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Abstract 

This study explores the synthesis of microstrip antennas designed for 2.4 GHz RF energy harvesting circuits 

through the integration of artificial neural networks (ANNs). Utilizing a 3D electromagnetic (EM) simulation 

tool, extensive datasets were generated for training and testing the ANN model. A meticulous trial-and-error 

process was employed to optimize critical hyperparameters, including the number of hidden layers, neurons 

per layer, and activation function types. The outcome of this process was the identification of an optimal ANN 

model, proficient in accurately capturing complex relationships between antenna design parameters and energy 

harvesting efficiency. The integration of the 3D EM simulation tool and the tuned ANN model facilitated a 

computationally efficient approach to antenna optimization, reducing reliance on resource-intensive 

simulations. This research contributes to the advancement of RF energy harvesting systems, showcasing the 

potential of artificial intelligence in streamlining the design process for optimal microstrip antennas in 2.4 GHz 

applications. The demonstrated methodology provides insights into the future of computational design, 

offering a swift and efficient path for meeting the evolving demands of wireless communication and sensor 

technologies. 
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1. Introduction 

In recent years, the increasing demand for wireless communications and the expansion of Internet of Things 

(IoT) devices have focused researchers on this area [1]. Concurrently, the importance of efficient and sustainable 

energy sources is becoming increasingly critical. Traditional power solutions face limitations in terms of size, 

weight, and environmental impact, making Radio Frequency (RF) energy harvesting a promising alternative for 

powering these autonomous and energy-limited devices. RF energy harvesting systems utilize electromagnetic 

radiation from the environment and convert it into electrical power for a variety of applications, from wireless 

sensor networks to wearable devices [2-4]. The electromagnetic spectrum, particularly the 2.4 GHz frequency 

band, has gathered significant interest due to its widespread use in various communication standards such as Wi-

Fi and Bluetooth. This frequency range not only provides extensive RF energy in urban and industrial 

environments but also aligns with the operating frequencies of many electronic devices, making it an ideal 

candidate for energy harvesting applications. 

Especially, the design and optimization of microwave antennas for RF energy harvesting circuits present a 

challenging problem in the field of wireless communication and sensor technologies [5]. The pursuit of antennas 

with enhanced performance characteristics such as increased efficiency, compact size, and adaptability to various 

operating conditions has become critically important in meeting the demands of modern electronic devices. As 

the demand for wireless communication systems continues to rise, addressing the challenges associated with 

microwave antenna design is crucial for advancing the capabilities of these technologies. 
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One of the key challenges in antenna design lies in achieving optimum performance at specific frequency 

bands such as the commonly used 2.4 GHz range. The complexity of microwave propagation, material 

considerations, and the interaction of antenna parameters require a comprehensive approach to design and 

optimization. Traditional methods typically involve a time-consuming and iterative process that relies heavily on 

manual tuning and extensive simulations to achieve the desired characteristics [6]. 

To overcome these challenges and accelerate the design process, artificial intelligence (AI) techniques, 

especially artificial neural networks (ANNs), have emerged as effective tools for antenna optimization [7-11]. 

Inspired by neural networks in the human brain, ANNs excel at learning complex patterns and relationships within 

data, which makes them well-suited to handle the complex and nonlinear nature of antenna design problems [12-

13]. ANNs can acquire knowledge from large datasets containing antenna performance measurements, simulation 

results, and design parameters, allowing them to create models that capture the inner relationships among these 

variables. Researchers can leverage the computational power of ANNs to efficiently explore the design space, 

identify optimal configurations, and quickly converge on antenna geometries that meet the desired specifications 

[14]. 

This study addresses the application of artificial neural networks for the design and optimization of a microstrip 

antenna adapted for RF energy harvesting circuits operating at 2.4 GHz. Integrating ANNs into the design process 

not only facilitates the optimization task, but also opens up possibilities for novel antenna geometries that may be 

difficult to explore with traditional methods. The flow chart of the proposed work is presented in Fig. 1. 

 

 

Figure 1. The flow chart of the proposed work 

2. Antenna Design and Data Preparation 

In this part of the study, a dataset has been prepared according to the variables defined in Table 1 for the 

microstrip antenna structure presented in Figure 2. According to the ranges provided in Table 1, a different antenna 

geometry is formed for each variable set. Thus, when the data obtained is presented to the ANN model as training 

data, the model will establish a relationship between the variables of the antenna geometry and the target output 

of the problem, which is the return loss (S11). To verify the accuracy of this relationship, an additional dataset (test 

set) has been prepared. Here, a total of 800 data points have been prepared for training, and 200 data points for 

testing, with the support of 3D simulators. The frequency range has been set as 0.1-6 GHz. The Latin-Hyper-Cube 

sampling method has been used as the data sampling technique. In the other part of the study, ANN models related 

to the antenna have been prepared with the obtained datasets, and an optimization has been conducted with this 

model to achieve an optimal antenna design for the 2.4 GHz band. The EM simulations are done using CST 

microwave suit. 



Dökmetaş et al. / JAIDA vol (2024) 33-38 

35 
 

 

 

Figure 2. Images of the Proposed Microstrip Antenna 

Table 1. Variable ranges of the proposed microstrip antenna in [mm] (W= 70, L = 40, L5 = 1.5 *L4, W4 = W1, W5 

= 4 * W1, L2 = L1 * 4) 

W1 1-5  L1 5-10  

W2 15-30  L3 3-10  

W3 10-20  L4 3-10  

 

3. Modeling and Simulation Results 

The selection of hyperparameters plays a critical role in determining the performance, efficiency, and 
generalization capabilities of Artificial Neural Networks [15]. Hyperparameters can generally be defined as the 
number of hidden layers, the number of neurons in each layer, and the type of activation function used. Careful 
tuning of hyperparameters is crucial to achieve optimal model performance and to overcome specific challenges 
associated with different tasks [16]. 

The number of hidden layers in an ANN affects its capacity to capture complex patterns and relationships 
within the data. As the depth of the network increases, it gains the ability to model complex hierarchical features. 
However, a deep network can be susceptible to overfitting, especially when dealing with limited data [17]. 
Adjusting the number of hidden layers to find the right balance is very important to prevent overfitting and allow 
the network to learn meaningful representations [18]. 

Activation functions introduce non-linearity to the network, enabling it to learn complex mappings between 
inputs and outputs. The choice of activation function affects the network's modeling and generalization 
capabilities [19]. Different activation functions are suitable for different tasks. For instance, the Rectified Linear 
Unit (ReLU) is known for its simplicity and effectiveness in many scenarios, while in certain cases sigmoid or 
hyperbolic tangent functions are preferred. The choice depends on the nature of the problem and experimentation 
is necessary to determine the most suitable activation function. 

In this study, experiments were conducted for 1, 2, 3, 4 hidden layers, neuron numbers of 8, 16, 32, 64, 128, 
and activation functions tanh, sigmoid, and ReLu. To present the results of the study in a more convenient way 
and easy to understand, the results of the model with the lowest test error from all these experiments have been 
used. Here more than 100 different models (only 15 different designs for single layer model 5 different neurons 
size x 3 different activation function) had been tested using Relative Mean Error (RME) Eq. 2 [20]. The targeted 
value (T) is the S11 value provided form the test data set which is a complex number, while the predicted value 
(P) is provided by the ANN model for each of the test samples over the operation frequency. As it can see from 
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figure 1, the ANN model predict real and imaginary parts of the S11 separately and combine them as complex 
number during the test evaluation. From all these evaluated models, the model with three-layer model with neuron 
numbers set to 16-32-64 and equipped with the ReLu activation function found to be the optimal design for studied 
problem. The test performance of the model has been obtained as 4.6% in terms of RME. In a similar approach 
to the study presented in [21], the ANN model obtained was run with an optimization algorithm aimed at achieving 
the desired antenna design. The cost function used for this purpose has been presented in equation (2). The design 
variables obtained at the end of this optimization process are provided in Table 2. 

 

𝑅𝑀𝐸𝑡 =
1
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∑
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𝑛
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1
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                                                                            (2) 

 

Table 2. Optimum design variables obtained with ANN-Based optimization in [mm]. 

W1 2  L1 8  

W2 22.5  L3 5.3  

W3 16 L4 8  

 

To verify the accuracy of the obtained optimum antenna design values, the results were inputted into a 3D 
simulator tool. Figure 3(a) presents the graph of the S11 formed based on these data. Figure 3(b) shows the radiation 
pattern of the antenna at 2.4 GHz. 

 

(a) 

 

(b) 

Figure 3. Simulated antenna with optimum variable values showing (a) Return loss S11, (b) 3D radiation pattern 
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4. Conclusion 

In this study, a microstrip antenna design for RF energy harvesting systems at the 2.4 GHz frequency band has 

been presented using artificial neural networks (ANNs). A 3D electromagnetic (EM) simulation tool was utilized 

to generate the training and testing data for the ANN model. A series of trial and error iterations and 

hyperparameters were used to develop the ANN model. These hyperparameters, which are crucial in shaping the 

learning and optimization capabilities of the neural network, include the number of hidden layers, the number of 

neurons in each layer, and the type of activation function. The hyperparameter tuning process resulted in the 

definition of an optimal ANN model. The fine-tuned ANN model through hyperparameter optimization served as 

a proxy for traditional and time-consuming design processes. This not only accelerated the design phase but also 

demonstrated the potential of artificial intelligence to efficiently navigate the multidimensional parameter space 

inherent in antenna optimization. Consequently, the combination of 3D EM simulation tools and artificial neural 

networks has been proven to be a synergistic and effective approach in the search for optimum microstrip antenna 

design. This study contributes to the advancement of RF energy harvesting systems by providing a glimpse into 

the future of computational design methodologies that leverage the power of artificial intelligence to meet the 

evolving demands of wireless communication and sensor technologies. 
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