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INTRODUCTION 

Modern epidemiological theory emerged in the first years of the 20th century. The first major 

theoretical contribution to epidemiological theory came from Hamer (1906), who proposed the idea that 

the rate of contact between susceptible and infectious individuals determines how quickly an epidemic 

spreads [1]. This concept as an important idea in mathematical epidemiology is proportional to the 

principle of "mass action" which posits the multiplication of the density of infectious individuals by the 

density of susceptible individuals to determine the rate of spread of a disease. Most deterministic and 

stochastic theories of disease dynamics are based on this simple suggestion. Afterwards, Kermack and 

McKendrick [2, 3, 4] published their theory predicting the number and distribution of infectious disease 

cases in a series of three papers in 1927, 1932, and 1933. These studies established fundamental steps 

for the application and development of epidemic models that describe infectious diseases. HIV/AIDS 

and Hepatitis B, as well as the Rubella, Zika, Ebola, Flu, SARS, MERS, and COVID-19 outbreaks, are 

a few examples of infectious diseases. 

The novel coronavirus disease 2019 (COVID-19) outbreaks began in late December 2019 in 

Wuhan, China. COVID-19, a viral infection that has attracted worldwide attention for more than four 

years, is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [5, 6]. Unlike 

many other infectious diseases, COVID-19 is known to exhibit asymptomatic transmission as well as 

symptomatic transmission. Asymptomatic patients are defined as patients who show no signs of SARS-

CoV-2 infection and can transmit the disease to other susceptible individuals [7]. Presymptomatic 

patients are cases that are defined as asymptomatic from diagnosis to isolation follow-up, and then, 

symptoms develop during their observation [8]. These patients can be evaluated in the asymptomatic 

class. Symptomatic patients are a group of patients who have symptoms at all stages of the diagnosis-

treatment process. Therefore, unlike other infections, the R0 (reproductive number of disease cases) 

value, representing the average number of secondary cases infected by a single infected person, is 

expected to be higher. The COVID-19 pandemic has affected most countries in the world, especially 

economically [9] and psychologically [10]. Since many infection cases emerged during the process of 

finding appropriate treatment methods against the disease or producing a vaccine, quarantine measures 

were taken to prevent the continuation of infection waves in the past. In the process, researchers, 

biologists, and medical experts have produced effective vaccines to control SARS-CoV-2 infections. 

Although many prevention mechanisms and other control measures have been established to reduce the 

spread of the disease, some deadly variants of the virus still threaten people’s lives. In the literature, 

there are many studies with different perspectives describing the transmission of this virus [11, 12, 13, 

14]. 

Creating useful models in many different fields or modifying existing models to reflect natural 

problems is effective in solving these problems [15, 16, 17, 18]. One of the best ways to understand the 

spread of an infection is to analyze mathematical models that have been developed so far. 

We aim to develop a model for understanding the spread of COVID-19 infection cases. For this 

purpose, we characterize the transmission of the disease by the bilinear incidence rate which expresses 

contact between susceptible individuals and infected (symptomatic and asymptomatic (see [19])) 

individuals. We also take into account that there is currently no quarantine measure, and everyone can 

travel freely. We examine the transmission dynamics through the stability analysis and bifurcation 

theory of SARS-CoV-2 infections by including the vaccine in the model. 

The dynamical behavior of the SIR epidemic model, which is an epidemic model of differential 

equations, was reported by Li and Wang [20] as follows 

𝑆
⋅

= 𝐴 − 𝑑𝑆 − 𝜆𝑆𝐼 
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𝐼
⋅
= 𝜆𝑆𝐼 − (𝑑 + 𝑟)𝐼 

𝑅
⋅
= 𝑟𝐼 − 𝑑𝑅 

where, 𝑁𝑡 = 𝑆𝑡 + 𝐼𝑡 + 𝑅𝑡. S(t), I(t), R(t), and N(t) represent the numbers of susceptible, infectious, 

recovered, and total individuals at time t, respectively. A represents the population's recruitment rate, d 

stands for the population's natural death rate, r stands for the recovery rate of infectious individuals, and 

λ stands for the bilinear incidence rate. 

In previous studies [21, 22], the authors studied the different dynamical behavior of the discrete-

time model by implementing the forward Euler scheme to the model given in another study [20] and 

reducing it to two dimensions.  

While creating our model, we were also inspired by the model given in the study they took as 

reference [20]. In this model, we included the vaccine to see the effect of the vaccine. So, we can reach 

the following equations: 

𝑆
⋅

= 𝐴 − 𝑑𝑆 − 𝜆𝑆𝐼 − vS 

𝐼
⋅
= 𝜆𝑆𝐼 − (𝑑 + 𝑟)𝐼 

𝑅
⋅
= 𝑟𝐼 − 𝑑𝑅 + vS 

where, 𝑁𝑡 = 𝑆𝑡 + 𝐼𝑡 + 𝑅𝑡. 

The following discrete-time SIR epidemic model is produced using the forward Euler scheme 

with 
𝑑𝑆

𝑑𝑡
≈
𝑆𝑡+1−𝑆𝑡

ℎ
,    

𝑑𝐼

𝑑𝑡
≈
𝐼𝑡+1−𝐼𝑡

ℎ
,   
𝑑𝑅

𝑑𝑡
≈
𝑅𝑡+1−𝑅𝑡

ℎ
, and by replacing t (continuous time) with n=0,1,2,… 

(discrete-time) 

𝑆𝑛+1 = 𝑆𝑛 + ℎ(𝐴 − (𝑑 + 𝑣)𝑆𝑛 − 𝜆𝑆𝑛𝐼𝑛) 

𝐼𝑛+1 =  𝐼𝑛 + ℎ(𝜆𝑆𝑛𝐼𝑛 − (𝑑 + 𝑟)𝐼𝑛) 

𝑅𝑛+1 = 𝑅𝑛 + ℎ(𝑟𝐼𝑛 − 𝑑𝑅𝑛 + v𝑆𝑛) 

where, 𝑁𝑛+1 = ℎ𝐴 + (1 − ℎ𝑑)𝑁𝑛, 𝑁𝑛 = 𝑆𝑛+𝐼𝑛 + 𝑅𝑛. The step size is denoted by h, A, d, λ, and r are 

used as stated in the aforementioned study [20]. Assumptions include that all parameters are positive, 

S(0) > 0, I(0) ≥ 0, and R(0) ≥ 0. Here, the third equation in model is the linear equation for Rn, while 

the previous two equations concern (𝑆𝑛, 𝐼𝑛) and do not include Rn. As a result, the dynamical behaviors 

of model and the subsequent model are interchangeable, 

𝑆𝑛+1 = 𝑆𝑛 + ℎ(𝐴 − (𝑑 + 𝑣)𝑆𝑛 − 𝜆𝑆𝑛𝐼𝑛) 

𝐼𝑛+1 =  𝐼𝑛 + ℎ(𝜆𝑆𝑛𝐼𝑛 − (𝑑 + 𝑟)𝐼𝑛) 

which only consists of 𝑆𝑛 and 𝐼𝑛. 

In this study, we examine the next discrete-time SIR epidemic model which describes the 

interaction between susceptible individuals and infected (symptomatic and asymptomatic) individuals 

by including the vaccine 𝑣 in this model: 

𝑥𝑛+1 = 𝑥𝑛 + ℎ(𝐴 − (𝑑 + 𝑣)𝑥𝑛 − 𝛾𝑥𝑛𝑦𝑛)

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝛾𝑥𝑛𝑦𝑛 − (𝑑 + 𝑟)𝑦𝑛)         
  (1) 

where, 𝑆𝑛→𝑥𝑛 and 𝐼𝑛→𝑦𝑛 denote the numbers of susceptible individuals and infected individuals, 

respectively, and the parameters 𝐴, 𝑑, 𝑟, 𝑣, 𝛾, 𝑎𝑛𝑑 ℎ are all positive parameters. In this model, 𝜆 → 𝛾 

represents the bilinear incidence rate, and 𝛾 is the sum of 𝛽 + 𝜉. The parameters 𝛽 and 𝜉 describe the 
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rate at which COVID-19 infections spread from asymptomatic and symptomatic infected individuals to 

susceptible individuals, respectively. Here, 𝐴 denotes the recruitment rate of the population (or 

immigration), 𝑣 is the vaccination rate, 𝑟 refers to the recovery rate in infective individuals, 𝑑 is the 

natural death rate within the population, and this death rate is an equal rate in each compartment in the 

model. 

The paper is organized in the following manner: In Section 2, we explore the existence and local 

asymptotic stability of the fixed (equilibrium) points of the system (1) in ℝ+
2 . Section 3 delves into the 

dynamics of the system (1) experiencing a flip bifurcation, with A selected as the bifurcation parameter. 

The final section comprises discussions and results. 

EXISTENCE AND STABILITY ANALYSES OF FIXED POINTS OF THE SYSTEM  

This section presents an analysis of the existence and local stability of fixed points in the system 

(1) within ℝ+
2 . The local stability of fixed points in discrete-time systems is governed by the magnitudes 

of the eigenvalues of the Jacobian matrix. 

To maintain solutions within the closed first quadrant, we can employ the following assessment: 

Let  

𝑓𝑛+1(𝑥𝑛, 𝑦𝑛) = 𝑥𝑛 + ℎ(𝐴 − (𝑑 + 𝑣)𝑥𝑛 − 𝛾𝑥𝑛𝑦𝑛) 

𝑔𝑛+1(𝑥𝑛, 𝑦𝑛) = 𝑦𝑛 + ℎ(𝛾𝑥𝑛𝑦𝑛 − (𝑑 + 𝑟)𝑦𝑛) 

such that 𝑥0 > 0 and 𝑦0 > 0. It is clear that if 𝑦𝑛 > 0; and 𝑥𝑛 >
ℎ(𝑑+𝑟)−1

ℎ𝛾
, ℎ(𝑑 + 𝑟) > 1, then 

𝑔𝑛+1(𝑥𝑛, 𝑦𝑛) ≥ 0 for 𝑛 = 0,1,2, . ... The set of (𝑥𝑛, 𝑦𝑛) that makes 𝑓𝑛+1(𝑥𝑛, 𝑦𝑛) ≥ 0 can be represented 

as  

Ω = {(𝑥𝑛, 𝑦𝑛): 0 ≤ 𝑦𝑛 ≤
1 − ℎ(𝑑 + 𝑣)

ℎ𝛾
, ℎ(𝑑 + 𝑣) < 1, 𝑥𝑛 > 0}. 

From an ecological standpoint, for (𝑥𝑛, 𝑦𝑛) ∈ Ω, if (𝑓𝑛+1(𝑥𝑛, 𝑦𝑛), 𝑔𝑛+1(𝑥𝑛, 𝑦𝑛)) ∉ Ω, then a 

population collapse is implied. The two-dimensional discrete-time dynamical system is 

𝑥𝑛+1 = 𝑓(𝑥𝑛, 𝑦𝑛),                               
𝑦𝑛+1 = 𝑔(𝑥𝑛, 𝑦𝑛),      𝑛 = 0,1,2, . . . ,

  (2) 

and the functions 𝑓: 𝐼 × 𝐽 → 𝐼 and 𝑔: 𝐼 × 𝐽 → 𝐽 are continuously differentiable, where 𝐼and 𝐽 are real 

number intervals. Moreover, a solution {(𝑥𝑛, 𝑦𝑛)}𝑛=0
∞  of system (2) is uniquely defined by initial 

conditions (𝑥0, 𝑦0) ∈ 𝐼 × 𝐽. A fixed point (𝑥, 𝑦) of (2) satisfies 

𝑥 = 𝑓(𝑥, 𝑦), 

𝑦 = 𝑔(𝑥, 𝑦). 

Let (𝑥, 𝑦) be a fixed point of the map 𝐹(𝑥, 𝑦) = (𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦)), where the functions 𝑓 and 𝑔 

are continuously differentiable at (𝑥, 𝑦). The linearized system of (2) around (𝑥, 𝑦) is represented by 

𝑋𝑛+1 = 𝐹(𝑋𝑛) = 𝐽𝐹𝑋𝑛, where 𝑿𝒏 = (
𝑥𝑛
𝑦𝑛
), and 𝐽𝐹 denotes a Jacobian matrix of system (2) around (𝑥, 𝑦). 

The Jacobian matrix J of system (2) computed for (𝑥, 𝑦) is determined by 

𝑱(𝒙,𝒚) = (
𝑎11 𝑎12
𝑎21 𝑎22

) 

and the characteristic equation of matrix 𝑱(𝒙,𝒚) can be given as  

𝐹(𝜆) = 𝜆2 − 𝑡𝑟𝐽(𝑥,𝑦)𝜆 + det𝐽(𝑥,𝑦) = 0. 
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Assume that 𝜆1 and 𝜆2 be two roots of 𝐹(𝜆) = 0. Then, the fixed point (𝑥, 𝑦) is locally 

asymptotically stable, if |𝜆1| < 1 and |𝜆2| < 1, and it is called a sink point. Otherwise, (𝑥, 𝑦) is always 

unstable, and it is known as source (repeller) point. The fixed point (𝑥, 𝑦) is called a saddle point if |𝜆1| 

< 1 and |𝜆2| > 1 (or |𝜆1| > 1 and |𝜆2| < 1 ). If |𝜆1| = 1 or |𝜆2| = 1, then (𝑥, 𝑦) is known as a non-

hyperbolic point. Here, we say that if 𝐹(1) > 0, 𝐹(−1) > 0 and 𝐶 < 1, then the fixed point is defined 

as a sink point. Consequently, it is locally asymptotically stable. 

Existence Analyses of Fixed Points of the System  

By investigating the existence of all accessible fixed points of the epidemic system (1), we derive 

the following lemma. 

Lemma 1 System (1) exhibits the following cases  

(i) System (1) possesses an exclusion fixed point 𝐸1 = (
𝐴

𝑑+𝑣
, 0) for all positive parameters, 

(ii) If 𝐴 >
(𝑑+𝑟)(𝑑+𝑣)

𝛾
, then system (1) possesses a unique positive interior fixed point 𝐸2 =

(
𝑑+𝑟

𝛾
,
−𝑑2−𝑑𝑟−𝑑𝑣−𝑟𝑣+𝐴𝛾

(𝑑+𝑟)𝛾
). 

Local Stability Analysis of the Exclusion Fixed Point of the System 

Now, we perform local asymptotic stability analysis of the fixed point 𝐸1 = (
𝐴

𝑑+𝑣
, 0) by using the 

Jocabian matrix. For 𝐸1 = (
𝐴

𝑑+𝑣
, 0), the Jacobian matrix for system (1) is found as: 

𝑱𝑬𝟏 = (
1 − 𝑑ℎ − ℎ𝑣 −

𝐴ℎ𝛾

𝑑+𝑣

0 1 − 𝑑ℎ − ℎ𝑟 +
𝐴ℎ𝛾

𝑑+𝑣

) (3) 

So, the eigenvalues are 𝜆1 = 1 − 𝑑ℎ − ℎ𝑣 and 𝜆2 = 1 − 𝑑ℎ − ℎ𝑟 +
𝐴ℎ𝛾

𝑑+𝑣
. The following lemma 

outlines the criteria for the local asymptotic stability of the exclusion fixed point. 𝐸1. 

Lemma 2 Assume that 𝐴 <
(𝑑+𝑟)(𝑑+𝑣)

𝛾
. For the fixed point 𝐸1 of system (1), the statements listed 

below are valid:  

(i) It behaves as a sink if any of the following terms hold: 

(i.1)  𝑟 ≤ 𝑣 and ℎ <
2

(𝑑+𝑣)
. 

(i.2)  𝑟 > 𝑣 and ℎ ≤
2

(𝑑+𝑟)
. 

(i.3) 𝐴 >
(−2+ℎ(𝑑+𝑟))(𝑑+𝑣)

ℎ𝛾
, 𝑟 > 𝑣 and 

2

(𝑑+𝑟)
< ℎ <

2

(𝑑+𝑣)
. 

(i.4) 𝐴 >
(−2+ℎ(𝑑+𝑟))(𝑑+𝑣)

ℎ𝛾
 and ℎ <

2

(𝑑+𝑣)
. 

(ii) It is a source point if one the following terms is satisfied: 

(ii.1) 𝐴 <
(−2+ℎ(𝑑+𝑟))(𝑑+𝑣)

ℎ𝛾
, 𝑟 ≤ 𝑣 and ℎ >

2

(𝑑+𝑟)
. 

(ii.2) 𝐴 <
(−2+ℎ(𝑑+𝑟))(𝑑+𝑣)

ℎ𝛾
, 𝑟 > 𝑣 and ℎ >

2

(𝑑+𝑣)
. 

(iii) It is a saddle point if one of the following terms is satisfied: 
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(iii.1) 𝐴 <
(−2+ℎ(𝑑+𝑟))(𝑑+𝑣)

ℎ𝛾
, 𝑟 > 𝑣 and 

2

(𝑑+𝑟)
< ℎ <

2

(𝑑+𝑣)
 

(iii.2) 𝐴 >
(−2+ℎ(𝑑+𝑟))(𝑑+𝑣)

ℎ𝛾
, 𝑟 < 𝑣 and ℎ >

2

(𝑑+𝑟)
 

(iii.3)𝐴 >
(−2+ℎ(𝑑+𝑟))(𝑑+𝑣)

ℎ𝛾
, 𝑟 ≥ 𝑣 and ℎ >

2

(𝑑+𝑣)
. 

for all 𝑑, ℎ, 𝑣, 𝑟, 𝐴, 𝛾 ∈ ℝ+.  

Moreover, it behaves as a non-hyperbolic point if any of the conditions ℎ =
2

(𝑑+𝑣)
, 𝐴 =

(𝑑+𝑟)(𝑑+𝑣)

𝛾
, 

or 𝐴 =
(−2+ℎ(𝑑+𝑟))(𝑑+𝑣)

ℎ𝛾
 is satisfied. 

Local Stability Analysis of the Positive Interior Fixed Point  

Here, we present the locally asymptotic stability analysis of the interior positive fixed point: 

𝐸2 = (𝑥, 𝑦) = (
𝑑+𝑟

𝛾
,
−𝑑2−𝑑𝑟−𝑑𝑣−𝑟𝑣+𝐴𝛾

(𝑑+𝑟)𝛾
) (1) 

The Jacobian matrix of system (1) is 

𝑱𝑬𝟐 =

(

 
 

𝑑 + 𝑟 − 𝐴ℎ𝛾

𝑑 + 𝑟
−ℎ(𝑑 + 𝑟)

−
ℎ(𝑑2 + 𝑟𝑣 + 𝑑(𝑟 + 𝑣) − 𝐴𝛾

(𝑑 + 𝑟)
1

)

 
 

 

evaluated at 𝐸2. The characteristic polynomial is obtained via the Jacobian matrix as follows: 

𝐹(𝜆) = 𝜆2 + [−2 +
𝐴ℎ𝛾

𝑑 + 𝑟
]𝜆 + [

(−𝑑 − 𝑟)(−1 + ℎ2(𝑑 + 𝑟)(𝑑 + 𝑣)) + 𝐴ℎ(−1 + ℎ(𝑑 + 𝑟))𝛾

𝑑 + 𝑐𝑑2
]. 

Subsequently, we derive the following Lemma by employing the characteristic polynomial of 𝐽𝐸2. 

Lemma 3 A. Let 𝐴 >
(𝑑+𝑟)(𝑑+𝑣)

𝛾
. For a unique positive interior fixed point (𝐸2), the statements 

listed below are true:  

 (i) It behaves as a sink if any of the following terms hold: 

(i.1)  𝐴 <
(𝑑+𝑟)(−4+ℎ2(𝑑+𝑟)(𝑑+𝑣))

ℎ𝛾(−2+ℎ(𝑑+𝑟))
, ℎ ≤

1

𝑑+𝑟
 and 𝑣 <

4

ℎ2(𝑑+𝑟)
− 𝑑. 

(i.2) 𝐴 < min{
ℎ(𝑑+𝑟)2(𝑑+𝑣)

(−1+ℎ(𝑑+𝑟))𝛾
,
(𝑑+𝑟)(−4+ℎ2(𝑑+𝑟)(𝑑+𝑣))

ℎ𝛾(−2+ℎ(𝑑+𝑟))
},

1

𝑑+𝑟
< ℎ <

2

𝑑+𝑟
 and 𝑣 <

4

ℎ2(𝑑+𝑟)
− 𝑑. 

(i.3) 𝐴 >
(𝑑+𝑟)(−4+ℎ2(𝑑+𝑟)(𝑑+𝑣))

ℎ𝛾(−2+ℎ(𝑑+𝑟))
,
2

𝑑+𝑟
< ℎ < 2√

1

𝑑(𝑑+𝑟)
 and 𝑣 >

4

ℎ2(𝑑+𝑟)
− 𝑑. 

(ii) It behaves as a source point if any of the following terms hold: 

(ii.1)  
ℎ(𝑑+𝑟)2(𝑑+𝑣)

(−1+ℎ(𝑑+𝑟))𝛾
< 𝐴 <

(𝑑+𝑟)(−4+ℎ2(𝑑+𝑟)(𝑑+𝑣))

ℎ𝛾(−2+ℎ(𝑑+𝑟))
, 
1

𝑑+𝑟
< ℎ <

2

𝑑+𝑟
 and 𝑣 <

4

ℎ2(𝑑+𝑟)
− 𝑑. 

(ii.2)𝐴 > max{
ℎ(𝑑+𝑟)2(𝑑+𝑣)

(−1+ℎ(𝑑+𝑟))𝛾
,
(𝑑+𝑟)(−4+ℎ2(𝑑+𝑟)(𝑑+𝑣))

ℎ𝛾(−2+ℎ(𝑑+𝑟))
},

2

𝑑+𝑟
< ℎ < 2√

1

𝑑(𝑑+𝑟)
 and 𝑣 >

4

ℎ2(𝑑+𝑟)
− 𝑑. 

(iii) It behaves as a saddle point if any of the following terms hold: 

(iii.1) 𝐴 <
(𝑑+𝑟)(−4+ℎ2(𝑑+𝑟)(𝑑+𝑣))

ℎ𝛾(−2+ℎ(𝑑+𝑟))
,
2

𝑑+𝑟
< ℎ < 2√

1

𝑑(𝑑+𝑟)
 and 𝑣 >

4

ℎ2(𝑑+𝑟)
− 𝑑. 
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(iii.2) 𝐴 >
(𝑑+𝑟)(−4+ℎ2(𝑑+𝑟)(𝑑+𝑣))

ℎ𝛾(−2+ℎ(𝑑+𝑟))
, ℎ <

2

𝑑+𝑟
 and 𝑣 <

4

ℎ2(𝑑+𝑟)
− 𝑑.  

Moreover, it behaves as a non-hyperbolic point if any of the conditions 𝐴 =
(𝑑+𝑟)(−4+ℎ2(𝑑+𝑟)(𝑑+𝑣))

ℎ𝛾(−2+ℎ(𝑑+𝑟))
 or 𝐴 =

(𝑑+𝑟)(𝑑+𝑣)

𝛾
 is satisfied. 

Example 4 Taking into account the parameter values 𝑑 = 1.95, 𝑟 = 0.24, 𝛾 = 2.949, and ℎ =

0.5, 𝑣 = 0.449, and the initial conditions 𝑥0 = 0.4, 𝑦0 = 0.8, we write the following system  

𝑥𝑛+1 = 𝑥𝑛 + 0.5(𝐴 − 2.399𝑥𝑛 − 2.949𝑥𝑛𝑦𝑛)

𝑦𝑛+1 = 𝑦𝑛 + 0.5(2.949𝑥𝑛𝑦𝑛 − 2.19𝑦𝑛)           
 (5) 

For 𝐴 = 4.3 and 𝐴 = 4.5, the fixed point is locally asymptotically stable and unstable, 

respectively. Computations yield the fixed points (𝑥, 𝑦) = (0.742625,1.14977) for 𝐴 = 4.3 and 

(𝑥, 𝑦) = (0.742625,1.2413) for 𝐴 = 4.5. 

 

(a)                                                            (b) 

Figure 1 

Time series plots of system (1) with the parameter values 𝑑 = 1.95, 𝑟 = 0.24, 𝛾 = 2.949, ℎ = 0.5, 𝑣 = 0.449 (a) 

𝐴 = 4.3 (stable) (b) 𝐴 = 4.5 (unstable). 

ANALYSIS OF FLIP BIFURCATION  

In this section, we discuss the proposition that the positive interior fixed point 𝐸2 of system (1) 

undergoes flip bifurcation by using bifurcation theory [23]. Bifurcation point is a value that causes a 

change in the nature of the model's equilibrium solutions as the model passes through this point. Flip 

bifurcation involves the situation where the system switches to a new behavior with a period twice that 

of the original system. 𝐴 is selected as the bifurcation parameter to get the conditions of flip bifurcation. 

Assume that 𝜆1 and 𝜆2 be two roots of 𝐹(𝜆) = 0. If 𝐹(−1) = 0 and −𝑡𝑟𝐽 ≠ 0,2, then the 𝐸2 is a flip 

bifurcation point. Considering the characteristic polynomial of 𝐽𝐸2, we can see that −𝑡𝑟𝐽 = 2 −
𝐴ℎ𝛾

𝑑+𝑟
. The 

conditions determining a flip bifurcation occurring at 𝐸2 are determined as follows: If 

𝐴 = 𝐴𝐹 =
(𝑑 + 𝑟)(−4 + ℎ2(𝑑 + 𝑟)(𝑑 + 𝑣))

ℎ(−2 + ℎ(𝑑 + 𝑟))𝛾
 

such that ℎ(𝑑 + 𝑟) ≠ 2, then 𝜆1 = −1 and 𝜆2 =
(2+ℎ(𝑑+𝑟)(−3+ℎ(𝑑+𝑣))

(2−ℎ(𝑑+𝑟))
 with 

|𝜆2| ≠ 1 (6) 

The following set can be used to express these conditions: 
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𝐹𝐵𝐸2 = {𝐴, 𝑑, 𝑟, 𝛾, ℎ, 𝑣𝜖ℝ
+: 𝐴𝐹 =

(𝑑 + 𝑟)(−4 + ℎ2(𝑑 + 𝑟)(𝑑 + 𝑣))

ℎ(−2 + ℎ(𝑑 + 𝑟))𝛾
, ℎ(𝑑 + 𝑟) ≠ 2,

𝐴ℎ𝛾

𝑑 + 𝑟
≠ 2,4, |𝜆2| ≠ 1}. 

Using the transformation 𝑢 = 𝑥 −
𝑑+𝑟

𝛾
, 𝑣 = 𝑦 −

−𝑑2−𝑑𝑟−𝑑𝑣−𝑟𝑣+𝐴𝛾

(𝑑+𝑟)𝛾
, the fixed point 𝐸2 is shifted to 

the origin. So, we obtain:  

(
𝑢
𝑣
) → 𝐽𝐸2 (

𝑢
𝑣
) + (

𝐹1(𝑢, 𝑣)
𝐹2(𝑢, 𝑣)

) (7) 

where  

𝐹1(𝑢, 𝑣) = −ℎ𝛾𝑢𝑣    and    𝐹2(𝑢, 𝑣) = ℎ𝛾𝑢𝑣 (8) 

such that 𝑼 = (𝑢, 𝑣)𝑇 . From there, system (1) can be given as 

(𝑈𝑛+1) → 𝐽𝐸2(𝑈𝑛) +
1

2
𝐵(𝑢𝑛, 𝑢𝑛) +

1

6
𝐶(𝑢𝑛, 𝑢𝑛, 𝑢𝑛) + 𝑂(‖𝑈𝑛‖

4), (9) 

with the vector functions of 𝒖, 𝒗,𝒘  𝜖ℝ2: 

𝐵(𝑢, 𝑣) = (
𝐵1(𝑢, 𝑣)
𝐵2(𝑢, 𝑣)

) 

and 

𝐶(𝑢, 𝑣, 𝑤) = (
𝐶1(𝑢, 𝑣, 𝑤)
𝐶2(𝑢, 𝑣, 𝑤)

). 

These vectors are expressed by: 

𝐵1(𝑢, 𝑣) = ∑

2

𝑗,𝑘=1

𝜕2𝐹1
𝜕𝜉𝑗𝜕𝜉𝑘

|𝜉=0𝑢𝑗𝑣𝑘 = −ℎ𝛾(𝑢2𝑣1 + 𝑢1𝑣2) 

𝐵2(𝑢, 𝑣) = ∑

2

𝑗,𝑘=1

𝜕2𝐹2
𝜕𝜉𝑗𝜕𝜉𝑘

|𝜉=0𝑢𝑗𝑣𝑘 = ℎ𝛾(𝑢2𝑣1 + 𝑢1𝑣2) 

𝐶1(𝑢, 𝑣, 𝑤) = ∑

2

𝑗,𝑘=1

𝜕3𝐹1
𝜕𝜉𝑗𝜕𝜉𝑘𝜉𝑙

|𝜉=0𝑢𝑗𝑣𝑘𝑤𝑙 = 0 

𝐶2(𝑢, 𝑣, 𝑤) = ∑

2

𝑗,𝑘=1

𝜕3𝐹2
𝜕𝜉𝑗𝜕𝜉𝑘𝜉𝑙

|𝜉=0𝑢𝑗𝑣𝑘𝑤𝑙 = 0 

and 𝐴 = 𝐴𝐹 . Let 𝒒, 𝒑 ∈ ℝ2 be eigenvectors of 𝑱𝑬𝟐(𝑨𝑭) and transposed matrix 𝑱𝑬𝟐
𝑻 (𝑨𝑭), respectively, for 

𝜆1(𝐴𝐹) = −1. Then, we have 𝐽𝐸2(𝐴𝐹)𝑞 = −𝑞 and 𝐽𝐸2
𝑇 (𝐴𝐹)𝑝 = −𝑝. These eigenvectors calculated in the 

Mathematica program are:  

𝑞 ∼ (
(2 − ℎ(𝑑 + 𝑟))

(−2 + ℎ(𝑑 + 𝑣))
, 1)

𝑇

 

and 

𝑝 ∼ (
2

(ℎ(𝑑 + 𝑟))
, 1)

𝑇

. 

We utilize the standard scalar product in ℝ2 to normalize p relative to q, such that < 𝑝, 𝑞 >=

𝑝1𝑞1 + 𝑝2𝑞2.  So, we obtain: 
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𝑝 ∼ (
2(−2 + ℎ(𝑑 + 𝑣)))

(4 + ℎ(𝑑 + 𝑟)(−4 + ℎ(𝑑 + 𝑣))
,
ℎ(𝑑 + 𝑟)(−2 + ℎ(𝑑 + 𝑣))

(4 + ℎ(𝑑 + 𝑟)(−4 + ℎ(𝑑 + 𝑣))
)
𝑇

. 

It is evident that < 𝑝, 𝑞 >= 1. We must ascertain the sign of the coefficient 𝑐(𝐴𝐹)  in the manner 

described below in order to establish the direction of the flip bifurcation: 

𝑐(𝐴𝐹) =
1

6
< 𝑝, 𝐶(𝑞, 𝑞, 𝑞) > −

𝟏

𝟐
< 𝑝, 𝐵(𝑞, (𝐽𝐸2 − 𝐼)

−1𝐵(𝑞, 𝑞) >. (10) 

The following theorem provides the outcome on flip bifurcation concerning the coefficient of the 

critical normal form. 

Theorem 5 If (6) holds true, with 𝑐(𝐴𝐹) ≠ 0, and the parameter 𝐴 varies around 𝐴𝐹,then system 

(1) experiences a flip bifurcation at 𝐸2. Additionally, if  𝑐(𝐴𝐹) > 0 (𝑐(𝐴𝐹) < 0)), then the period 2 

orbits emerging from 𝐸2 are stable (unstable). 

The following Example 6 demonstrates the emergence of flip bifurcation according to our 

theoretical findings.  

Example 6 Taking into account the parameter values 𝑑 = 1.95, 𝑟 = 0.24, 𝛾 = 2.949, ℎ = 0.5, 

and 𝑣 = 0.449, we write the following system:  

𝑥𝑛+1 = 𝑥𝑛 + 0.5(4.40905 − 2.399𝑥𝑛 − 2.949𝑥𝑛𝑦𝑛)

𝑦𝑛+1 = 𝑦𝑛 + 0.5(2.949𝑥𝑛𝑦𝑛 − 2.19𝑦𝑛)                        
 (11) 

and 𝐴𝐹 = 4.40905 is a flip bifurcation point. Computation yields (𝑥, 𝑦) = (0.742625,1.19977). 

The Jacobian matrix is 𝑱 = [
−1.96856 −1.095
1.76906 1

]. The eigenvalues are 𝜆1 = −1 and 𝜆2 = 0.031439 

such that |𝜆2| ≠ 1. The flip bifurcation diagram is displayed in Figure 2 with the initial conditions 𝑥0 =

0.4 and 𝑦0 = 0.8. System (1) experiences a flip bifurcation at 𝐸2 as the parameter varies within a small 

vicinity of 𝐴𝐹. This indicates that the fixed point 𝐸2 is stable for 𝐴 < 4.40905, becomes unstable at 𝐴 =

4.40905, and exhibits period-doubling phenomena for 𝐴 > 4.40905. After the required computations 

are completed, we obtain: 

𝐹1(𝑢, 𝑣) = −1.4745𝑢𝑣 (12) 

𝐹2(𝑢, 𝑣) = 1.4745𝑢𝑣 (13) 

𝐵1(𝑢, 𝑣) = −1.4745(𝑢2𝑣1 + 𝑢1𝑣2) 

𝐵2(𝑢, 𝑣) = 1.4745(𝑢2𝑣1 + 𝑢1𝑣2) 

𝐶1(𝑢, 𝑣, 𝑤) = 𝐶2(𝑢, 𝑣, 𝑤) = 0 

and  

𝑝 ∼ (1.82648,1)𝑇, 𝑞 ∼ (−1.13054,1)𝑇 . 

We obtain 𝑐(𝐴𝐹) = 2.41377 > 0. Bifurcating from E, the period-2 orbits exhibit stability. 

DISCUSSIONS AND CONCLUSIONS 

This article focuses on analyzing the dynamical behavior of a discrete-time epidemic system (1). 

We find that system (1) has fixed points 𝐸1 = (𝑥, 0) = (
𝐴

𝑑+𝑣
, 0) and 𝐸2 = (𝑥, 𝑦) =

(
𝑑+𝑟

𝛾
,
−𝑑2−𝑑𝑟−𝑑𝑣−𝑟𝑣+𝐴𝛾

(𝑑+𝑟)𝛾
). It can be seen that system (1) possesses a unique positive interior fixed point 

𝐸2 with 𝐴 >
(𝑑+𝑟)(𝑑+𝑣)

𝛾
. We examine the local asymptotic stability conditions of these fixed points using 

the linearization method. Additionally, we demonstrate that system (1) undergoes flip bifurcation at 
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𝐸2 = (𝑥, 𝑦). To examine flip bifurcation, the recruitment rate 𝐴 is taken as the bifurcation parameter. 

Applying mathematical techniques from bifurcation theory, we demonstrate that system (1) experiences 

flip bifurcation under the condition 𝐴 = 𝐴𝐹 =
(𝑑+𝑟)(−4+ℎ2(𝑑+𝑟)(𝑑+𝑣))

ℎ(−2+ℎ(𝑑+𝑟))𝛾
, ℎ(𝑑 + 𝑟) ≠ 2. The dynamical 

characteristics of system (1) are illustrated in some figures. By choosing the value 𝐴 as the bifurcation 

parameter, the effects of the recruitment rate on susceptible individuals are observed in the absence of 

vaccination or when the presence of asymptomatic individuals is ignored. Here, the Figures are 

displayed using SageMath programming [24]. The situation and interpretations of the system dynamics 

for some parameter values are briefly summarized: 

 

Figure 2.  

Bifurcation diagram of the epidemic system (11) with the parameter values 𝐴 ∈ (4,5), 𝑑 = 1.95, 𝑟 = 0.24, 𝛾 =

2.949, ℎ = 0.5, and 𝑣 = 0.449.  

Let us consider system (1) without vaccination. Considering the values in Example 4 without 

vaccination, we have the following system for 𝐴 = 4.3: 

𝑥𝑛+1 = 𝑥𝑛 + 0.5(4.3 − 1.95𝑥𝑛 − 2.949𝑥𝑛𝑦𝑛)

𝑦𝑛+1 = 𝑦 + 0.5(2.949𝑥𝑛𝑦𝑛 − 2.19𝑦𝑛).             
 (14) 

Computation yields (𝑥, 𝑦) = (0.742625,1.30223). Although vaccination causes a decrease in 

the number of infected individuals, it gives us the result that the population depending on the number of 

infected and susceptible individuals reaches a constant value in a longer time. Consequently, it is seen 

that the system approaches a steady state more quickly when vaccination is not included (Figures 1-(a) 

and 3-(a)). 

Let us consider system (1) without vaccination and asymptomatic individuals. Considering the 

values in Example 4, we have the following system for 𝐴 = 4.3: 

𝑥𝑛+1 = 𝑥𝑛  + 0.5(4.3 − 1.95𝑥𝑛  − 1.749𝑥𝑛 𝑦𝑛)

𝑦𝑛+1 = 𝑦𝑛 + 0.5(1.749𝑥𝑛 𝑦𝑛 − 2.19𝑦𝑛).             
 (15) 

Here, 𝛾 = 𝛽 + 𝜉 such that 𝛽 = 1.2 (asymptomatic individuals) and 𝜉 = 1.749 (symptomatic 

individuals). Assuming that only symptomatic individuals spread the disease and that the vaccine is not 

available, the system appears to reach the equilibrium point (𝑥, 𝑦) = (1.25214,0.848548) more quickly 

(Figures 3-(a) and 3-(b)). 

Considering the parameter values 𝑑 = 1.95, 𝑟 = 0.24, 𝛾 = 2.949, ℎ = 0.5, and 𝑣 = 0, we 

compute the flip bifurcation point 𝐴 = 4.81249 for the system (14). For the same parameter values, 

𝐴 = 4.40905 is the bifurcation value of the vaccine-effective system (11). As a result, the system 

without the vaccine effect reaches the flip bifurcation point later. In other words, the system remains 

stable for longer (Figure 3-(c)). In this system, flip bifurcation occurs at a higher immigration rate. 

If the parameter values 𝑑 = 1.95, 𝑟 = 0.24, 𝛾 = 1.749, ℎ = 0.5, and 𝑣 = 0 are considered, we 
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reach the flip bifurcation point 𝐴 = 8.11438 for the system (15). When the impact of asymptomatic 

individuals on the system is ignored, the system can maintain its stability for a long time even if there is 

no vaccine (Figure 3-(d)). 

  

(a) (b) 

  

(c) (d) 

Figure 3  

Time series plots of system (1) with the parameter values  𝑑 = 1.95, 𝑟 = 0.24, and ℎ = 0.5, (a) system (14) 𝐴 =

4.3, 𝛾 = 2.949, 𝑣 = 0 (b) system (15) 𝐴 = 4.3, 𝛾 = 1.749, 𝑣 = 0 (c) 𝐴 ∈ (4,5), 𝛾 = 2.949, 𝑣 = 0 (d) 𝐴 ∈

(4,5), 𝛾 = 1.749, 𝑣 = 0. 

We would especially like to emphasize that the study involved theoretically obtaining the stability 

and bifurcation conditions of the model. The theoretical results were confirmed by selecting appropriate 

parameter values that met the obtained conditions. Since we included the vaccine effect as well as the 

effect of asymptomatic individuals in the model, the parameters were diversified specifically for this 

study. In our future studies, diagrams for the course of this disease will be obtained using real disease 

data for COVID-19, and they will be compared to the results obtained in this paper. 
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