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Abstract 

Monitoring crop development and mapping cultivated areas are important for reducing risks to food security due to climate change. 
Remote sensing techniques contribute significantly to the efficient and effective management of agricultural production. In this 
study, agricultural fields (sunflower, wheat, maize, oat, chickpea, sugar beet, alfalfa, onion, fallow) and other fields (non-
agricultural, pasture, lake) were identified by using Random Forest (RF) and Support Vector Machines (SVM) machine learning 
algorithms with Sentinel-2 and Landsat-8 images in the area covering Polatlı, Haymana and Gölbaşı districts of Ankara province
Multi-temporal images were used to distinguish winter and summer crops, taking into account crop development periods. As a 
result of classification; the overall accuracy of RF and SVM models with S2 images are 89.5% and 84.6% and kappa coefficients 
are 0.88 and 0.83, while the overall accuracy of RF and SVM models with L8 images are 79% and 78.1% and kappa coefficients 
are 0.76 and 0.75. RF model was found to have higher prediction accuracy than SVM. Sentinel-2 imagery has a higher accuracy in 
all classes compared to Landsat-8, indicating that Sentinel-2 imagery with its high temporal and spatial resolution is more suitable 
and has a great potential for agricultural crop pattern detection. 

Keywords: Crop classification, Random Forest, Support Vector Machine, Landsat-8, Sentinel-2 

Introduction  

Water is the source of human development (Nadir and 
Carrivick, 2019) and the initiating place for all the 
civilisations/ metropolitans which were established 
and thrived along the water streams (Gimenez, 2015). 
Today, water resources are used as a source of life, 
biodiversity, energy generation, irrigation, 
transportation/ shipping, and primary food sources in 
the life/ food cycle (Nadir and Ahmed, 2023). The 
increased use of water resources, wastages, 
transborder streams inflow/ outflow, regionalisation/ 
zoning of the earth in cities/ countries, global warming 
and climatic changes are the main factors causing the 
drought and availability of a sufficient/ suitable 
quantity of this precious commodity (Gimenez, 2015; 
Kumar, 2018; Nadir and Ahmed, 2023).  

Climate change and population growth require 
effective and rational management of agricultural land 
to ensure food security. Monitoring agricultural lands 
and identifying potential challenges in crop production 

in advance is of great importance (Karmakar et al., 
2024). Production data for important agricultural 
products grown in large areas need to be up-to-date 
and reliable. These data should be monitored spatially 
and temporally for support policies. In this context, 
while spatial data is needed, accurate crop mapping is 
critical for food security (Özdoğan, 2010). In 
particular, at the level of decision-makers, appropriate 
plans and policies can be developed to create import 
and export projections by determining agricultural 
crop patterns and production quantities (See et al., 
2015). In this context, determining the cultivation 
areas of crops for the accuracy and effectiveness of 
agricultural production plans and policies is a priority 
issue in agriculture. Remote sensing has been used 
effectively and widely in obtaining agricultural 
production data by determining crop cultivated areas 
at regional and national scale (Song et al., 2017; 
Blickensdorfer et al., 2022). 

Remote sensing techniques are an effective tool for 
spatially monitoring the health conditions of 
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agricultural crops throughout the crop growth period 
(Esetlili et al., 20181; Gorji et al., 2019; Remelgado et 
al., 2020). Sowing and harvesting periods of crops 
planted in the same region may vary between years 
according to seasonal dynamics. The spectral and 
temporal characteristics of satellite imagery have the 
potential to improve classification accuracy by 
identifying crop differences (Zhong et al., 2014; Yi et 
al., 2020). Crop classification is based on how 
reflectance features change over the crop growth 
period (Heupel et al., 2018). To achieve the desired 
level of accuracy in crop classification, various 
spectral bands including different temporal images of 
multispectral time series and vegetation indices 
derived from these bands are effectively used 
(Tuvdendorj et al., 2022).  

In crop classification, data with different characteristics 
obtained from many satellite images are used. Among 
satellite imagery, The high spatial and temporal 
resolution of Sentinel-2 imagery provides an important 
opportunity for crop classification (Immitzer et al., 
2016; Nasrallah et al., 2018; Gumma et al., 2020; 
Torunlar et al., 2021; Altun and Türker, 2021; Bantchına 
and Gündoğdu, 2024). In particular, Sentinel-2 data has 
a high potential for monitoring crop growth on a plot-
by-plot basis and providing real-time spatial data 
(Chakhar et al., 2020; Segarra et al., 2022). However, 
Landsat satellite data has also been used extensively in 
crop classification (Zheng et al., 2015; Anua and Wong, 
2022). Landsat imagery has a temporal resolution of 16 
days and is likely to provide cloudy images due to this 
large temporal resolution. Therefore, there are 
limitations in capturing crop phenology, which is 
essential for crop discrimination (Cai et al., 2018). 

Machine learning (ML) techniques have significantly 
improved over traditional models and their widespread 
use has increased. Unlike traditional models that assume 
a certain statistical distribution of the input data, ML 
techniques are nonparametric supervised methods that 
can adapt to the data without imposing any prior 
assumptions (Liu et al., 2020). ML techniques can learn 
complex patterns and relationships from data and make 
accurate predictions for new data points (Liakos et al., 
2018). ML models, which are widely used in crop 
classification, are nonparametric supervised methods 
that can adapt to the data instead of making statistical 
assumptions like traditional models (Verma et al., 
2020). However, ML models can determine the spatial 
distribution of crops without very large training data 
(Debats et al., 2016) and can better classify very 
different data structures (Basukala et al., 2017). Among 
ML models, RF and SVM algorithms are widely used in 
crop classification (Löw et al., 2013; Zheng et al., 2015; 
Inglada et al., 2015; Savitha and Talari, 2023). ML 
algorithms define the characteristics of the data to be 

classified through the learning process of the training 
data (Fu et al., 2023). 

In crop classification, the amount of data available 
from the field for large areas is limited. On the other 
hand, simply increasing the number of samples may 
not be sufficient for accuracy. The quantity as well as 
the distribution and quality of the reference data have 
a significant impact on the accuracy of the 
classification map. (Pott et al., 2021; Alami Machichi 
et al., 2023). A proportional distribution of the 
reference data samples taking into account the class 
areas may lead to better results (Colditz, 2015). 

In this study, ML techniques are integrated with multi-
temporal Sentinel-2 and Landsat-8 imagery to evaluate 
the classification accuracy of agricultural crops with 
different crop growth periods. The accuracy and model 
performance of the maps obtained using RF and SVM 
algorithms are compared for large areas. 

Materials and Methods 
Study Area 

The study area is located between longitudes 310 49' 
50" and 320 57' 54" and latitudes 390 53' 41" and 380 
57' 45", covering Polatlı, Haymana and Gölbaşı 
Districts within the borders of Ankara Province in 
Central Anatolia Region. The size of its area is 7,089 
km2 and the average elevation is 1035 m. The region 
has a semi-arid climate regime with dry and hot 
temperatures in summer and cold temperatures in 
winter. The average annual temperature is 120C and 
the total annual rainfall is 370 mm. Approximately 
75% of the total annual precipitation occurs between 
November and May. Based on CORINE 2018 
(CLC18) land cover classes, the current land cover 
distribution is mostly dry agriculture (49.9%), while 
irrigated agriculture (15.9%), pasture (12.8%), mixed 
agriculture (6.9%) and non-agricultural (14.6%) areas 
constitute the other classes (Figure 1). 

In this region, there are two main cultivation periods. 
Creals are grown from October to July of the following 
year, while summer crops are grown from April to 
November. Fallow agriculture is common in the region 
and one crop is usually grown during the agricultural 
season. In the study area where dry farming is 
predominantly practiced, wheat and barley are the 
main crops and other crops produced include corn, 
alfalfa, Sugar beet, sunflower, onion and chickpea. 

Satellite Images 
Sentinel-2 and Landsat-8 images were used as Remote 
Sensing data. Sentinel-2 consists of two satellites 
launched by the European Space Agency (ESA) in 
2015 (2A) and 2017 (2B) as part of the European 
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Union's Copernicus Environmental Monitoring 
Program, providing global imagery. Sentinel 2 has a 
temporal resolution of 10 days for a single satellite and 
5 days for a dual satellite, and has 13 spectral bands 
with spatial resolutions of 10, 20 and 60 m (Table 1). 
Landsat-8, launched by the US Geological Survey 
(USGS) and NASA in 2013, has a temporal resolution 
of 16 days, a total of 11 bands and a spatial resolution 
ranging from 15 m to 100 m (Table 1). In the study, 
geographic and atmospheric calibration at Level 2 and 
images with less than 10% cloudiness were preferred 
for the images of both satellites. 

Field Reference Data  
Field studies were carried out in 2019 to provide model 
training and test data for crop classification. Based on 
CLC18 data, reference sampling areas were 
determined according to the areal density and 
distribution of classes. A stratified random sampling 
approach was used to create the reference dataset. In 
this context, 498 parcels of different crops were 
sampled. In addition to field studies, 350 data obtained 
from the Ministry of Agriculture and Forestry, 
Farmers Registration System (FRS) were used to 
obtain crop information for the study area to be used 
as training data in the modeling phase. These data were 
pre-processed and missing or incorrect parcel data 
were corrected or extracted. Winter and summer crops 
commonly grown in the study area and non-

agricultural areas were classified. In this context, 
twelve classes were created. These classes are Wheat, 
Sunflower, Maize, Oat, Chickpea, Sugar Beet, Onion, 
Alfalfa, Fallow, Pasture, Lake and Non-agricultural 
areas. In the study area, rocky, bare areas, roads and 
settlement areas were classified as non-agricultural. 

Image Classification 
In the classification process, some user-defined 
parameters are optimized to achieve maximum 
accuracy. After training the models, a crop 
classification map is created according to the optimum 
parameter specifications. The accuracy of the models 
is tested on a reference dataset. RF and SVM 
supervised machine learning algorithms are used for 
crop classification. The crop classification 
methodology includes four main stages: data 
collection, data processing, classification and accuracy 
(Figure 2). 

In image classification, 18 Sentinel-2 and 14 Landsat-
8 images were used as input data between October 
2018 and November 2019 (Table 2). RGB (Blue, 
Green, Red) and near infrared (NIR) bands and NDVI 
data were used in the classification study.  NDVI data 
were obtained for the images using red and near 
infrared spectral bands. A multispectral time series 
was created by combining the RGBNIR and NDVI 
data obtained for Landsat-8 and Sentinel-2 images. 

Table 1. Sentinel 2 and Landsat 8 spectral band characteristics 
Sentinel-2 Landsat-8 

Band No Spectral 
range(µm) 

Spatial resolution(m) No Spectral 
range(µm) 

Spatial resolution(m) 

Blue 2 0.46-0.52 10 2 0.45-0.51 30 
Green 3 0.54-0.58 10 3 0.53-0.59 30 
Red 4 0.65-0.68 10 4 0.64-0.67 30 
Red-edge1 5 0.70-0.71 20 
Red-edge2 6 0.73-0.75 20 
Red-edge3 7 0.76-0.78 20 
NIR 8 0.78-0.90 10 5 0.85-0.88 30 
NIR 8A 0.85-0.87 20 
SWIR1 11 1.56-1.65 20 6 1.57-1.65 30 
SWIR2 12 2.10-2.28 20 7 2.11-2.29 30 
Panchromatic 8 0.50-0.68 15 

Table 2. Sentinel 2 and Landsat 8 image acquisition dates 
Sentinel-2 Landsat-8 

29.10.2018 26.06.2019 27.10.2018 11.08.2019 
08.11.2018 01.07.2019 12.11.2018 27.08.2019 

21.02.2019 31.07.2019 20.03.2019 12.09.2019 

08.03.2019 10.08.2019 05.04.2019 28.09.2019 

23.03.2019 25.08.2019 14.05.2019 14.10.2019 

27.04.2019 19.09.2019 08.06.2019 

17.05.2019 29.09.2019 24.06.2019 

27.05.2019 14.10.2019 10.07.2019 

06.06.2019 29.10.2019 27.08.2019 
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Fig 1. Study area 

Fig 2. Image classification flowchart 

The reference dataset was obtained from crop data 
collected from the field using a Global Positioning 
System (GPS) device, and samples of some parcels 
were also obtained from the FRS data. Parcel 

boundaries were determined using the FRS and 
Sentinel 2 data. Then, the number of sampling points 
was increased by randomly increasing the sampling 
points within the parcel boundaries. The reference 
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dataset was divided into 75% training data and 25% 
test data. The datasets were trained in RF and SVM 
model structure. Implementation of the model 
algorithms and image classification were performed 
using the R programming language. Crop 
classification maps were produced in 10 m and 30 m 
spatial resolution and in raster data format. ArcGIS 
10.5 program was used for visualization and mapping 
of crop classification 

Classification models 
The random forest (RF) model creates a forest 
randomly, so that a direct relationship can be 
established between the number of trees in the 
algorithm and the result. The RF classifier is more 
reliable for large feature size and data noise ranges, 
and the random process in the algorithm reduces 
model overfitting (Breiman, 1999). In many crop 
mapping studies, higher accuracies can be achieved 
with RF compared to other machine learning 
algorithms (Zhong et al., 2014; Tatsumi et al., 2015). 
In the application of the RF model, the number of trees 
(ntree) and the number of features in each split (mtry) 
should be determined (Thanh and Kappas, 2018; Çelik 
et al., 2023). Better results can be obtained by 
determining the appropriate model parameters (Zhang 
and Roy, 2017). 

The support vector machine (SVM) is a nonparametric 
learning algorithm often used in remote sensing 
applications. SVM can partition datasets into different 
classes where the classes are linearly separable, and a 
linear decision boundary is determined that leaves the 
largest margin between the two classes. The margin is 
defined as the sum of the distances from the closest 
points of the two classes to the hyperplane (Vapnik, 
1995). In the case of nonlinear classification, various 
types of kernels can be used to define the optimal 
hyperplane, transforming nonlinear boundaries into 
linear ones (Huang et al., 2002; Mathur and Foody, 
2008). Different functions can be used in SVM 
algorithms; linear, polynomial, radial basis function 
(RBF) and sigmoid kernel (Çölkesen and Kavzoğlu, 
2008). Among these, the radial basis function (RBF) 
kernel outperforms the others by playing an important 
role as the cost (C) and kernel width (γ) parameters 
(Duro et al., 2012). 

The accuracy of classification models depends on 
user-defined parameters. In this study, hyperparameter 
optimization is applied on the models. 
Hyperparameter optimization refers to the tuning of 
hyperparameters used machine learning models to 
provide the best performance.  

Hyperparameters are user-specified variables that 
control the structural properties and behavior of the 

model. Hyperparameter optimization improves the 
performance of a model by enabling it to generalize 
better and helping to avoid problems such as 
overfitting or underfitting, while minimizing 
computational cost. In the literature, two different 
methods, grid search and random search, are used for 
hyperparameter tuning. While the grid search method 
finds the best parameter value by selecting a certain 
parameter range and trying all possible combinations, 
the random search method determines the parameter 
values by randomly sampling from a certain parameter 
range (Escabias 2017). In this study, the optimum 
parameter values for both RF and SVM models were 
determined. RF model parameters ntree and mtry 
values are 800 and 10 for Sentinel 2 images and 600 
and 8 for Landsat 8 images, respectively. On the other 
hand, SVM model parameters C and gamma (γ) values 
are 64 and 0.125 for Sentinel 2 images and 56 and 
0.125 for Landsat 8 images, respectively. 

Accuracy Assessment 
The classification results of remote sensing data are 
obtained by comparing the images. Classification 
accuracy is determined by the level of relationship 
between the class assigned to a pixel and the actual 
class. In the accuracy assessment, validation criteria 
obtained from the error matrix are used (Heupel, 
2018). Classification accuracy is assessed by 
constructing the error matrix and calculating the 
overall accuracy (OA), producer accuracy (PA), user 
accuracy (UA) and kappa coefficient (Congalton, 
1991).  

In the evaluation criterion, PA is the ratio of correctly 
classified data to the sampling data in each class, while 
UA is the ratio of correctly classified data in each class 
to the total number of data classified in that class 
(Tuvdendorj et al., 2022; Savitha and Talari, 2023; 
Vogiatzis and Eleftheriadis, 2023).  

Results and Discussion 

In this study, crop types were mapped using Sentinel-
2 and Landsat-8 data for the study area in Central 
Anatolia Region with semi-arid climate and the 
performance of RF and SVM machine learning 
algorithms were compared. In determining the 
seasonal plant growth profiles of the crops, land and 
FRS data collected from reference sampling plots were 
evaluated. Parcel data registered in the FRS are used 
as local reference data in crop pattern extraction 
studies with image classification methods (Altun and 
Türker, 2021; Şimşek and Durduran, 2023). In this 
study, the crop accuracy in the FRS plots was 
determined by checking whether the NDVI time series 
of the plots matched the characteristic NDVI curve of 
the relevant crop in the study area. In this respect, plots 
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that did not match the characteristic NDVI curve of the 
crops were excluded from the reference dataset. Also, 
it is possible that a part of a parcel or more than one 
crop is grown (Yaşar and Yağcı, 2023; Şimşek and 
Durduran, 2023; Şimşek 2024). In this case, the parcel 
boundaries were rearranged to obtain the correct 
reflectance values of the mixed parcels. 

NDVI spectral reflectance values obtained from 
Sentinel-2 time series data of wheat, sunflower, maize, 
oat, chickpea, beet, dry onion and alfalfa crops 
produced throughout the study area and fallow areas 
are shown in Figure 3. The beginning of the rising 
spectral profile in the crop graphs indicates 
germination. The germination time for wheat starts 
from the end of October, for chickpea in late April and 
early May, for maize, sugar beet and sunflower in late 
May. The highest biomass period (peak of the season) 
occurred in mid-May for wheat, early July for 
chickpea, early August for maize, sugar beet and 
sunflower. As the harvest period approaches and the 
ripening period begins, the leaves of the plants begin 
to turn yellow, and NDVI values decrease from the 
first week of June for wheat, and from September for 
maize, sugar beet and sunflower.  

Unlike other crops, alfalfa can be harvested three or 
four times until the end of September depending on the 
temperature values. The phenological periods of the 
crops may vary over the years according to climatic 
differences within the agricultural season. The 
distinctive spectral characteristics of the crops due to 
their phenological differences have been utilized to 

classify the crops. On the other hand, crops with 
similar developmental periods such as wheat and 
barley have similar reflectance values, which makes it 
difficult to distinguish the crops. Furthermore, clear 
variations in the ndvi value depending on the biomass 
of crops such as alfalfa, which is cut many times 
during the season, clarify the differentiation of crops. 

In the creation of land use maps of the study area, both 
Sentinel-2 and Landsat-8 images were classified using 
RF and SVM models. A total of twelve land use 
classes, nine for crops and three for other uses, were 
created for Sentinel-2 (Figure 4) and Landsat-8 
(Figure 5) images. 

Confusion matrices were created to compare the 
performance of Sentinel-2 and Landsat-8 images using 
RF and SVM models for crop classification. In the 
validation phase; overall accuracy (OA), kappa (K), 
user (UA) and producer (PA) accuracy values of each 
class were determined to evaluate the classification 
accuracies. Accuracy assessments were performed for 
RF and SVM algorithms of Sentinel-2 and Landsat-8 
images using the land reference data (Table 3). The 
reference data used in the accuracy assessment were 
obtained from field studies and FRS data for the 
parcels determined based on land cover/land uses. In 
this context, a reference dataset containing a total of 
40,807-pixel data was created for Sentinel-2 and 
Landsat-8 images. These points were selected from the 
whole area representing the land cover classes 
according to their areal size. 

Fig 3. Temporal changes of NDVI values of crops 
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Fig 4. Crop classification of Sentinel-2 images according to RF (left) and SVM (right) models 

Fig 5. Crop classification of Landsat-8 images according to RF (left) and SVM (right) models 
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According to the evaluation results, RF model has the 
highest accuracy with OA (89.5%) and K (0.88) values 
for Sentinel-2 data. RF model was followed by SVM 
model with OA (84.6%) and K (0.83) values. On the 
other hand, the results obtained for RF (OA: 79%, K: 
0.76) and SVM (OA: 78.1%, K: 0.75) models with 
Landsat-8 data were lower than Sentinel-2 (Table 3). 
For Sentinel-2 data, the user and producer accuracies 
for each class with the RF model ranged from 77.8% 
to 99.8%, while for SVM they ranged from 67.2% to 
97.5%. For Landsat 8 data, these accuracies ranged 
between 60.8% and 99.2% for the RF model and 
between 57% and 97.3% for the SVM model (Table 
3). Crop classification accuracies obtained from both 
RF and SVM models using Sentinel-2 data are higher 
than Landsat-8 data, which is confirmed by previous 
studies (Saini and Ghosh, 2018; Htitiou et al., 2019; 
Bofana et al., 2020; Ahady and Kaplan, 2022; Savitha 
and Talari, 2023).  

Figures 6 and 7 shows the UA and PA accuracies for 
identifying land use classes using Sentinel-2 and 
Landsat 8 data for 2019. In the distribution of the 
accuracy matrix, the user accuracy of all classes is 
above 80% for Sentinel-2 image and RF model. PA is 
above 80% except for Oats (77.8%). Wheat is the most 
widely grown crop as an important crop in the region. 
In the classification of wheat, RF and SVM models 
performed well for Sentinel 2 and Landsat 8 images 
with UA values above 85% and PA values above 95% 
(Figure 6). For Sentinel-2 and SVM model, user 
accuracy is above 80% except for Maize (67.2%) and 
Chickpea (78.3%). PA is above 80% except for 
Sunflower (74.2%), Chickpea (78.1%) and Non-
agricultural (69.5%). In the accuracy matrix evaluation 
for Landsat-8, the user accuracy of Maize, Oat, Sugar 
Beet, Alfalfa, Fallow and Pasture classes and PA of 
Wheat, Sugar Beet, Fallow and Non-Agricultural 
classes are above 80% for RF model. In Landsat-8 and 
SVM model, the user accuracy of Wheat, Oat, Sugar 
Beet, Alfalfa and Fallow classes and the producer 
accuracy of Wheat and Sugar Beet classes were above 
80% (Figure 7).   

The highest accuracy values of Sentinel-2 images and 
RF model were found in Sugar Beet (99.0%) and 
Alfalfa (99.8%) classes for UA, while for PA, the 
highest accuracy values were found in Wheat (98.5%) 
and Sugar Beet (98.5%) classes. According to the 
results obtained from the SVM model, the highest 
prediction values were obtained in the Alfalfa (95.9%) 
class for UA and in the Wheat (97.5%) class for PA 
(Table 3). A similar evaluation was made for Landsat-
8 images. In RF and SVM models, the highest UA and 
PA values are above 95% for the Alfalfa and Wheat 
classes. For Sentinel 2 images, the lowest accuracy 
values were obtained for UA in the Chickpea (80.6%) 

class in the RF model and in the Maize (67.2%) class 
in the SVM model, while for PA in the Oat (77.8%) 
class in the RF model and in the Sunflower (74.2%) 
and Chickpea (78.1%) classes in the SVM model. 
Sugar beet and alfalfa crops achieved the highest 
accuracy values with both UA (99-99.8%) and PA 
(98.5-96%) in the RF model with Sentinel 2 images 
(Table 3). However, the lowest accuracy values for 
Landsat-8 imagery were obtained in the Sunflower 
(60.8%) class in the RF model for UA and in the 
Sunflower (66.6%), Chickpea (67.2%) and Onion 
(67.8%) classes in the SVM model, while for PA, the 
Oat (61.2%) and Chickpea (63.8%) classes in the RF 
model and Sunflower (60.4%) in the SVM model were 
obtained (Table 3).  

According to the results, wheat was the most 
accurately predicted class for PA by RF and SVM 
models in both Sentinel-2 and Landsat-8 images. The 
same situation was obtained for UA in the alfalfa class. 
It was also observed that oats mixed slightly with 
wheat and chickpeas. Among the summer crops, corn 
was mixed with sunflower and onion crops, which are 
in similar phenological periods. Some mixing between 
sunflower and onion may be due to the canopy 
structure and surface coverage of onion. In general, the 
findings of this study showed that Sentinel-2 data can 
be used successfully in areas with fragmented 
farmland and heterogeneous crop structure. 
Satisfactory results were obtained in areas with similar 
terrain conditions (She vd., 2020). 

Since the sample size is limited in large areas, 
reference data sets have an impact on classification 
accuracies (Li et al., 2021). In this study, satisfactory 
results were obtained by selecting plots with 
controlled sampling over land cover classes with 
stratified random sampling. Combining sampling 
points with multi-temporal images linked to 
phenological periods improves classification 
accuracy. In similar studies, multi-temporal images are 
preferred for many crops (Erdanaev et al., 2018; Vuolo 
et al. 2018; Gumma et al., 2020). RF was used more 
effectively than SVM in terms of processing satellite 
data containing crop growth periods spanning the 
whole season and in terms of memory capacity 
utilization. Adugna et al. (2022) RF model is more 
useful than SVM model in terms of processing large 
input data and memory consumption. Since the use of 
multi-time high dimensional data will increase the data 
volume, the creation of optimal data sets can improve 
model performances. 

Conclusion 

In this study, agricultural crop pattern performance 
results were compared by applying different ML 
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algorithms using multi-temporal Sentinel-2 and 
Landsat-8 images. It was found that satellite images 
with spatial and temporal differences have significant 
effects on the crop classification performance of the 
data obtained. It has been shown that RF and SVM 
algorithms can be successfully applied from ML 
techniques using Sentinel-2 and Landsat-8 images. 

The highest accuracy among the models for 
classification was obtained from RF results using 
Sentinel-2 data. When the image and model results 
were evaluated together, it was determined that the RF 
and SVM model accuracy results obtained from 
Sentinel-2 data were higher than Landsat-8 data. 

Table 3. Accuracy assessment of Sentinel-2 and Landsat-8 images with RF and SVM models 
Sentinel -2 Landsat-8 

RF SVM RF SVM 
Classes UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) 
Sunflower 81.8 85.8 82.0 74.2 60.8 76.8 66.6 60.4 

Wheat 87.8 98.5 86.5 97.5 79.8 96.5 84.0 97.3 

Maize 93.9 82.6 67.2 92.6 84.3 78.5 79.3 78.9 

Oat 94.6 77.8 92.9 81.4 88.6 61.2 90.1 74.5 

Chickpea 80.6 86.5 78.3 78.1 71.4 63.8 67.2 74.6 

Sugar Beet 99.0 98.5 87.0 94.8 96.5 88.8 93.5 86.8 

Alfalfa 99.8 96.0 95.9 93.3 99.2 73.5 95.2 75.2 

Fallow 91.9 89.1 87.2 80.6 90.7 88.4 82.2 74.4 

Onion 82.4 92.0 85.0 80.6 75.1 77.8 67.8 75.7 

Pasture 90.3 89.3 85.4 83.3 82.6 73.0 78.2 76.8 
Non-agricultural 92.9 84.8 80.8 69.5 65.3 83.6 57.0 64.1 
OA (%)  89.5  84.6   79.0  78.1 
Kappa  0.88  0.83   0.76  0.75 

Fig 6. User accuracy of RF and SVM algorithms based 
on Sentinel-2 and Landsat-8 

Fig 7. Producer accuracy of RF and SVM algorithms 
based on Sentinel-2 and Landsat-8  

The high temporal and spatial resolution of Sentinel 2 
images is considered to be the most important factor in 
the results. Especially in areas with mixed agriculture 
and small parcels, this situation is more prominent. 
The 16-day temporal resolution of Landsat 8 imagery 
and the unavailability of imagery during critical plant 
growth periods due to cloudiness caused a decrease in 
accuracy levels. In addition, the spatial resolution in 
plots with more than one agricultural crop and plots 
with low area caused the accuracy performance to 
decrease for some crop classes. According to the 
results obtained, it was concluded that Landsat images 

can be used in the classification of crops with similar 
phenological periods, but it cannot exceed a certain 
level due to its spatial and resolution.  

Sentinel-2 imagery provided better results in crop 
classification than Landsat-8 due to its spatial and 
temporal resolution. In particular, it was concluded 
that it is more suitable for classification studies in 
parcels with small areas. Moreover, the RF method 
performed better in identifying crop types using 
Sentinel-2 data. Crops in small patches and with 
different phenological stages were successfully 
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classified using optical remote sensing data such as 
Sentinel-2. In this study, the use of multi-temporal data 
provided a good result in distinguishing crops with 
consecutive phenological periods. The multi-spectral 
and temporal data of Sentinel-2 images significantly 
improves the classification accuracy, which is strongly 
correlated with the band characteristics selected. For 
crop varieties with early, mid and late growth stages, 
the combination of temporally different images can 
provide optimum performance. At this stage, image 
selection and cloudiness are important.  

While high temporal and spatial resolution over large 
areas such as Sentinel 2 images contributes 
significantly to classification accuracy, increasing the 
number and volume of images increases data storage 
space and processing time. In addition, image 
selection, downloading and preprocessing can increase 
the processing time depending on the technical 
specifications of the computer. 

The study results are satisfactory due to the size of the 
area and the diversity of the cropping pattern. These 
data are of strategic importance for source data 
management and agricultural crop planning, especially 
regional and national studies. Crop classification maps 
created using satellite images and ML algorithms can 
play an effective role as basic data for decision makers 
and producers in creating agricultural planning models 
such as crop support, yield and agricultural water use. 
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