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Abstract: It is known that the general theory of relativity provides valuable an-

swers about our universe. General relativity theory is used to describe space, time, 

and mass-energy interactions, while quantum theory is used to explain the behav-

ior and interactions of microscopic particles. The gap between these two theories 

reveals the need to develop a unified theory of "quantum gravity". However, so 

far no universal theory has yet been found that fully resolves this conflict. This is 

a big puzzle that physicists have been working on for a long time, and unifying 

these two theories harmoniously is one of the biggest challenges in modern phys-

ics. One of the theories put forward for this purpose is the "Rainbow" theory of 

gravity. In this study, Einstein, Bergmann-Thomson and Landau-Lifshitz energy 

densities are calculated for a spatial self-similar, locally rotationally symmetric 

model using teleparallel geometry within the framework of the Rainbow theory of 

gravity. However, the results obtained are evaluated using rainbow functions that 

are well known in the literature. The obtained results are rewritten as explicit forms 

of energy densities for Einstein, Bergman-Thomson and Landau-Liftshitz repre-

sentations using 𝑓1(𝜒) = 1/(1 − 𝜒)and 𝑓2(𝜒) = 1 rainbow functions. Accord-

ingly, it has been shown that the test particle changes its energy density for the 

Einstein and Bergmann-Thomson energy-momentum prescriptions but does not 

change the energy density for the Landau-Liftshitz energy-momentum prescrip-

tion. 
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Uzaysal Öz-Benzer, Yerel Dönel Simetrik Model için Gökkuşağı Kütleçekim 

Kuramı Çerçevesinde Teleparalel Enerji Yoğunluğu 

Özet: Genel görelilik kuramının evrenimiz hakkında çok değerli cevapları verdi-

ğini biliyoruz. Genel görelilik, uzayı, zamanı ve kütle-enerji etkileşimlerini açık-

lamak için kullanılırken, kuantum kuramı, mikroskobik parçacıkların davranışını 

ve etkileşimlerini açıklamak için kullanılır. Bu iki kuram arasındaki uçurum, bir-

leşik bir teori olan "kuantum kütleçekimi" teorisinin geliştirilmesi gerekliliğini or-

taya koyar. Ancak, şu ana kadar bu çatışmayı tam olarak çözen evrensel bir teori 

henüz bulunamamıştır. Bu, fizikçilerin uzun zamandır üzerinde çalıştığı büyük bir 

bulmacadır ve bu iki kuramın uyumlu bir şekilde birleştirilmesi, modern fizikteki 

en büyük zorluklardan biridir. Bu amaca yönelik olarak ortaya konan kuramlardan 

birisi de “Gökkuşağı” kütleçekim kuramıdır. Bu çalışmada Gökkuşağı kütleçekim 
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kuramı çerçevesinde tele paralel geometri kullanılarak uzaysal öz-benzer, yerel 

dönel simetrik model için Einstein, Bergmann-Thomson ve Landau-Lifshitz enerji 

yoğunlukları hesaplanmaktadır. Bununla birlikte elde edilen sonuçlar için litera-

türde iyi bilinen gökkuşağı fonksiyonları kullanılarak bir değerlendirme yapılmak-

tadır. Elde edilen sonuçlar 𝑓1(𝜒) = 1/(1 − 𝜒) ve 𝑓2(𝜒) = 1 gökkuşağı fonksi-

yonları kullanılarak Einstein, Bergman-Thomson ve Landau-Liftshitz gösterimleri 

için enerji yoğunluklarının açık halleri yeniden yazılmıştır. Buna göre, Einstein ve 

Bergmann-Thomson enerji momentum gösterimleri için test parçacığının enerji 

yoğunluğunu değiştirdiği ancak Landau-Liftshitz enerji momentum gösterimi için 

enerji yoğunluğunu değiştirmediği gösterilmiştir. 

Anahtar Kelimeler: Teleparalel kuram; gökkuşağı kütleçekim kuramı; enerji-

momentum 

 

1. Introduction 

Our universe is expanding rapidly, as can be seen from Einstein field equations and the data ob-

tained by the Hubble telescope. This expansion can also be defined as the expansion of space time. 

Within the framework of this expansion, what the energy-momentum density of our universe is or 

whether localization is possible has been a subject of research for theoretical physicists. As a result of 

Einstein's efforts to combine the theory of gravity and electromagnetism, the foundations of the telepar-

allel theory, an alternative theory to the general theory of relativity, were laid. In 1961, after Moller [1]'s 

study containing his perspective on the energy-momentum puzzle, the solution of the problem acceler-

ated with the writing of the Lagrangian equation for the teleparallel theory. In the late 20th and early 

21st centuries, Einstein, Bergmann-Thomson, Landau-Lifshitz, Moller, Weinberg, Tolman, Qadir-Sha-

rif notations were used by physicists such as Virbhadra [2], Xulu [3], Sharif [4], Salti [5], Aydogdu [6] 

have addressed the energy momentum localization problem within the framework of general relativity 

theory. However, Vargas [7], Pereira [8], Sharif [9], Salti [10], Aydogdu [11] and Aygün [12] re-inves-

tigated the problem within the framework of teleparallel theory. Solutions approaches to the problem 

have been modified and expanded in both general relativity and teleparallel theory. For these two theo-

ries, it can be said that the concept of torsion in the theory of absolute parallelism corresponds to the 

curvature in general relativity. While the general theory of relativity is successful in explaining many 

unknown phenomena, it remains incomplete at some points. The most important of these shortcomings 

is the inability to combine gravity and quantum theory. At this point, the "Rainbow Theory of Gravity" 

(RTG) appears with a structure that includes quantum contributions. According to the theory, the defor-

mation caused by a test particle in the structure of space-time is discussed.  The energy momentum 

distribution relation for RTG under non-linear Lorentz transformations is given as follows [13]: 

 

𝑓1
2(𝜒)𝐸2 − 𝑓2

2(𝜒)𝑝2 = 𝑚2.       (1.1) 

 

The symbols 𝑚,𝐸, 𝑝 here indicate the mass, energy and momentum of the test particle, respec-

tively. In addition, 𝑓1(𝜒), 𝑓2(𝜒) are rainbow functions, 𝐸𝑃 is the Planck energy represented by 𝜒 =

𝐸/𝐸𝑃. In case  𝜒 → 0 the normal distribution relation is obtained. 
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In this study, by mapping 𝑑𝑡 →
𝑑𝑡

𝑓1(𝜒)
 and 𝑑𝑥𝑗 →

𝑑𝑥𝑗

𝑓2(𝜒)
  within the line element depicting space 

time, Einstein, Bergmann-Thomson and Landau-Lifshitz energy densities are calculated in teleparallel 

geometry. 

2. Teleparallel Energy Momentum Prescriptions 

In general, the metric tensor (𝑔𝜇𝜈  ) plays a very important role in formulating theories of gravity. 

Tetrad (ℎ    𝜇
𝑎  ) provides the connection between curved and flat space time, used to describe the structure 

of space time in the theory of string-parallel gravity: 

 

ℎ    𝜇
𝑎 ℎ𝑎

    𝜈 = 𝛿𝜇
𝜈  ,       ℎ    𝜇

𝑎 ℎ𝑏
    𝜇

= 𝛿𝑏
𝑎,     𝑔𝜇𝜈 = 𝜂𝑎𝑏ℎ   𝜇

𝑎 ℎ   𝜈 
𝑏 .             (2.1) 

 

Here 𝛿𝜇
𝜈  is the well-known Kronocker-Delta function and 𝜂𝑎𝑏 = 𝑑𝑖𝑎𝑔(−1,+1,+1,+1)  is the  

Minkowski flat space-time metric.  

Using tetrads, the Weitzenböck coefficients, which are the basic coefficients of this geometry, can 

be calculated with the following relation [14]: 

 

     Γ   𝜇𝜈
𝜆 = ℎ𝑎

    𝜆𝜕𝜈ℎ    𝜇
𝑎 = −ℎ   𝜇 

𝑎 𝜕𝜈ℎ𝑎
    𝜆.          (2.2) 

 

Using the Weitzenböck coefficients, the torsion tensor is written as follows, with anti-symmetric 

properties: 

     T   𝜇𝜈
𝜆 = Γ   𝜈𝜇

𝜆 − Γ   𝜇𝜈
𝜆  .            (2.3) 

 

Freud’s superpotentials can be defined using torsion tensor components: 

𝑈𝛽
   𝜈𝜆 = ℎ𝑔𝛽𝜇 [𝑚1𝑇

𝜇𝜈𝜆 +
𝑚2

2
(𝑇𝜈𝜇𝜆 − 𝑇𝜆𝜇𝜈) +

𝑚3

2
(𝑔𝜇𝜆𝑇𝛽

𝛽𝜈
− 𝑔𝜈𝜇𝑇𝛽

𝛽𝜆
)].  (2.4) 

Here 𝑚1, 𝑚2,𝑚3  are dimensionless coupling constants and ( 𝑚1 =
1

4
, 𝑚2 =

1

2
, 𝑚3 = −1 ) 

makes general relativity and teleparallel theory equivalent. The Einstein, Bergmann-Thomson and  

Landau-Lifshitz energy-momentum density in the teleparallel gravity frame are written as follows,      

respectively; 

ℎ𝐸𝜈
𝜇
 =

1

4𝜋
𝜕𝜃(𝑈𝜈

   𝜇𝜃
)           (2.5) 

ℎ𝐵𝜇𝜈 =
1

4𝜋
𝜕𝜃(𝑔𝜇𝜆𝑈𝜆

   𝜈𝜃)           (2.6) 

ℎ𝐿𝜇𝜈 =
1

4𝜋
𝜕𝜃(ℎ𝑔𝜇𝜆𝑈𝜆

   𝜈𝜃).      (2.7) 

Here 𝐸0
0, 𝐵00, 𝐿00 are components of the energy density and 𝐸0

𝑖 , 𝐵0𝑖 , 𝐿0𝑖 are components of the 

momentum density.  
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3. Teleparallel Energy for a Self-Similar, Local Rotational Symmetric Model in a RTG       

Framework 

The line element for a self-similar, locally rotationally symmetric model in curved spacetime is 

given by [15]: 

   𝑑𝑠2 = 𝑒−2𝜆𝑥[−𝑑𝑡2 + 𝐴2(𝑡)𝑑𝑥2 + 𝐵2(𝑡)𝑒−2𝛼𝑥(𝑑𝑦2 + 𝜅−2 sin(𝜅𝑦)𝑑𝑧2)].     (3.1) 

 

The parameters expressed by 𝜆, 𝛼, 𝜅 define the symmetry groups of various models. A and B are 

time dependent functions. Line element in RTG framework is expressed in the form 

𝑑𝑠2 = 𝑒−2𝜆𝑥 [−
1

𝑓1
2 𝑑𝑡2 +

𝐴2(𝑡)

𝑓2
2 𝑑𝑥2 +

𝐵2(𝑡)𝑒−2𝛼𝑥

𝑓2
2 (𝑑𝑦2 + 𝜅−2 sin(𝜅𝑦)𝑑𝑧2)]  (3.2) 

Now, one can obtain the metric tensor 𝑔𝜇𝜈, and its inverse 𝑔𝜇𝜈 from the line element (3.2) as follows, 

 

𝑔𝜇𝜈 =

[
 
 
 
 
 
 
 −

𝑒−2𝜆𝑥

𝑓1
2 0 0 0

0
𝐴2(𝑡)𝑒−2𝜆𝑥

𝑓2
2 0 0

0 0
𝐵2(𝑡)𝑒−2(𝜆+𝛼)𝑥

𝑓2
2 0

0 0 0
𝐵2(𝑡)𝑒−2(𝜆+𝛼)𝑥 sin(𝜅𝑦)

𝑓2
2𝜅2 ]

 
 
 
 
 
 
 

         (3.3) 

 

𝑔𝜇𝜈  =

[
 
 
 
 
 
 
−𝑓1

2𝑒2𝜆𝑥 0 0 0

0
𝑓2

2𝑒2𝜆𝑥

𝐴2(𝑡)
0 0

0 0
𝑓2

2𝑒2(𝜆+𝛼)𝑥

𝐵2(𝑡)
0

0 0 0
𝑓2

2𝜅2𝑒2(𝜆+𝛼)𝑥

𝐵2(𝑡) sin(𝜅𝑦)]
 
 
 
 
 
 

              (3.4) 

equations are obtained. Using equation (2.1) ℎ    𝜇
𝑎  and ℎ𝑎

    𝜇
 can be written as     

   ℎ    𝜇
𝑎 =

[
 
 
 
 
 
 
 
𝑒−𝜆𝑥

𝑓1
0 0 0

0
𝐴(𝑡)𝑒−𝜆𝑥

𝑓2
0 0

0 0
𝐵(𝑡)𝑒−(𝜆+𝛼)𝑥

𝑓2
0

0 0 0
𝐵(𝑡)𝑒−(𝜆+𝛼)𝑥√sin(𝜅𝑦)

𝑓2𝜅 ]
 
 
 
 
 
 
 

              (3.5) 

 

ℎ𝑎
    𝜇

=

[
 
 
 
 
 
 
𝑓1𝑒

𝜆𝑥 0 0 0

0
𝑓2𝑒𝜆𝑥

𝐴(𝑡)
0 0

0 0
𝑓2𝑒(𝜆+𝛼)𝑥

𝐵(𝑡)
0

0 0 0
𝑓2𝜅𝑒(𝜆+𝛼)𝑥

𝐵(𝑡)√sin(𝜅𝑦)]
 
 
 
 
 
 

         (3.6) 

 

Using metric tensor and tetrads, Weitzenböck coefficients are obtained as follows: 
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Γ   01
0 = Γ   11

1 = −𝜆, Γ   10
1 =

𝐴̇(𝑡)

𝐴(𝑡)
,       Γ   20

2 = Γ   30
3 =

𝐵̇(𝑡)

𝐵(𝑡)
,    

Γ   21
2 = Γ   30

3 = −𝛼 − 𝜆, Γ   32
3 =

𝜅

2
cot 𝜅𝑦             (3.7) 

Here 𝐴̇(𝑡) ≡
𝑑𝐴

𝑑𝑡
, 𝐵̇(𝑡) ≡

𝑑𝐵

𝑑𝑡
   and the torsion tensors are written by 

𝑇   12
0 = −𝑇   21

0 = 𝜆,          𝑇   01
1 = −𝑇   10

1 =
𝐴̇

𝐴
   

𝑇   02
2 = −𝑇   20

2 = 𝑇   03
3 = −𝑇   30

3 =
𝐵̇

𝐵
,       

𝑇  12
2 = −𝑇   21

2 = 𝑇  13
3 = −𝑇   31

3 = −𝛼 − 𝜆,    

𝑇   23
3 = −𝑇   32

3 =
𝜅

2
cot 𝜅𝑦                  (3.8) 

Using torsion tensors, Freud superpotentials are obtained from equation (2.4) as follows. 

𝑈0
   01 = −𝑈0

   10 = −
𝐵2(𝑡)(𝛼+𝜆)𝑒−2𝑥(𝛼+𝜆)√sin𝜅𝑦

𝑓1𝑓2𝜅𝐴(𝑡)
,  

𝑈0
   02 = −𝑈0

   20 = 𝑈1
   12 = −𝑈1

   21 =
𝐴(𝑡)𝑒−2𝑥𝜆 cos𝜅𝑦

4𝑓1𝑓2𝜅√sin𝜅𝑦
  

𝑈1
   01 = −𝑈1

   10 =
𝑓1𝐵(𝑡)𝐴(𝑡)𝑒−2𝑥(𝛼+𝜆)√sin𝜅𝑦𝐵̇(𝑡)

𝑓2
3𝜅

  

𝑈2
   02 = −𝑈2

   20 = 𝑈3
   03 = −𝑈3

   30 =
𝑓1𝐵(𝑡)𝑒−2𝑥(𝛼+𝜆)√sin𝜅𝑦[𝐵(𝑡)𝐴̇(𝑡)+𝐴(𝑡)𝐵̇(𝑡)]

𝑓2
3𝜅

  

𝑈2
   12 = −𝑈2

   21 = 𝑈3
   13 = −𝑈3

   31 =
𝐵2(𝑡)(𝛼+2𝜆)𝑒−2𝑥(𝛼+𝜆)√sin𝜅𝑦

2𝑓1𝑓2𝜅𝐴(𝑡)
.          (3.9) 

 

After the finding of Freudian superpotentials and using them into the equations (2.5)-(2.6)-(2.7), 

Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum densities were determined re-

spectively. 

 

    ℎ𝐸0
0 =

𝑒−2𝑥(𝛼+𝜆)[𝑒2𝑥𝛼𝜅2𝐴2(𝑡)(cos2𝜅𝑦−3)+32(𝛼+𝜆)2𝐵2(𝑡) sin2 𝜅𝑦]

64𝜋𝑓1𝑓2𝜅𝐴(𝑡) sin3/2 𝜅𝑦
      (3.10) 

ℎ𝐵00 =
𝑓1𝜅2𝐴2(𝑡)(3−cos2𝜅𝑦)−32𝑒−2𝑥𝛼𝑓1𝛼(𝛼+𝜆)𝐵2(𝑡) sin2 𝜅𝑦

64𝜋𝑓2𝜅𝐴(𝑡) sin3/2 𝜅𝑦
         (3.11) 

ℎ𝐿00 =
𝑒−4𝑥(𝛼+𝜆)𝐵2(𝑡)[𝑒2𝑥𝛼𝜅2𝐴2(𝑡)−16(𝛼+𝜆)2𝐵2(𝑡)] sin𝜅𝑦

16𝜋𝑓2
4𝜅2         (3.12) 

4. Conclusion and Suggestions 

In this study, energy densities of Einstein, Bergmann-Thomson and Landau-Lifshitz are calculated 

for a self-similar, local rotationally symmetric model within the framework of RTG. Teleparallel geom-

etry is used for the results obtained. As can be seen in Equations (3.10)-(3.11)-(3.12), all densities de-

pend on rainbow functions. For the Einstein representation, the energy density varies inversely with both 
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the 𝑓1 and 𝑓2 rainbow functions. Bergmann-Thomson energy density varies directly with 𝑓1 and in-

versely with 𝑓2 rainbow functions. It is noticeable that the Landau-Lifshitz energy density changes only 

inversely depending on the 𝑓2 rainbow function. If the energy densities are rewritten for one of the 

well-known rainbow functions in the literature [16], 𝑓1 =
1

1−
𝐸

𝐸𝑃

, 𝑓2 = 1, then, 

 Einstein energy densities are obtained as: 

 

ℎ𝐸0
0 =

(1−
𝐸

𝐸𝑃
)𝑒−2𝑥(𝛼+𝜆)[𝑒2𝑥𝛼𝜅2𝐴2(𝑡)(cos2𝜅𝑦−3)+32(𝛼+𝜆)2𝐵2(𝑡) sin2 𝜅𝑦]

64𝜋𝜅𝐴(𝑡) sin3/2 𝜅𝑦
     (4.1) 

 

As seen in Equation (4.1), increasing the energy of the test particle will cause a decrease in the 

Einstein energy density. 

Bergmann-Thomson energy density is obtained as: 

ℎ𝐵00 =
𝜅2𝐴2(𝑡)(3−cos2𝜅𝑦)−32𝑒−2𝑥𝛼𝛼(𝛼+𝜆)𝐵2(𝑡) sin2 𝜅𝑦

64𝜋(1−
𝐸

𝐸𝑃
)𝜅𝐴(𝑡) sin3/2 𝜅𝑦

      (4.2) 

 

Increasing the energy (E) of the test particle will cause an increase in the Bergmann-Thomson 

energy density. 

Landau-Lifshitz energy density is written as: 

 

ℎ𝐿00 =
𝑒−4𝑥(𝛼+𝜆)𝐵2(𝑡)[𝑒2𝑥𝛼𝜅2𝐴2(𝑡)−16(𝛼+𝜆)2𝐵2(𝑡)] sin𝜅𝑦

16𝜋𝜅2                      (4.3) 

 

Here 𝑓2, one of the rainbow functions, being 1 causes that the test particle will not affect the 

Landau-Lifshitz energy density. However, if the 𝑓2 function is different from 1, the change in energy 

density is an undeniable fact.  

An application of Rainbow gravity theory has been made to unify the theory of gravity and quan-

tum theory, which is one of the problems that general relativity suffers from. The study is especially 

important in terms of shedding light on both the energy-momentum localization problem and the prob-

lems of combining Rainbow gravity theory and quantum theory. 
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