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ABSTRACT: In  this  study, micro-nanoporous TiO2 films  were  prepared  by 
electrochemical anodization of titanium (Gr-2) in an aqueous solution containing 0.5 wt. 
% HF solution at a constant potential of 30 V and then annealed in ambient air at 500, 
600,  700  and  800 C  for  2  h  to  obtain  crystalline  structures.  The crystalline  phase and 
surface  morphology  of  the  samples  were  characterized  by  X-ray  diffraction  (XRD)  and 
scanning  electron  microscope (SEM). The  photocatalytic  performances  of  the  samples 
were  evaluated  by  the  photocatalytic  degradation  of  aqueous  methylene  blue  (MB)

solutions  under  UV  light  illumination  for  different periods. XRD  results  indicated  that  at 
annealing  temperatures  higher  than  600°C,  anatase  started  to  transform  into  rutile. 
Increasing annealing temperatures  resulted  in  reduced micro-nanopores diameter  and 
increased  wall  thickness.  At  800C,  the structure  completely  disappeared. The  results 
demonstrated that changes in both the crystalline structure and surface morphology have 
a strong influence on the photoactivity of the nanostructured TiO2 films.
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INTRODUCTION 

 

In 1972, titanium dioxide has been considerable investigated as a semiconductor 

photocatalyst for solar energy conversion and environmental purification since Fujishima 

and Honda discovered the photocatalytic splitting of water on TiO2 electrodes in 1972 

[Fujishima and Honda, 1972]. Among various oxide semiconductor photocatalytic 

materials, TiO2 is widely used for pollution control because of its high physical stability, 

chemical inertness, low cost, and non-toxicity and strong oxidizing power under UV light 

irradiation [Fujishima et al., 2000, Linsebigler et al., 1995, Chen and Mao, 2007]. TiO2 

has three nature crystallographic phases: anatase (tetragonal), rutile (tetragonal) and 

brookite (orthorhombic). Among these crystal structures of TiO2, anatase phase is 

generally considered to be more active than rutile phase for TiO2 photocatalysts due to 

its lower surface energy than rutile [Ahmed, 2012]. Rutile is the most thermodynamically 

stable phase, whereas anatase and brookite are metastable phases and could be 

transformed into rutile easily by thermal treatment [Beltran et al., 2006]. 

 

Nanostructured TiO2 thin films are usually prepared by sol–gel processing, chemical 

vapor deposition (CVD), liquid-phase deposition (LPD) methods and ion-beam synthesis 

methods [Tomandl et al., 2000, Yu et al., 2003, Komarov et al., 2005]. Recently, highly 

ordered TiO2 thin films prepared by a simple electrochemical anodization over a titanium 

substrate in a fluoride containing electrolyte in 2001. This method is a cost effective, 

versatile, easy, controllable and reproducible technique. This method is also possible to 

arrange the size and shape of nanopore arrays to the targeted dimensions [Gong et al., 

2001, Indira et al., 2012]. 

 

Many new types of TiO2-based photocatalysts have been reported in recent years, 

including, nanotubes [Liu et al., 2008], nanofibers [Liu et al., 2007], nanosheets (TNSs) 

[Matsumoto et al., 2009], porous anodized films [Masahashi et al., 2009], nanowire 

arrays [Yu et al., 2009], nanograined thin films [Ryu et al., 2008], mesoporous 

structures [Pan and Lee, 2006] and hierarchical micro- and nanoporous structures [Zhao 

et al., 2008]. It is known that morphology control of TiO2-based photocatalysts is usually 

one of the important research directions. This study examines the influence of annealing 

temperatures on the photocatalytic activity of TiO2 films grown on titanium substrates by 

anodization, with the aim of achieving a high photocatalytic performance. 

 

Herein, we prepared the micro-nanoporous TiO2 films by electrochemical anodization of 

titanium substrates and then annealed in ambient air at 500, 600, 700 and 800 C. The 



Yurddaskal et al., JOTCSA. 2018; 5(sp. is. 1): 85-92.  RESEARCH ARTICLE 

87 
 

effects of annealing temperature on the crystallization, morphology and photocatalytic 

activity of TiO2 films were investigated and discussed. The photocatalytic properties were 

evaluated using MB as the target pollutant. 

 

EXPERIMENTAL 

 

The commercially pure titanium (Cp-Gr 2) substrates with diameters of 25 mm and 5 mm 

thickness were used as anode. After polishing process, the samples were cleaned 

ultrasonically in ethanol, acetone and deionized (DI) water for each 15 min and finally 

washed by distilled water. Prior to the anodization process, the samples were degreased 

in a mixture of nitric acid and hydrofluoric acid solutions for ten seconds to remove the 

air-formed oxide layer.  

 

The anodization was performed in a solution consisting 0.5 wt. % HF solution at 30 V for 

30 min in two-electrode configuration connected to a DC power supply at room 

temperature. After electrochemical anodization, all the anodized films were calcined at 

500, 600, 700 and 800 C in air for 2 h. 

 

X-ray diffraction patterns of all samples were recorded to identify the phase structures 

with the aid of an X-ray diffractometer having a CuKα characteristic radiation source 

(XRD, Thermo-Scientific, ARL Kα). Diffraction patterns were acquired in the range of 10° 

to 80° with a scanning rate of 2°/min. The X-ray radiation of Cu-Kα was set at 45 kV and 

44 mA. The surface morphology and microstructure of the samples were characterized by 

a scanning electron microscope (SEM, COXEM EM-30 Plus). 

 

The photodegradation of MB experiments were exploited in a homemade reactor which 

was surrounded a cooling system to keep the photocatalytic reaction system at room 

temperature. All tests were performed using a light source (Osram, UltraVitalux E27, 

300W). The films were placed into beakers containing 30 ml of MB aqueous solution. The 

initial concentration of MB is 3 mg/L corresponding to 10−5 M (pH = 8). The distance 

between the lamp and the beakers was kept at 20 cm for all specimens. During the 

whole reaction, 3 ml of the MB aqueous solution from each beaker was extracted at an 

interval of 1 h in order to measure the absorption spectra of MB. The absorption of the 

MB solutions was conducted and analyzed by a UV-1240 Shimadzu spectrophotometer 

based on the characteristic absorption of MB peak at 664 nm. 
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RESULTS AND DISCUSSION 

 

Fig. 1 depicts the XRD patterns of the micro-nanoporous TiO2 films annealed at different 

temperature. It was observed that the microporous layers exhibited mixed crystalline 

structures consisting of anatase, rutile and metallic Ti from the substrate. It was 

observed that the main diffraction peaks at 25.38 (101) and 37.96 (004) which 

correspond to crystal structure of anatase for the samples annealed at 500 oC and 600 oC 

[Kenanakis, et al., 2015]. When the annealing temperature increased, the intensity of 

anatase decreased in the samples and crystalline phase of micro-nanoporous TiO2 films 

was predominantly rutile. It must also be noted that metallic titanium peaks observed in 

patterns that can be associated to X-ray penetration into the substrates on which surface 

modifications were made. 

 

It is known that surface morphology is of great influence on catalysts’ photocatalytic 

activity. Fig.2 shows the SEM micrographs of the micro-nanoporous TiO2 films. The 

shapes of TiO2 micro- and nanopores exhibited a noticeable change with increasing 

annealing temperature. With further increasing of the annealing temperature to 800 C, 

pores were destroyed and started to disappear. 

 

As mentioned before, the MB dye was used to assess the photocatalytic performance of 

the prepared micro-nanoporous TiO2 films annealed at different temperature. 
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Figure 1: XRD patterns of the micro-nanoporous TiO2 films annealed at different 

temperatures. 
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Figure 2: SEM images of TiO2 films annealed at (a) 500 C (b) 600 C (c) 700 C and (d) 

800 C. 

Fig. 3 shows the photocatalytic degradation of MB by the micro nanoporous TiO2 films 

annealed at different temperatures. Considering the annealing temperatures of the films, 

the sample annealed at 600 oC has the best photocatalytic activity and SEM photographs 

support these results. Fig 4 shows the photocatalytic kinetics of the TiO2 films micro-

nanoporous TiO2 films annealed at different temperatures. Photocatalytic degradation 

kinetics were calculated from Langmuir–Hinshelwood kinetics model that express the first 

order reaction kinetics for the samples. With this approach, it can be inferred that the 

higher the slope of the linear plot, the higher the degradation reaction rate.  
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Figure 3: Photocatalytic degradations of the TiO2 films micro-nanoporous TiO2 films 

annealed at different temperatures. 
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Figure 4: Photocatalytic kinetics of the TiO2 films micro-nanoporous TiO2 films annealed at 

different temperatures. 

 

Table 1: Photocatalytic parameters of the samples. 

Annealing 

temperature 

(oC) 

Kinetic rate 

constant 

(k) (h-1) 

R2 

500 0.1748 0.9971 

600 0.2093 0.9985 

700 0.1405 0.9935 

800 0.1109 0.9916 

 

It can be understood from the Fig. 4; all samples are good agreement with the first order 

kinetics. The photocatalytic parameters of the samples were given in Table 1. The film 

annealed at 600 oC proved to be the best photocatalyst among the samples annealed 

from 500 oC to 800 oC. The photocatalytic activity of TiO2 structures depends on several 

factors such as surface area, crystallinity, phase composition and crystal orientation 

[Dikici et al., 2015].  

 

CONCLUSION 

 

It can be concluded that the structural properties of the films determined the best 

photocatalyst in this work. Annealing temperature of the 600 oC for 2 h in air is the best 

heat treatment regime that the anatase phase is predominant and rutile is the newly 

formed for the sample with higher surface area. Low anatase/rutile ratio is better for the 

photoactivity of micro-nanoporous TiO2 films.  
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