graph G admits

at least one semi-magic labeling that is not just all edges receiving the edge label

of 0, especially in situations where there may be some ambiguity.

Next, for a graph G = (V,E), let g : E → N∗, where N∗ denotes the set of

positive integers, and let m ∈ N∗. Then, if g is an injective function and for all

v ∈ V ,
∑

g(ei) = m where the sum is taken over all edges ei which are incident to

v, we call g a magic labeling of G [8]. If a graph G has a magic labeling, then G is

said to be a magic graph.

Lastly, for a graph G = (V,E), let g : E → {n, n + 1, . . . , n + |E| − 1} for any

n ∈ N∗, and let m ∈ N. Then, if g is a bijection and ∀ v ∈ V ,
∑

g(ei) = m where

the sum is taken over all edges ei which are incident to v, we call g a super-magic

labeling of G [8]. If a graph G has a super-magic labeling, G is a super-magic graph.

While the following relationships between these graph properties are essentially

immediate from definitions, they are important enough for the reader that we state

them in the form of the following proposition.

Proposition 2.3. Let G = (V,E) be a simple graph. Then we have the following

relationship between these classes of graphs as indicated by the diagram below.

super-magic ⇒ magic ⇒ non-trivially semi-magic ⇒ trivially semi-magic.

Moreover, none of these implications can be reversed.

Proof. Let G be a simple, connected graph. Suppose G is a super-magic graph.

Then there is an edge labeling g : E → {n, n + 1, . . . , n + |E| − 1} such that g

is a bijection and there exists a magic constant m ∈ N such that for all v ∈ V ,∑
g(ei) = m where the sum is taken over all edges ei which are incident to v.

Because {n, n + 1, . . . , n + |E| − 1} ⊂ N∗ and g is an injection, g is also a magic

labeling, so G is magic.

Let G be magic. Then there is an edge labeling g : E → N∗ where g is injective

and there exists a magic constant m ∈ Z such that ∀ v ∈ V ,
∑

g(ei) = m where

the sum is taken over all edges ei which are incident to v. Since N∗ ⊂ Z and g is

an injective function, g cannot be the trivial labeling (unless |E| = 1 where it is

super-magic). This makes g a non-trivial, semi-magic labeling of G.

Lastly, every simple graph is trivially semi-magic by simply assigning g(e) = 0

for all e ∈ E.

We prove the final statement of the theorem through the following examples

where we exhibit graphs to show none of these implications can be reversed. □

Example 2.4. K5 is a graph which is magic, but not super-magic.
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Figure 2. The graph K5.

Clearly K5 is magic, as it admits a magic labeling (as shown above). Thus, K5

is also semi-magic and trivially semi-magic. However, as shown in Theorem 2 of

Stewart’s Supermagic Complete Graphs [9], K5 is not super-magic.

Example 2.5. K3 is a graph which is semi-magic, but not magic.

Figure 3. The graph K3.

This graph admits a semi-magic labeling, and so it is also trivially semi-magic.

However, this graph is not magic, and we prove this by contradiction. Suppose K3

is magic. Then it admits a magic labeling, g : E → N+. By definition, this function

is injective, meaning our edge labels, g(e1) = x, g(e2) = y, g(e3) = z, must all be

distinct. Let m be the magic constant for this magic labeling of K3. Consider the

vertex v1 in the figure incident to edges e1 and e2. Then it must be the case that

x + y = m. Similarly, consider the vertex v2 incident to edges e2 and e3. Then

y + z = m. This implies that x + y = y + z so that x = z. However, this is a

contradiction that g was an injective mapping, so it must be the case that K3 is

not magic.
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Example 2.6. P3 is a graph which is trivially semi-magic, but not what we have

called semi-magic, i.e., the only semi-magic labeling admitted is the trivial semi-

magic labeling.

Figure 4. The graph P3.

Suppose g : E → Z is a semi-magic labeling. Without loss of generality, suppose

one edge receives the label of x. Since each edge contains a leaf vertex (a vertex of

degree 1), the magic constant must be x for the graph. This means the other edge

must also receive the label of x since this edge also contains a leaf vertex. We now

consider the non-leaf vertex whose sum of incident edge labels is x+x and yet must

also equal the magic constant, x. Thus 2x = x for integers implies x = 0 and we

have shown the only semi-magic labeling must be the trivial semi-magic labeling.

3. Magic type properties of infinite families of rings

In this section, we are able to construct infinite families of rings which admit

semi-magic, magic, and super magic zero-divisor graphs. We are also able to prove

that there are also infinitely many rings which are not even semi-magic and hence

not magic or super-magic. We are able to use complete and complete bipartite

graphs to accomplish this goal since both these zero-divisor graphs and the magic

type labeling properties of these types of graphs are well understood.

We begin by collecting some useful results about the semi-magic, magic, and

super-magic properties of complete and complete bipartite graphs in the form of

the next three propositions. These results are known and we have tried to give

credit to the first person to prove these results where possible; however, many of

these terms of magic type labelings have been used to mean different things in the

literature over the years so it is possible we have proved things that are well known

by a different name or have cited someone who was not actually the first to prove

the result.

Proposition 3.1. We have the following known results about which graphs are

non-trivially semi-magic and which ones are not.

(1) A complete graph, Kn is always non-trivially semi-magic for any n ≥ 2.

(2) A complete bipartite graph, Km,n is non-trivially semi-magic with nonzero

magic constant if and only if m = n.
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(3) A complete bipartite graph, Km,n with m ̸= n and m,n ≥ 2, is non-trivially

semi-magic, but the magic constant must always be 0 in every semi-magic

labeling.

(4) A star graph, K1,n is non-trivially semi-magic if and only if n = 1.

Proof. (1) and (2) We note that all regular graphs are non-trivially semi-magic

since one could simply label every edge c for any constant c ∈ Z. Then if the graph

is k-regular, then each vertex has sum kc which would be the magic constant for

the k-regular graph. Since Kn (resp. Kn,n) are n−1 (resp. n)-regular graphs, they

are non-trivially semi-magic by simply picking c to be nonzero.

To see why m = n is necessary for a complete bipartite graph to admit a non-

trivial semi-magic labeling with magic constant k ̸= 0, we suppose Km,n for m ̸= n

is semi-magic. Then for each vertex sum of the labels of incident edges must add

to k. We consider the sum of the edge labels for all of the edges in the entire graph

in two different ways.

We first consider the sum of all the labels of the edges incident to the vertices in

the part with m vertices and see that the sum of all of these edges must be km since

each of the m vertices has sum k. Because the graph is a complete bipartite graph,

we have added up the labels of every edge in the entire graph. On the other hand,

the same argument by adding up the labels of the edges incident to the vertices in

the part with n vertices must sum to kn. This must be the same number since it

is a complete bipartite graph and we have added up the labels of all of the edges

in the graph both ways. But this means kn = km and k ̸= 0, hence m = n.

(3) Let G be a complete bipartite graph, Km,n with m ̸= n and m,n ≥ 2. When

there are at least two vertices in each of the parts of the complete bipartite, graph,

then there is a subgraph which is K2,2 which is isomorphic to a 4-cycle, C4. We

may then label this subgraph as below and then assign 0 to every other edge in

the graph and we will get a non-trivial labeling, but as in (2), we see the magic

constant is indeed 0 for the graph.

Figure 5. The K2,2 subgraph
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(4) If we have a star graph, K1,n with n ≥ 2, then we see that this is a complete

bipartite graph, with unbalanced parts so the magic constant must be 0. Every

non-central vertex is a leaf vertex, so the edge must receive 0 as the label. This is

all of the edges in K1,n, thus every semi-magic labeling must be trivial. Conversely,

if n = 1, then we may simply assign the only edge in the graph any nonzero label

and we get a non-trivial semi-magic labeling. □

We present a similar proposition that gives some important results about which

graphs are magic and which are not.

Proposition 3.2. We have the following known results about which graphs are

magic and which ones are not.

(1) A complete graph, Kn is magic if and only if n = 2 or n ≥ 5.

(2) A complete bipartite graph, Km,n is magic if and only if m = n ≥ 3.

Proof. The proofs of (1) and (2) are given as Examples 2 and 1, respectively, in

Section 7 of [8]. □

We present a similar proposition that gives some important results about which

graphs are super-magic and which are not.

Proposition 3.3. We have the following known results about which graphs are

super-magic and which ones are not.

(1) A complete graph, Kn is super-magic if and only if n = 2 or n > 5 and

n ̸≡ 0 (mod 4).

(2) A complete bipartite graph, Km,n is super-magic if and only if m = n and

n ̸= 2.

Proof. (1)-(2) are proven in [9]. □

Lemma 3.4. ([2, Theorem 2.10]) Let R be a finite commutative ring with unity

and Γ(R) be the zero-divisor graph of R. Then the following are equivalent.

(1) Γ(R) is complete.

(2) R ∼= Z2 × Z2 or xy = 0 for all x, y ∈ Z(R).

(3) R ∼= Z2 × Z2 or R is local with maximal ideal M with M2 = 0.

Lemma 3.5. Let R ∼= A×B where A and B are integral domains. Then Γ(R) is

a complete bipartite graph, K|A|−1,|B|−1.

Proof. Let M = {(a, 0) | a ∈ A, a ̸= 0} and N = {(0, b) | b ∈ B, b ̸= 0}.
Then we see that every fixed vertex in M is adjacent to every vertex in N since
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(a, 0) · (0, b) = (0, 0) but since A is an integral domain, (a, 0) · (a′, 0) ̸= (0, 0).

Similarly for the vertices in N . Thus Γ(R) is a complete bipartite graph, and

specifically, Γ(R) = K|A|−1,|B|−1. □

Using Lemmas 3.4 and 3.5 along with the magic type results on complete and

complete bipartite graphs, we are able to construct many rings which satisfy the

various magic type labeling properties.

Proposition 3.6. Let p be a prime. Then the following finite commutative rings

with unity have zero-divisor graphs which are non-trivially semi-magic.

(1) R = Zp2 with p ≥ 3. In this case, Γ(R) = Kp−1.

(2) R = Zp[X]/(X2) with p ≥ 3. In this case, Γ(R) = Kp−1.

(3) R = Zp[X1, X2, . . . , Xn]/I where I = ({XiXj | 1 ≤ i, j ≤ n}). In this case,

Γ(R) = Kpn−1.

(4) R = F1×F2 where Fi are finite fields of the same size, say |F1| = |F2| = k.

In this case, Γ(R) = Kk−1,k−1.

Proof. Each of these rings are either complete or complete bipartite graphs as

shown in [2]. Since all complete graphs on at least two vertices and complete

bipartite graphs where the parts have the same size are nontrivially semi-magic,

the results follow. □

It is worth pointing out that the construction in Proposition 3.6 (3) demonstrates

that we can find a semi-magic zero-divisor graph of size m as long as m = pn − 1

for some prime p and some integer n ≥ 1. Thus there are infinitely many finite

commutative rings which admit non-trivially semi-magic zero-divisor graphs.

We follow with the natural analogue to construct families of rings which have

magic zero-divisor graphs and collect some in the next proposition.

Proposition 3.7. Let p be a prime. Then the following finite commutative rings

have zero-divisor graphs which are magic.

(1) Let R = Z9 or R = Z3[X]/(X2). Then Γ(R) = K2.

(2) Let p ≥ 7 and let R = Zp2 or R = Zp[X]/(X2). Then Γ(R) = Kp−1.

(3) R = Zp[X1, X2, . . . , Xn]/I where I = ({XiXj | 1 ≤ i, j ≤ n}) chosen such

that pn − 1 = 2 or pn − 1 ≥ 5. In this case, Γ(R) = Kpn−1.

(4) Let R = F1 × F2 where Fi are finite fields and |F1| = |F2| = k ≥ 4. Then

Γ(R) = Kk−1,k−1.

Proof. We have chosen families of rings so that their graphs will either be complete

graphs on either two or at least 5 vertices or else complete bipartite graphs with
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parts having size at least 3. This is precisely the conditions outlined in Proposition

3.2 which have magic graphs. □

Again, this means for any integer m = pn−1 for some prime p and integer n ≥ 1

so that m = 2 or m ≥ 5, we can build a finite commutative ring whose zero-divisor

graph is magic.

We continue here in the same fashion to provide infinite families of rings whose

zero-divisor graphs are super-magic.

Proposition 3.8. Let p be a prime. Then the following finite commutative rings

have zero-divisor graphs which are super-magic.

(1) Let R = Z9 or R = Z3[X]/(X2). Then Γ(R) = K2.

(2) Let p ≥ 7 and p ≡ 3 (mod 4). Let R = Zp2 or R = Zp[X]/(X2). Then

Γ(R) = Kp−1.

(3) R = Zp[X1, X2, . . . , Xn]/I where I = ({XiXj | 1 ≤ i, j ≤ n}) chosen such

that pn − 1 = 2 or pn − 1 ≥ 6 and pn − 1 ̸≡ 0 (mod 4). In this case,

Γ(R) = Kpn−1.

(4) Let R = F1 × F2 where Fi are finite fields and |F1| = |F2| = k ≥ 4. Then

Γ(R) = Kk−1,k−1.

Proof. Again, we have chosen rings which precisely meet the conditions to be

super-magic as in Proposition 3.3. We note in (2) we have framed it in the more

constructive way. Because the complete graph will be on p−1 vertices and we need

p−1 ̸≡ 0 (mod 4). Since primes larger than two are all either 1 or 3 (mod 4), this

is equivalent. □

We again note that this is infinitely many finite commutative rings which are

super-magic. There are an infinite number of primes which are congruent to 3

modulo 4 (a fun exercise to generalize Euclid’s proof), so this construction in (2)

alone generates infinitely many super-magic zero-divisor graphs.

We now turn our attention to generating infinitely many finite commutative rings

which do not admit semi-magic, magic, or super-magic zero-divisor graphs.

Proposition 3.9. We can find an infinite number of commutative rings with unity

which are neither non-trivially semi-magic, magic, nor super-magic.

Proof. Let R = Z2 × A where A is a finite integral domain (finite field) with

|A| ≥ 3. Then Γ(R) = K1,|A|−1 by Lemma 3.5 and has only the trivial semi-magic

labeling of f(e) = 0 for all e ∈ E(Γ(R)) by Proposition 3.1(4). This means Γ(R) is
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not non-trivially semi-magic and hence not magic or super-magic from Proposition

2.3. □

We can slightly extend the classes of graphs which are not magic or super-magic

through the following theorem.

Proposition 3.10. There exists an infinite family of rings whose zero-divisor

graphs are neither magic nor super-magic. Moreover, this family of rings is non-

trivially semi-magic; however, the magic constant must be 0.

Proof. Let R = A×B for finite integral domains A and B (finite fields) such that

|A| ≠ |B| and |A|, |B| > 2. Then Γ(R) = K|A|−1,|B|−1 by Lemma 3.5 with the parts

of different sizes. This graph will not be magic from Proposition 3.2, so it will also

not be super-magic. For the last sentence, we see that the graph is an unbalanced

complete bipartite graph which forces the magic constant to be 0 as in Proposition

3.1 (3). When |A|, |B| > 2, we will have at least two vertices in each part of the

bipartite graph which allows us to use the K2,2 subgraph labeling in Figure 5 for a

subgraph of Γ(R) and label the rest of the edges 0 and get a non-trivial semi-magic

labeling. □

4. Classification of small zero-divisor graphs

These results above indicate that magic type labelings of zero-divisor graphs are

worth investigating since there are infinitely many which both do and do not satisfy

these three magic type properties. This leads us to naturally study the classification

question related to these magic type properties. Given a commutative ring, can we

determine whether it has a semi-magic, magic, or super-magic zero-divisor graph?

With this in mind, we begin with small zero-divisor graphs and we turn our

attention to the work of Redmond in [5,6]. The author was able to find all possible

graphs that may arise as the zero-divisor graph of a commutative ring with unity

on up to 14 vertices and start to determine which of these satisfy the various magic

type conditions.

We begin with two useful propositions which can be used to quickly rule out

certain graphs for being magic and hence super-magic.

Proposition 4.1. If a zero-divisor graph has more than two vertices and has a leaf

vertex (a vertex of degree 1), then the zero-divisor graph is not magic.

Proof. Let G be a graph with at least three vertices and let l ∈ V (G) be a leaf

vertex of G. Suppose G is magic. Then there is an injection, f : E(G) 7→ N∗ where

f is a magic labeling. Let m be the magic constant of G. Because l is a leaf vertex,
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it has only one adjacent vertex, call it n ∈ V (G). Because zero-divisor graphs are

connected [2] and |V (G)| > 2, n is adjacent to at least one other vertex, call these

adjacent vertices (besides l), n1, . . . , ni ∈ V (G). Let f(n − l) = k ∈ N∗. We then

are able to consider the sum of the labels of the incident edges to l and n. Because

f is a magic labeling, these sums must be equal; however, the sum of the labels

of incident edges to l are simply f(n − l) = k since it is a leaf vertex and hence

k = m since we supposed this labeling was magic. On the other hand, the sum of

the labels of the edges incident to n must be strictly larger than this since each

edge label is a positive integer in a magic labeling. This is a contradiction and G

cannot be magic. □

Proposition 4.2. If there are four vertices, v1, v2, v3, v4 ∈ V (G) where G is a

zero-divisor graph such that v1 is adjacent to v2, v2 is adjacent to v3, v3 is adjacent

to v4 and deg(v2) = deg(v3) = 2 where deg(v) denotes the degree of v, then G is

not magic. Note that v1 and v4 can be the same vertex and the result still applies.

Proof. Let G be a zero-divisor graph and let v1, v2, v3, v4 ∈ V (G) such that v1 is

adjacent to v2 by an edge e1, v2 is adjacent to v3 by an edge e2, v3 is adjacent to v4

by an edge e3 and deg(v2) = deg(v3) = 2. Suppose also that G is magic. Then there

is an injective function, f : E(G) 7→ Z+ which is a magic labeling. Let m be the

magic constant of G. We consider the sum of the labels of the incident edges to v2

and v3. Notice each of these has degree 2 by assumption and they share one of the

edges, e2. Thus we compare the two sum and see that f(e1)+f(e2) = f(e2)+f(e3).

But this means that f(e1) = f(e3). This contradicts that f is an injection which

means such a graph cannot be magic. □

An important note for these two propositions is that the converse is not true. A

graph can fail to have a leaf vertex and still not be magic, and a graph can fail to

meet the condition of Proposition 4.2 and still not be magic. For example, as in

Proposition 3.2 (1) with n = 4.

Another result we can use to determine if a graph is semi-magic is to see if it

contains a special type of semi-magic subgraph. If G is a graph, then we call G′ a

spanning subgraph of G if V (G) = V (G′).

Proposition 4.3. Let G be a graph. If G′ is a semi-magic spanning subgraph of

G, G is semi-magic.

Proof. Let G be a graph and let G′ be a semi-magic spanning subgraph of G.

Then, ∃f : E(G′) → Z such that ∀v ∈ V (G),
∑

f(e) = m where the sum is taken
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over each edge incident to v. Define a new function g : E(G) → Z by

g(e) =

f(e) e ∈ E(G′)

0 otherwise.

Then, for each vertex v ∈ E(G), the sum of g(e) for each edge incident to v is given

by
∑

g(e) =
∑

f(e) +
∑

0 = m. Thus g is a semi-magic labeling of G. □

Corollary 4.4. If G is a graph that contains a Hamiltonian cycle, then G is semi-

magic.

Proof. Let G be a graph that contains a Hamiltonian cycle. Then, Cn where

|V (G)| = n is a spanning subgraph of G. Then, f : E(Cn) → Z where f(e) = 1 is

a semi-magic labeling on Cn. Thus, by Proposition 4.3, G is semi-magic. □

To find semi-magic labelings for many of these zero-divisor graphs, we will find

the following corollary useful.

Corollary 4.5. If G is a connected graph which contains a non-trivial subgraph

G′ which is non-trivially semi-magic with magic constant m = 0, then G itself

non-trivially semi-magic.

Proof. Let f : E(G′) → Z be the non-trivial semi-magic labeling of the subgraph

with magic constant m = 0. Then we simply assign 0 to every edge in E(G)\E(G′)

and see that this is a non-trivial semi-magic labeling of G also with magic constant

0. □

5. Tables

In this section, we compile all of the information about which zero-divisor graphs

satisfy the various magic type labeling properties for small zero-divisor graphs. We

use the work of Redmond in [5,6] where every possible zero-divisor graph which

can arise on up to 14 vertices was determined. Many of the graphs are complete

or complete bipartite which have been discussed thoroughly above, so we do not

provide the actual labelings of these graphs since they are not terribly interesting.

We use ‘Yes∗’ for semi-magic labelings of Km,n to indicate, as in Proposition 3.1,

that yes, some of these are non-trivially semi-magic, but every labeling must have

magic constant k = 0. We use semi-magic in the table to mean non-trivially semi-

magic to save space.

Zero-divisor graphs with 1 vertex.
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R |R| Graph Semi-magic Magic Super-magic

Z4 4 K1 No - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z2[X]/(X2) 4 K1 No - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Zero-divisor graphs with 2 vertices.

R |R| Graph Semi-magic Magic Super-magic

Z9 9 K2 Yes - Prop. 2.3 Yes - Prop. 2.3 Yes - Prop. 3.3

Z2 × Z2 4 K2 Yes - Prop. 2.3 Yes - Prop. 2.3 Yes - Prop. 3.3

Z3[X]/(X2) 9 K2 Yes - Prop. 2.3 Yes - Prop. 2.3 Yes - Prop. 3.3

Zero-divisor graphs with 3 vertices.

R |R| Graph Semi-magic Magic Super-magic

Z6 6 K1,2 No - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z8 8 K1,2 No - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3
Z2[X]

(X3)
8 K1,2 No - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z4[X]

(2X,X2−2)
8 K1,2 No - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z2[X,Y ]

(X,Y )2
8 K3 Yes - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z4[X]

(2,X)2
8 K3 Yes - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

F4[X]

(X2)
16 K3 Yes - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z4[X]

(X2+X+1)
16 K3 Yes - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Zero-divisor graphs with 4 vertices.

R |R| Graph Semi-magic Magic Super-magic

Z2 × F4 8 K1,3 No - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z3 × Z3 9 K2,2 Yes - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z25 25 K4 Yes - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3
Z5[X]

(X2)
25 K4 Yes - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Zero-divisor graphs with 5 vertices.

R |R| Graph Semi-magic Magic Super-magic

Z2 × Z5 10 K1,4 No - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z3 × F4 12 K2,3 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z2 × Z4 8 Fig. 6 No - Prop. 5.1 No - Prop. 4.1 No - Prop. 2.3

Z2 × Z2[X]

(X2)
8 Fig. 6 No - Prop. 5.1 No - Prop. 4.1 No - Prop. 2.3

Figure 6
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Proposition 5.1. Figure 6 is not non-trivially semi-magic, and thus not magic or

super-magic either.

Proof. Consider the graph G with vertex set V (G) = {v1, v2, v3, v4, v5} and edge

set E(G) = {v1v2, v2v3, v3v4, v2v5} (Figure 6 is the graph G). Let e1 be the edge-

labeling for the edge v1v2, e2 for the edge v2v3, e3 for the edge v3v4 and e4 for the

edge v2v5. Then suppose for the sake of contradiction that G is semi-magic, i.e., G

admits a semi-magic labeling.

Let m ∈ Z represent the magic constant at each vertex in G. Then because G is

semi-magic, it must be true that the sum of the labelings for all edges incident to

vi (1 ≤ i ≤ 5) is m. Thus, we have the following 5 linear equations:

e1 = m

e1 + e2 + e4 = m

e2 + e3 = m

e3 = m

e4 = m.

This is a linear system in the variables e1, e2, e3, e4, and we can use a matrix to

solve this system of equations by row-reducing the augmented matrix:

1 0 0 0
∣∣ m

1 1 0 1
∣∣ m

0 1 1 0
∣∣ m

0 0 1 0
∣∣ m

0 0 0 1
∣∣ m


∼



1 0 0 0
∣∣ 0

0 1 0 0
∣∣ 0

0 0 1 0
∣∣ 0

0 0 0 1
∣∣ 0

0 0 0 0
∣∣ m



Notice the fifth row of the row reduced augmented matrix contains the statement

0 = m, which implies that G is only trivially semi-magic. Our assumption that G

was non-trivially semi-magic must have been incorrect, thus G (and Figure 6) are

not non-trivially semi-magic. □

Zero-divisor graphs with 6 vertices.

R |R| Graph Semi-magic Magic Super-magic

Z3 × Z5 15 K2,4 Yes∗ - Prop. 2.3 No - Prop. 3.2 No - Prop. 3.3

F4 × F4 16 K3,3 Yes - Prop. 2.3 Yes - Prop. 2.3 Yes - Prop. 3.3

Z49 49 K6 Yes - Prop. 2.3 Yes - Prop. 2.3 Yes - Prop. 3.3
Z7[X]

(X2)
49 K6 Yes - Prop. 2.3 Yes - Prop. 2.3 Yes - Prop. 3.3

Z2 × Z2 × Z2 8 Fig. 7 Yes - Figure 7 No - Prop. 4.1 No - Prop. 2.3
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Unlabeled graph. Semi-magic labeling.

Figure 7

Zero-divisor graphs with 7 vertices.

R |R| Graph Semi-magic Magic Super-magic

Z2 × Z7 14 K1,6 No - P. 3.1 No - P. 3.2 No - P. 3.3

F4 × Z5 20 K3,4 Yes∗ - P. 3.1 No - P. 3.2 No - P. 3.3

Z3 × Z4 12 Fig. 8 Yes - Figure 8 No - P. 4.1 No - P. 2.3

Z3 × Z2[X]

(X2)
12 Fig. 8 Yes - Figure 8 No - P. 4.1 No - P. 2.3

Z16 16 Fig. 9 Yes - Figure 9 No - P. 4.1 No - P. 2.3
Z2[X]

(X4)
16 Fig. 9 Yes - Figure 9 No - P. 4.1 No - P. 2.3

Z4[X]

(X2+2)
16 Fig. 9 Yes - Figure 9 No - P. 4.1 No - P. 2.3

Z4[X]

(X2+2X+2)
16 Fig. 9 Yes - Figure 9 No - P. 4.1 No - P. 2.3

Z4[X]

(X3−2,2X2,2X)
16 Fig. 9 Yes - Figure 9 No - P. 4.1 No - P. 2.3

Z2[X,Y ]

(X3,XY,Y 2)
16 Fig. 10 Yes - Figure 10 No - P. 5.2 No - P. 2.3

Z8[X]

(2X,X2)
16 Fig. 10 Yes - Figure 10 No - P. 5.2 No - P. 2.3

Z4[X]

(X3,2X2,2X)
16 Fig. 10 Yes - Figure 10 No - P. 5.2 No - P. 2.3

Z4[X,Y ]

(X2−2,XY,Y 2,2X,2Y )
16 Fig. 10 Yes - Figure 10 No - P. 5.2 No - P. 2.3

Z4[X]

(X2+2X)
16 Fig. 11 Yes - Figure 11 No - P. 4.2 No - P. 2.3

Z8[X]

(2X,X2+4)
16 Fig. 11 Yes - Figure 11 No - P. 4.2 No - P. 2.3

Z2[X,Y ]

(X2,Y 2−XY )
16 Fig. 11 Yes - Figure 11 No - P. 4.2 No - P. 2.3

Z4[X,Y ]

(X2,Y 2−XY,XY −2,2X,2Y )
16 Fig. 11 Yes - Figure 11 No - P. 4.2 No - P. 2.3

Z4[X,Y ]

(X2,Y 2,XY −2,2X,2Y )
16 Fig. 12 Yes - Figure 12 No - P. 4.2 No - P. 2.3

Z2[X,Y ]

(X2,Y 2)
16 Fig. 12 Yes - Figure 12 No - P. 4.2 No - P. 2.3

Z4[X]

(X2)
16 Fig. 12 Yes - Figure 12 No - P. 4.2 No - P. 2.3

Z2[X,Y,Z]

(X,Y,Z)2
16 K7 Yes - P. 2.3 Yes - P. 2.3 Yes - P. 3.3

Z4[X,Y ]

(X2,Y 2,XY,2X,2Y )
16 K7 Yes - P. 2.3 Yes - P. 2.3 Yes - P. 3.3

F8[X]

(X2)
64 K7 Yes - P. 2.3 Yes - P. 2.3 Yes - P. 3.3

Z4[X]

(X3+X+1)
64 K7 Yes - P. 2.3 Yes - P. 2.3 Yes - P. 3.3



ON MAGIC TYPE LABELINGS OF ZERO-DIVISOR GRAPHS 17

Unlabeled graph. Semi-magic labeling.

Figure 8

Unlabeled graph. Semi-magic labeling.

Figure 9

Unlabeled graph. Semi-magic labeling.

Figure 10

Proposition 5.2. Figure 10 is not magic.

Proof. Suppose for the sake of contradiction that Figure 10 has a magic label-

ing. Let m ∈ N be the magic constant for Figure 10. We will refer to the outer
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12 edges as e1, e2, . . . , e11, e12 and the inner three edges that form a triangle as

e13, e14, e15. Then, the outer four vertices of Figure 10 have incident edges that

sum to m, so
∑12

i=1 f(ei) = 4m. Since the inner three vertices that form a triangle

have incident edges that sum to m,
∑12

i=1 f(ei) + [f(e13) + f(e14) + f(e15)] = 3m,

this implies that 4m = 3m − [f(e13) + f(e14) + f(e15)]. Thus, [f(e13) + f(e14) +

f(e15)] = −m < 0. This is a contradiction since [f(e13) + f(e14) + f(e15)] > 0 and

f(e13), f(e14), f(e15) ∈ N∗ by definition. Therefore Figure 10 is not magic. □

Unlabeled graph. Semi-magic labeling.

Figure 11

Unlabeled graph. Semi-magic labeling.

Figure 12

Zero-divisor graphs with 8 vertices.
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R |R| Graph Semi-magic Magic Super-magic

Z2 × F8 16 K1,7 No - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z3 × Z7 21 K2,6 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z5 × Z5 25 K4,4 Yes - Prop. 2.3 Yes - Prop. 2.3 Yes - Prop. 3.3

Z27 27 Fig. 13 Yes - Figure 13 No - Prop. 5.3 No - Prop. 2.3
Z9[X]

(3X,X2−3)
27 Fig. 13 Yes - Figure 13 No - Prop. 5.3 No - Prop. 2.3

Z9[X]

(3X,X2−6)
27 Fig. 13 Yes - Figure 13 No - Prop. 5.3 No - Prop. 2.3

Z3[X]

(X3)
27 Fig. 13 Yes - Figure 13 No - Prop. 5.3 No - Prop. 2.3

Z3[X,Y ]

(X,Y )2
27 K8 Yes - Prop. 2.3 Yes - Prop. 3.2 No - Prop. 3.3

Z9[X,Y ]

3,X)2
27 K8 Yes - Prop. 2.3 Yes - Prop. 3.2 No - Prop. 3.3

F9[X]

(X2)
81 K8 Yes - Prop. 2.3 Yes - Prop. 3.2 No - Prop. 3.3

Z9[X]

(X2+1)
81 K8 Yes - Prop. 2.3 Yes - Prop. 3.2 No - Prop. 3.3

Unlabeled graph. Semi-magic labeling.

Figure 13

Proposition 5.3. Figure 13 is not magic.

Proof. For notational convenience, we will refer to the horizontal edge at the

bottom as e13 and each of the other edges as e1, e2, . . . , e11, e12. Suppose for the

sake of contradiction that Figure 13 has a magic labeling. Let m ∈ N be the magic

constant for Figure 13. Then, each of the vertices on the top of Figure 13 has

incident edges that sum to m, so
∑12

i=1 f(ei) = 6m and since the two vertices at the

bottom of Figure 13 have incident edges that sum to m,
∑12

i=1 f(ei)+f(e13) = 2m.

That implies 6m = 2m− f(e13). Thus f(e13) = −4m < 0. This is a contradiction

since f(e13) > 0 by definition, therefore Figure 13 is not magic. □

Zero-divisor graphs with 9 vertices.

R |R| Graph Semi-magic Magic Super-magic

Z2 × F9 18 K1,8 No - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z3 × F8 24 K2,7 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

F4 × Z7 28 K3,6 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z2 × Z2 × Z3 12 Fig. 14 Yes - Figure 14 No - Prop. 4.1 No - Prop. 2.3

Z4 × F4 16 Fig. 15 Yes - Figure 15 No - Prop. 4.1 No - Prop. 2.3

Z2[X]/(X2)× F4 16 Fig. 15 Yes - Figure 15 No - Prop. 4.1 No - Prop. 2.3
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Unlabeled graph. Semi-magic labeling.

Figure 14

Unlabeled graph. Semi-magic labeling.

Figure 15

Zero-divisor graphs with 10 vertices.

R |R| Graph Semi-magic Magic Super-magic

Z3 × F9 27 K2,8 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

F4 × F8 32 K3,7 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z5 × Z7 35 K4,6 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z121 121 K10 Yes - Prop. 2.3 Yes - Prop. 2.3 Yes - Prop. 3.3

Z11[X]/(X2) 121 K10 Yes - Prop. 2.3 Yes - Prop. 2.3 Yes - Prop. 3.3

Zero-divisor graphs with 11 vertices.
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R |R| Graph Semi-magic Magic Super-magic

Z2 × Z11 22 K1,10 No - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

F4 × F9 36 K3,8 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z5 × F8 40 K4,7 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z2 × Z9 18 Fig. 16 Yes - Figure 16 No - Prop. 4.1 No - Prop. 2.3

Z2 × Z3[X]

(X2)
18 Fig. 16 Yes - Figure 16 No - Prop. 4.1 No - Prop. 2.3

Z5 × Z4 20 Fig. 17 Yes - Figure 17 No - Prop. 4.1 No - Prop. 2.3

Z5 × Z2[X]

(X2)
20 Fig. 17 Yes - Figure 17 No - Prop. 4.1 No - Prop. 2.3

Z2 × Z8 16 Fig. 18 Yes - Figure 18 No - Prop. 4.1 No - Prop. 2.3

Z2 × Z2[X]

(X3)
16 Fig. 18 Yes - Figure 18 No - Prop. 4.1 No - Prop. 2.3

Z2 × Z4[X]

(2X,X2−2)
16 Fig. 18 Yes - Figure 18 No - Prop. 4.1 No - Prop. 2.3

Z2 × Z2[X,Y ]

(X,Y )2
16 Fig. 19 Yes - Figure 19 No - Prop. 4.1 No - Prop. 2.3

Z2 × Z4[X]

(2,X)2
16 Fig. 19 Yes - Figure 19 No - Prop. 4.1 No - Prop. 2.3

Z4 × Z4 16 Fig. 20 Yes - Figure 20 No - Prop. 4.1 No - Prop. 2.3

Z4 × Z2[X]

(X2)
16 Fig. 20 Yes - Figure 20 No - Prop. 4.1 No - Prop. 2.3

Z2[X]

(X2)
× Z2[X]

(X2)
16 Fig. 20 Yes - Figure 20 No - Prop. 4.1 No - Prop. 2.3

Unlabeled graph. Semi-magic labeling.

Figure 16

Unlabeled graph. Semi-magic labeling.

Figure 17
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Unlabeled graph. Semi-magic labeling.

Figure 18

Unlabeled graph. Semi-magic labeling.

Figure 19

Unlabeled graph. Semi-magic labeling.

Figure 20

Zero-divisor graphs with 12 vertices.
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R |R| Graph Semi-magic Magic Super-magic

Z3 × Z11 33 K2,10 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z5 × F9 45 K4,8 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z7 × Z7 49 K6,6 Yes - Prop. 2.3 Yes - Prop. 2.3 Yes - Prop. 3.3

Z2 × Z2 × F4 16 Fig. 21 Yes - Figure 21 No - Prop. 4.1 No - Prop. 2.3

Z169 169 K12 Yes - Prop. 2.3 Yes - Prop. 3.2 No - Prop. 3.3
Z13[X]

(X2)
169 K12 Yes - Prop. 2.3 Yes - Prop. 3.2 No - Prop. 3.3

Unlabeled graph. Semi-magic labeling.

Figure 21

Zero-divisor graphs with 13 vertices.

R |R| Graph Semi-magic Magic Super-magic

Z2 × Z13 26 K1,12 No - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

F4 × Z11 44 K3,10 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z7 × F8 56 K6,7 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z2 × Z3 × Z3 18 Fig. 22 Yes - Figure 22 No - Prop. 4.1 No - Prop. 2.3

Z2 × Z2 × Z4 16 Fig. 23 Yes - Figure 23 No - Prop. 4.1 No - Prop. 2.3

Z2 × Z2 × Z2[X]

(X2)
16 Fig. 23 Yes - Figure 23 No - Prop. 4.1 No - Prop. 2.3

Unlabeled graph. Semi-magic labeling.

Figure 22
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Unlabeled graph. Semi-magic labeling.

Figure 23

Zero-divisor graphs with 14 vertices.

R |R| Graph Semi-magic Magic Super-magic

Z3 × Z13 39 K2,12 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z5 × Z11 55 K4,10 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

Z7 × F9 63 K6,8 Yes∗ - Prop. 3.1 No - Prop. 3.2 No - Prop. 3.3

F8 × F8 64 K7,7 Yes - Prop. 2.3 Yes - Prop. 2.3 Yes - Prop. 3.3

Z2 × Z2 × Z2 × Z2 16 Fig. 24 Yes - Figure 24 No - Prop. 4.1 No - Prop. 2.3

Z3 × Z9 27 Fig. 25 Yes - Figure 25 No - Prop. 5.4 No - Prop. 2.3

Z3 × Z3[X]

(X2)
27 Fig. 25 Yes - Figure 25 No - Prop. 5.4 No - Prop. 2.3

Unlabeled graph. Semi-magic labeling.

Figure 24
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Unlabeled graph. Semi-magic labeling.

Figure 25

Proposition 5.4. Figure 25 is not magic.

Proof. Suppose for the sake of contradiction that the graph G of Figure 25 is

magic with injective edge labeling f : E → N+. Then there exists a positive integer

m as the magic constant for G.

First consider vertices v9 and v10 as shown in the partially labeled diagram below:

Because the sum at any given vertex for a magic graph is m, for vertex v9 we

can write m = f(e1) + f(e2) + · · · + f(e7) + f(e8). Similarly for v10 we have

m = f(e9) + f(e10) + · · · + f(e15) + f(e16). Adding these two results gives us

2m = f(e1) + f(e2) + · · ·+ f(e15) + f(e16).

Next consider vertices v1, . . . , v6. Looking at the edges incident to these vertices,

we have 6m = f(e1) + f(e2) + f(e3) + f(e4) + f(e5) + f(e6) + f(e9) + f(e10) +

f(e11)+f(e12)+f(e13)+f(e14) (notice edges 7, 8, 15, 16 are missing). If we take this

equation and subtract the equation at the end of the previous paragraph, we get

4m = − (f(e7) + f(e8) + f(e15) + f(e16)). However, f(e7)+f(e8)+f(e15)+f(e16)

is a positive number implying that m is negative. This contradicts the assumption

that G is magic, thus we conclude that G is not magic. □

Questions 5.1. We conclude with a few open questions which seem to follow from

the patterns arising in these tables with small numbers of vertices. It seems most

exotic (non complete or complete bipartite) zero-divisor graphs are all semi-magic,
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but never magic or super-magic for these small examples. We wonder if some pat-

terns we have identified here continue for larger zero-divisor graphs? We formalize

a few of these questions below.

(1) Are there any zero-divisor graphs which are not non-trivially semi-magic

besides those of the form K1,n for n > 1 or Figure 6?

(2) Are there infinitely many integers n for which every zero-divisor graph on

n vertices is semi-magic? We note that Z2 ×Fn (where Fn is finite field of

order n) will have zero-divisor graph K1,|n|−1 which has n vertices. Every

finite field has order pm for some integer m. Thus for every integer which

is a power of a prime, there will always be a zero-divisor graph which is

a star graph and not semi-magic. Thus, to prove this it seems like the

most likely place to look to generate integers where every zero-divisor graph

is semi-magic would be the squarefree semi-primes (n = pq for distinct

primes p, q).

(3) Are there any zero-divisor graphs which are magic that are not of of the

form Kn for n = 2 or n ≥ 5 or Km,n for m = n > 2?

(4) Are there any zero-divisor graphs which are super-magic which are not of

the form Kn with n = 2 or n > 5 and n ̸≡ 0 (mod 4) or Km,n with

m = n > 2?

(5) Are there any zero divisor graphs which are magic but not super magic? It

is known that there are many graphs which are magic but not supermagic.

K5 is one such graph, but K5 is not the zero-divisor graph of some ring.

(6) Are there any magic or super-magic zero-divisor graphs which are not reg-

ular?
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