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Abstract: It is known that the general theory of relativity provides valuable an-
swers about our universe. General relativity theory is used to describe space, time,
and mass-energy interactions, while quantum theory is used to explain the behav-
ior and interactions of microscopic particles. The gap between these two theories
reveals the need to develop a unified theory of "quantum gravity"”. However, so
far no universal theory has yet been found that fully resolves this conflict. This is
a big puzzle that physicists have been working on for a long time, and unifying
these two theories harmoniously is one of the biggest challenges in modern phys-
ics. One of the theories put forward for this purpose is the "Rainbow" theory of
gravity. In this study, Einstein, Bergmann-Thomson and Landau-Lifshitz energy
densities are calculated for a spatial self-similar, locally rotationally symmetric
model using teleparallel geometry within the framework of the Rainbow theory of
gravity. However, the results obtained are evaluated using rainbow functions that
are well known in the literature. The obtained results are rewritten as explicit forms
of energy densities for Einstein, Bergman-Thomson and Landau-Liftshitz repre-
sentations using f;(x) = 1/(1 — y)and f,(x) = 1 rainbow functions. Accord-
ingly, it has been shown that the test particle changes its energy density for the
Einstein and Bergmann-Thomson energy-momentum prescriptions but does not
change the energy density for the Landau-Liftshitz energy-momentum prescrip-
tion.
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Uzaysal Oz-Benzer, Yerel Donel Simetrik Model icin Gokkusag Kiitlecekim
Kuram Cercevesinde Teleparalel Enerji Yogunlugu

Ozet: Genel gorelilik kuraminin evrenimiz hakkinda gok degerli cevaplari verdi-
gini biliyoruz. Genel gorelilik, uzayi, zamani ve kiitle-enerji etkilesimlerini agik-
lamak i¢in kullanilirken, kuantum kurami, mikroskobik parcaciklarin davranigini
ve etkilesimlerini agiklamak i¢in kullanilir. Bu iki kuram arasindaki ugurum, bir-
lesik bir teori olan "kuantum kitlegcekimi" teorisinin gelistirilmesi gerekliligini or-
taya koyar. Ancak, su ana kadar bu ¢atigmay1 tam olarak ¢dzen evrensel bir teori
heniiz bulunamamistir. Bu, fizik¢ilerin uzun zamandir tizerinde ¢alistig1 biiytik bir
bulmacadir ve bu iki kuramin uyumlu bir sekilde birlestirilmesi, modern fizikteki
en biiyuk zorluklardan biridir. Bu amaca yonelik olarak ortaya konan kuramlardan
birisi de “Gokkusag1” kiitlecekim kuramidir. Bu calismada Gokkusag: kiitlecekim
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kuramu g¢ergevesinde tele paralel geometri kullanilarak uzaysal 6z-benzer, yerel
donel simetrik model i¢in Einstein, Bergmann-Thomson ve Landau-Lifshitz enerji
yogunluklar1 hesaplanmaktadir. Bununla birlikte elde edilen sonuclar i¢in litera-
tirde iyi bilinen gokkusagi fonksiyonlari kullanilarak bir degerlendirme yapilmak-
tadir. Elde edilen sonuglar f;(x) = 1/(1 — x) ve f,(x) = 1 gokkusag fonksi-
yonlar1 kullanilarak Einstein, Bergman-Thomson ve Landau-Liftshitz gosterimleri
i¢in enerji yogunluklarinin agik halleri yeniden yazilmistir. Buna gore, Einstein ve
Bergmann-Thomson enerji momentum gosterimleri i¢in test parcaciginin enerji
yogunlugunu degistirdigi ancak Landau-Liftshitz enerji momentum gésterimi icin
enerji yogunlugunu degistirmedigi gdsterilmistir.

Anahtar Kelimeler: Teleparalel kuram; gokkusag: kiitlegekim kurami; enerji-
momentum

1. Introduction

Our universe is expanding rapidly, as can be seen from Einstein field equations and the data ob-
tained by the Hubble telescope. This expansion can also be defined as the expansion of space time.
Within the framework of this expansion, what the energy-momentum density of our universe is or
whether localization is possible has been a subject of research for theoretical physicists. As a result of
Einstein's efforts to combine the theory of gravity and electromagnetism, the foundations of the telepar-
allel theory, an alternative theory to the general theory of relativity, were laid. In 1961, after Moller [1]'s
study containing his perspective on the energy-momentum puzzle, the solution of the problem acceler-
ated with the writing of the Lagrangian equation for the teleparallel theory. In the late 20th and early
21st centuries, Einstein, Bergmann-Thomson, Landau-Lifshitz, Moller, Weinberg, Tolman, Qadir-Sha-
rif notations were used by physicists such as Virbhadra [2], Xulu [3], Sharif [4], Salti [5], Aydogdu [6]
have addressed the energy momentum localization problem within the framework of general relativity
theory. However, Vargas [7], Pereira [8], Sharif [9], Salti [10], Aydogdu [11] and Ayguin [12] re-inves-
tigated the problem within the framework of teleparallel theory. Solutions approaches to the problem
have been modified and expanded in both general relativity and teleparallel theory. For these two theo-
ries, it can be said that the concept of torsion in the theory of absolute parallelism corresponds to the
curvature in general relativity. While the general theory of relativity is successful in explaining many
unknown phenomena, it remains incomplete at some points. The most important of these shortcomings
is the inability to combine gravity and quantum theory. At this point, the "Rainbow Theory of Gravity"
(RTG) appears with a structure that includes quantum contributions. According to the theory, the defor-
mation caused by a test particle in the structure of space-time is discussed. The energy momentum
distribution relation for RTG under non-linear Lorentz transformations is given as follows [13]:

fEQOE? - f7CQ0p? = m?. (1.1)

The symbols m, E,p here indicate the mass, energy and momentum of the test particle, respec-
tively. In addition, f;(x), fo(x) are rainbow functions, Ep is the Planck energy represented by y =
E/Ep.Incase y — 0 the normal distribution relation is obtained.
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. - _dt_ ——
In this study, by mapping dt - ) and dx; - 00

time, Einstein, Bergmann-Thomson and Landau-Lifshitz energy densities are calculated in teleparallel
geometry.

within the line element depicting space

2. Teleparallel Energy Momentum Prescriptions

In general, the metric tensor (g,, ) plays avery important role in formulating theories of gravity.
Tetrad (h* , ) provides the connection between curved and flat space time, used to describe the structure
of space time in the theory of string-parallel gravity:

h% he¥ =6;, h*,h, k=58, 9uv = Naph®,h?y . (2.1)

Here &, is the well-known Kronocker-Delta function and 74, = diag(—1,+1,+1,+1) is the
Minkowski flat space-time metric.

Using tetrads, the Weitzenbock coefficients, which are the basic coefficients of this geometry, can
be calculated with the following relation [14]:

I, = hy*d,h*, = —h%,0,h,*. (2.2)
Using the Weitzenbdck coefficients, the torsion tensor is written as follows, with anti-symmetric
properties:

T =Th, - T4, . (23)

Freud’s superpotentials can be defined using torsion tensor components:

2
UB Z hg;;ﬂ [mlT;wA + % (TV;M _ TA;W) + % (g#ATBﬁV — gV#TBB )] (2,4)
Here my,m,,ms are dimensionless coupling constants and (m, =i, m, =%, ms =—1)

makes general relativity and teleparallel theory equivalent. The Einstein, Bergmann-Thomson and
Landau-Lifshitz energy-momentum density in the teleparallel gravity frame are written as follows,
respectively;

1
hEY = —=0g(U,") (2.5)
1
hBE = - 0p(9"U; ") (26)
_ 1 Ary vO
hL# = —0g(hg" U, ™). (2.7)

Here EQ,B°°,L°° are components of the energy density and Eg, B%, L% are components of the
momentum density.
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3. Teleparallel Energy for a Self-Similar, Local Rotational Symmetric Model in a RTG
Framework

The line element for a self-similar, locally rotationally symmetric model in curved spacetime is
given by [15]:
ds? = e 2 [—dt? + A%(t)dx? + B?(t)e 2% (dy? + k2 sin(ky)dz?)]. (3.1)

The parameters expressed by 4, a, k define the symmetry groups of various models. A and B are
time dependent functions. Line element in RTG framework is expressed in the form

BZ(t)e—Za

2 X
ds? = e72M [—%dtz + 20 gx2 4 (dy? + k™2 sin(;cy)dzz)] (3.2)

fZ f?
Now, one can obtain the metric tensor g,,, and its inverse g#* from the line element (3.2) as follows,

e—zlx

[ 0 0 0
01 Az(t;ez‘“" 0 0
_ 5
uv = 0 0 Bz(t)e—zz(ﬂa)x 0 (3.3)
f3
0 0 0 BZ(t)e_ZZ::Z)x sin(ky)
__flzezlx 0 0 0
fZZele
o 0 22(0) fzefm)x 0 (3.4)
0 0 T 0
R,

equations are obtained. Using equation (2.1) h*, and h, ®can be written as
_e_lx -

T 0 0 0
1
A(t)e M 0 0
f2
ha = (3.5)
n —(+@)x
0 0 B(ne”HO* 0
f2
0 0 0 B(t)e~(+D* [5in(ky)
f2K -
fie™ 0 0 0
fzeﬂx
. A(E) 0
e N s . (3.6)
B(0)
fZKe(AHx)x
0 0 0 B(t)/sin(xy)]

Using metric tensor and tetrads, Weitzenbdck coefficients are obtained as follows:
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At B(t)
l“001 = Fl11 =—-4 Fl10 = A0 F220 = F330 = B
%, =T%,=—a—-21, '3, = gcotky (3.7)

Here A(t) = Z—f, B(t) = Z—f and the torsion tensors are written by

A
T012 = T021 =1, T101 =-T= "
B
TZoz —T% = T303 =T = Y
T212 = —T221 = T313 = —T331 =—a—4

Using torsion tensors, Freud superpotentials are obtained from equation (2.4) as follows.
_ B2(t)(a+A)e~2*(@+) [sinky

01 _ _ 10 —
UO UO f1f2KkA(E) ’

02 _ _q7 20 _ g7 12 _ _ gy 21 _ A®®)e"?** cosky
UO B UO B Ul B Ul - 4f1fok4/sinky

01 10 _ fiB®A®)e 2D [sinkyB(t)
U1 = _Ul = 3

fz K
—2x(a+1) [o . .
U, 02 _ -U, 20 — Us 03 _ —U, 30 _ fiB(t)e 1/SIr}I;i/[B(t)A(t)+A(t)B(t)]
2

12 _ _gp 21 _ gy 13 _ gy 31 _ BA(®)(a+2)e @ [sinky

Vo o=l =l =l = 2f1f2KA(L) ' (39)

After the finding of Freudian superpotentials and using them into the equations (2.5)-(2.6)-(2.7),
Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum densities were determined re-
spectively.

e~ 2@+ D) [o2Xa2 42 (1) (cos 2ky —3)+32(a+21)2 BZ(t) sin? ky]

0 _
hEg = 64T f; fKcA(L) sin3/2 ky (3.10)
00 _ fik?A%(8)(3—cos 2ky)-32e”***f, a(a+2)B(t) sin® ky
hB™ = 64T f,KA(t) sin3/2 ky (3.11)
—4x(a+) g2 2XQ,.2 4204 252 .
K100 = € B2(t)[e2**K2 A%(t)-16(a+1)2B%(t)] sinky (3.12)

16T f5 K2

4. Conclusion and Suggestions

In this study, energy densities of Einstein, Bergmann-Thomson and Landau-Lifshitz are calculated
for a self-similar, local rotationally symmetric model within the framework of RTG. Teleparallel geom-
etry is used for the results obtained. As can be seen in Equations (3.10)-(3.11)-(3.12), all densities de-
pend on rainbow functions. For the Einstein representation, the energy density varies inversely with both

287



International Journal of Pure and Applied Sciences 10(1); 283-289 (2024)

the f; and f, rainbow functions. Bergmann-Thomson energy density varies directly with f; and in-
versely with f, rainbow functions. It is noticeable that the Landau-Lifshitz energy density changes only
inversely depending on the f, rainbow function. If the energy densities are rewritten for one of the
well-known rainbow functions in the literature [16], f; = 1% f> = 1, then,

Ep

Einstein energy densities are obtained as:

(1—%)e_2"(“+’1)[ez’“"KZA2 (t)(cos 2ky—3)+32(a+1)2B%(t) sin? ky|

hEQ = (4.1)

64mKA(t) sin3/2 ky

As seen in Equation (4.1), increasing the energy of the test particle will cause a decrease in the
Einstein energy density.
Bergmann-Thomson energy density is obtained as:
K2 A?%(t)(3—cos 2ky)—32e " ?**q(a+A)B%(t) sin? ky
6471'(1—%);(A(t) sin3/2 iy

hBO0 = (4.2)

Increasing the energy (E) of the test particle will cause an increase in the Bergmann-Thomson
energy density.
Landau-Lifshitz energy density is written as:

e~ (@+D)p2(1)[e2X% 2 42(+)~16(a+A)2B2(t)] sin ky
16mK2

hL% =

(4.3)

Here f,, one of the rainbow functions, being 1 causes that the test particle will not affect the
Landau-Lifshitz energy density. However, if the f, function is different from 1, the change in energy
density is an undeniable fact.

An application of Rainbow gravity theory has been made to unify the theory of gravity and quan-
tum theory, which is one of the problems that general relativity suffers from. The study is especially
important in terms of shedding light on both the energy-momentum localization problem and the prob-
lems of combining Rainbow gravity theory and quantum theory.
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