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Abstract

In this paper, we investigate inextensible flows of quaternionic curve according to type 2-quaternionic
frame. We give necessary and sufficient conditions for inextensible flow of quaternionic curves. Moreover,
we obtain evolution equations of the Frenet frame and curvatures according to type 2-quaternionic frame.
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1. Introduction

The quaternions are extensions of the complex numbers. Quaternions were defined as the quotient of two
directed lines in a three dimensional space or equivalently as the quotient of two vectors by Sir William Rowan
Hamilton [1]. Quaternions can be represented in various ways: as the sum of a real scalar and a real three
dimensional vector, as pairs of complex numbers or as four-dimensional vectors with real components. Quaternion
multiplication is generally not commutative, so quaternions are not a field.

K. Baharatti and M. Nagaraj studied quaternionic curves in three-dimensional and four-dimensional Euclidean
space and obtained their Frenet formulas [2]. In analogy with the Euclidean case, A.C. Coken and A. Tuna defined
Frenet formulas for the quaternionic curves in semi-Euclidean space [3]. F. Kahraman Aksoyak introduced a
new version of Frenet formulas for quaternionic curves in four-dimensional Euclidean space and called it type
2-quaternionic frame [4]. After that, by using these quaternionic frames, a lot of papers about quaternionic curves
have been studied [5-12].

A family of curves parametrized by time can be thought as evolving curves. The time evolution of geometric
locus is investigated by using its flow. There have been various studies on flows of curves, but firstly, D.Y. Kwon
and EC. Park introduced inextensible flows of plane curves [13] and D.Y. Kwon et al. investigated inextensible
flows of curves and developable surfaces in R? [14]. Then in many different spaces, inextensible flows of curves are
studied (see, [15-19]). Inextensible flows of curves also studied for quaternionic curves (see, [6, 10, 12]).
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Our aim is to study inextensible flows of quaternionic curve according to type 2-quaternionic frame. We give
necessary and sufficient conditions for inextensible flow of quaternionic curves. Moreover, we obtain evolution
equations of the Frenet frame and curvatures according to type 2-quaternionic frame.

2. Preliminaries

In this section, a brief summary of the theory of quaternions in the Euclidean space is presented.

The space of quaternions @ is isomorphic to R?, four-dimensional vector space over the real numbers. There
are three operations in @): addition, scalar multiplication and quaternion multiplication. Addition and scalar
multiplication of quaternions are defined to be the same as in R*.

A real quaternion ¢ is an expression of the form ¢ = ae; + bey + ces + des, where a, b, ¢ and d are real numbers,
and ey, e2, e3 are quaternionic units which satisfy the non-commutative multiplication rules,

ie; Xe; = —eq, (e4=1,1<i<3)

ii)e; X e = ep=—ejxe, (1<4,5<3),

where (ijk) is an even permutation of (123) in the Euclidean space R*. Further, a real quaternion can be written as
q = Sq + Vg, where S; = d is the scalar part and V;, = ae; + bey + ces is the vector part of ¢. The product of two
quaternions can be expanded as

PXq=5p5— <Vp, Vg >+S5,Vq+ 5,Vp + Vg A Vg,

for every p,q € Q, where <, > and A are inner product and cross product on R3, respectively. The conjugate of the
quaternion g is denoted by g and defined as

q=295, -V, =des — ae; — bea — ces,

and is called by "Hamiltonian conjugation of ¢". The h-inner product of two quaternions is defined by

1 _ _
h(p,q)=§(p><q+q><p),

where h is the symmetric, non-degenerate, real-valued and bilinear form. Let p and g be two real quaternions, then
h (p,q) = 0if and only if p and g are h—orthogonal. The norm of a real quaternion q is defined by

lall” = h(q,q) = a® + b* + ¢* + d°.

If ¢ + g = 0, then ¢ is called a spatial quaternion. The three-dimensional Euclidean space R? is identified with the
space of spatial quaternion @, = {y € Q |y +7 =0} C Q in an obvious manner.

Theorem 2.1. Let

3
v:[0,1] CR—Qs,  (s) =D 7ils)ei, (1<i<3),
i=1

be a smooth curve with arc-lenght parameter and {t, n1,no} be the Frenet trihedron of y. Then Frenet equations are

t/ = kn1
!/

ny = —kt+rng
/

ny = —rng,

where t is the unit tangent, ny is the unit principal normal, ng is the unit binormal vector fields, k is the principal curvature
and r is the torsion of the quaternionic curve v, [2].

Theorem 2.2. Let
4

B:[0,1] CR—Q, Bls) =Y vwils)ei, es=1,

i=1
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be a smooth curve 8 in QQ and {T', N1, N2, N3} be the Frenet apparatus of 3, then the Frenet equations are

T = KN

N = —KT+kN,

N} = —kN;+ (r—K)Ns
N, = —(r—K)Ns,

where Ny =t x T, No =ny x T, N3 =ns x Tand K = ||T'(s)|| , [2].

It is obtained the Frenet formulae in [2] and the apparatus for the curve 8 by making use of the Frenet formulae
for a curve v in E®. Moreover, there are relationships between curvatures of the curves 3 and 7. These relations can
be explained that the torsion of £ is the principal curvature of the curve v. Also, the bitorsion of 3 is (r — K), where
r is the torsion of v and K is the principal curvature of 5. These relations are only determined for quaternions, [2].

The alternative quaternionic frame for a quaternionic curve in R* by using of a similar method in [2] given by
Kahraman Aksoyak [4]

Theorem 2.3. Let
4
C:[0,1] C R—Q, ((s) =D vils)ei, ea=1,
=1

be a smooth curve ( in Q. The Frenet equations of ((s) for type 2-quaternionic frame are

T = KN

N = —KT+-rN,
Ny = rNi+ (K —k)Ns
Ni = —(K —k)Na,

where Ny =bXx T, Ny =ny x T, N3 =t xTand K = |T'|, [4].

For further quaternions concepts see [20].

3. Flow of quaternionic curves according to type 2-quaternionic frame

Throughout this section, we investigate flow of quaternionic curve according to type 2-quaternionic frame.

Unless otherwise stated we assume that ¢ : [0,] x [0,w] — Q is a one parameter family of smooth quaternionic
curve in @ where [ is arclength of initial curve and u is the curve parametrization variable, 0 < u <. Let ¢ (u, t) be
a position vector of the semi-real quaternionic curve at time ¢. The arclength variation of { (u, t) is given by

s(u,t)/‘ du:/vdu.
0 0

1
v

¢
ou

O : . . o o o
The operator - is given in term of uby 5- = 5.

Definition 3.1. Let ( be smooth quaternionic curve. Any flow of ¢ can be given by

0
875 = g1 T+ ga N1 + g3Na + g4 N3, (3.1)

where g1, g2, g3 and g4 are scalar speed functions of ¢.

In @, the inextensible condition of the length of the curve can be expressed by [13]

[ v
5’ (u,t) = adu =0. (3.2)
0
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Definition 3.2. A quaternionic curve evolution ¢ (u, t) and its flow % in @ are said to be inextensible if

%
ou

2
ot

Lemma 3.1. The evolution equation for the speed v according to type 2-quaternionic frame is given by

— = —— — VKg>. (3.3)
u

Proof. As % and % are commutative and v? = h (%, g—g) , we have

v 9, (9C N .. (9 D [
2”atwﬁ(wau)—?h(au’au(at))'

By using the equations of type 2-quaternionic frame, we obtain

Theorem 3.1. The flow of quaternionic curve is inextensible according to type 2-quaternionic frame if and only if

0
% = Kg2. (34)

Proof. Let the flow of quaternionic curve be inextensible. From equation (3.2) and (3.3), we have

9 fov, [ (g -
o (u,t) = Edu = / (6u - ’Uligg) du = 0.
0 0

This clearly forces

O

Lemma 3.2. Let the flow of ¢ (u,t) be inextensible. Derivatives of the elements of type 2-quaternionic frame with respect to
evolution parameter can be given as follows;

oT 0 0
= (915+g2+937‘> Ny + <—92T+8g§—g4(/‘€_k)> Na

ot 0s
+ g3 (/i — k) + % N3
0s ’
ON- 0
—=- 91/‘6+£+93T T + 1 N2 + 92 N3,
ot 0s
ON: 0
87t2 = <g27“ - % + 94 (K — k)) T — Y1 N1 + 93 N3,
ON3

= — (gg(n—k)+%)T—¢2N1—¢3N27

ot Os

where 1 = h (281 Ny) vy = h (2, N3) b3 = h (22, N3) .

Proof. Let % be inextensible. Then, considering that 2 and -2 are commutative, we get

or 9 (9 & (N d
FTT (65) = 95 (81&) = 95 (91T + g2N1 + g3N2 + g4N3)
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substituting (3.4) in the last equation, we have

(- k)) Ny

8T_ 892 893
8t—<91f€+88+937“)N1+< 92T+g 94
094
—k —— | Ns.
+<g3('i )+ 83) 3

Now, if we consider orthogonality of {T', N1, N2, N3}, then we get

0= aﬁ (T, Ny) = h(aaf N1> —|—h<T 8(;?)
(gm+ 22 —|—ggr> +h (T, 86]\;1) ;
0— 38 (T, No) = h(%{,%) +h<T786]\£2>
(gﬂ+gunm)+h6n%?),
0= g (T, N3) = h((Z’NP’) h<T é?f)
(o ) (n2)
0= ah(Nl,Nz) —h (agf N > +h (Nl, aé\f)
w1+h<N1,a(,)]>72),
0= %h(leNS) —h (a]\tfl,N3> +h (Nl, 8(;3)
—¢2+h<N1,8aAt73>;
0= %h(NQ,Ns) =h (a]\f,Ng> +h (Nz, 69(9]173)
w3+h<N2,aJ\f),
which brings about that
% - _ (glﬁ + % + ggT) T + 11 Ny + 9 N3,
O = (o0 = 52 g = ) T— a4 e
% == (93 (k—k)+ 8894> T — Y2 N1 — 3N,

where 11 = h (251,

NZ)v'Il)Q :h(aé\ila

N3) b3 = h (22

ot 7N3)'

Theorem 3.2. Let the flow of { (u,t) be inextensible. Then the evolution equation of r is

O _
ot

dg1

8sﬁ+

Ok 7] or
915+ G 250+ g — gar® — g

0Os 0s

5292
0s?

(k—=k).
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Proof. Since £ (2L) = £ (2L), we have

] ot \a
o (0T _ 5  Oga
75 (t) = (‘91“ ~ 95" ‘93’““) T
dg1 0k 0%gy 093 or
i ar 9993, 4 g, T g — k)N
+(35H+g188+82+ D5 -1-938 ggT g4r(/<c k) 1
dgs or 0?
+( gikr =252 = gr® o ga o+ S

509 gy O(K—K) o
2@( k) — g4 s g3 (k= k)™ | Na

+(gzr<nk>+28agg< — k) — g1 (r — k)?

3(&—]@)_’_394)]\/,3

93 Os 0s2
and
o (or\ 0 Ok ON;
ot (a) = g (W) = G+
0 Ok
= (—ng — %n - ggm'> T+ ENl + 1k No
+1/12I€N3.

From equality of the component of IV; in above equations, we obtain

Ok Oq Ok 0%gy 0g3

o,
o 0s TGy T s T2y T g, T —oar (R k).

Corollary 3.1. In theorem (3.2), from rest of the equality, we get

or  0%gs dga

0 O(k—k
K1 :—glm‘—Qﬂr—ggTz—!—gg——&— ( )

0s 0s  0s? _2E( r= k)= g4 0s —93(k

d(k—k) 0%
0s + 0s?

X (k= k)

s —ga(k—k)* +gs

Ky = —gor (k — k) +2——

Theorem 3.3. Let the flow of ¢ (u,t) be inextensible. Then the evolution equation of r is

0 0 0
a—; =g2m‘—£m+g4fﬁ(m—k)— %%—wg(lﬂ— k).
Proof. Noticing that 2 (201) = £ (2001} | it is seen that
0

ON- 0 0 02 0 0
( 1)—(—91/@—9/{4- 2 05, r+gs 7d>T

9s \ ot s Yas " 952 " s P)

+ ( g1k +I€+93/€T+¢1]€)
(8% — 1y (K )) Ny

Py (K 3¢2 > N3
ds

_|_

+

_k)Qa
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and
0 [ON; 0
8t<83) a ( K/T—T’Ng)
—*—92 +%T—94T(’€—k) T
ot Os

g1k — 75 — g3kr + 1/)17") Ny

_|_

ot

894

g3k (K — —&Sfi—wy") Ns.

(
+<g n/-z+g4ff(fik)ar>N2
(-

From above equations, we get

or_ .. 99 ALY _
a—gzlﬂ“ agli—l—g;;li(li k) s + e (kK — k).

Corollary 3.2. In theorem (3.3), from rest of the equality, we obtain

0 0
wl(f@'—k‘):—%—ggﬁ(ﬁ—k)—%ﬁ—ng

Theorem 3.4. Let the flow of ¢ (u,t) be inextensible. Then the evolution equation of (k — k) is

8(m—k) 81/)3
o Pt

Proof. Noticing that & (22 2 , it is seen that

O (0N _ (D92 Or g5 Do 0k — k)
8s<8t>_< 5T+g288_832+85 (v = k) +94 0Os
0 0
-‘1-(92[%7"—(,55%4—94%(%—]{))—51;1)]\71
+ (P17 — 3 (k — k)) No
03
and
0 [ ON, 0
a (83) = 7(7’N1 +(K§—k')N3)

From above equations, we obtain

:—¢2 +7
S
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