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Abstract 

This study introduces a novel method for constructing multi-scale individual brain networks from static Fluorodeoxyglucose Positron 

Emission Tomography (FDG-PET) images, with a primary focus on diagnosing Alzheimer’s Disease (AD). Using Schaefer atlases, we 

partition the brain image into distinct regions, treating them as nodes in the graph. Subsequently, the Kernel Density Estimation (KDE) and 

Wasserstein Distance (WD) algorithms are used to estimate similarities between brain regions, forming graph connections. Addressing 

limitations inherent in fixed KDE settings, we propose employing several methods: the interquartile range, Sturges’, and Freedman-Diaconis 

rules, to optimize KDE settings. WD, renowned for its ability to capture both probability and spatial differences, is used to enhance the 

comparison of similarities among graph nodes. The effectiveness of our method is validated using the ADNI dataset. Connectivity analysis 

across diagnostic groups–Cognitive Normal (CN), Mild Cognitive Impairment (MCI), and AD–reveals disruptions in information 

transmission within the FDG-PET based brain network of MCI and AD subjects, compared to CN. Our findings support the effectiveness of 

KDE and WD in constructing multi-scale individual brain networks from FDGPET images. This method shows promise for applications in 

other brain disorders, enabling personalized diagnosis. 
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1. Introduction 

Alzheimer’s Disease (AD) is a major type of 

neurodegenerative brain disease prevalent among the elderly 

population. In 2018, an estimated 50 million people 

worldwide were living with dementia, and this number is 

projected to reach 152 million by 2050 (Patterson, 2018). 

Timely detection of AD plays a vital role in ensuring 

appropriate patient care in the context of approval of 

emerging therapeutics acting on disease course. Biomarkers, 

including Fluorodeoxyglucose Positron Emission 

Tomography (FDG-PET) images, have demonstrated 

effectiveness in early AD diagnosis (Alberdi et al., 2016, 

(Guedj et al., 2022). In recent years, FDG-PET based brain 

network analysis has proven to be an effective tool for 

understanding brain functions, its alterations under various 

conditions of AD, as well as for better diagnosing AD 

(Huang et al., 2018, Yao et al., 2017, Wang et al., 2020). 

Even though, the early studies on FDG-PET-based networks 

have primarily focused on group-based analyses, which may 

result in losing specific information within an individual 

brain (Wang et al., 2020). Meanwhile, recent studies have 

highlighted the significance of investigating individual-level 

brain networks as a promising tool offering valuable insights 

into personalized brain profiles and their implications for 

understanding brain disorders (Wang et al., 2020, Huang et 

al. 2020, Li et al., 2023). 

One of the main challenges in constructing individual 

brain networks from static FDG-PET images, compared to 

other neuroimaging modalities, such as functional Magnetic 

Resonance Imaging, is that static FDG-PET only captures 

brain metabolism at a specific point in time, making it 

difficult to study the brain network at the individual level. 

To address this problem, a few methods based on Kernel 

Density Estimation (KDE) have been used (Wang et al., 

2020, Li et al., 2023). Although these studies have produced 

interesting results, there is a limitation in the way KDE is 

applied. 

Notably, KDE settings have a significant effect on 

individual network analysis. In previous studies (Wang et 

al., 2020, Li et al., 2023), when using KDE, after using 

observed data to estimate the Probability Density Function 

(PDF) for a brain region, they typically estimate KDE on a 
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fixed range of values with the same number of sample points 

for all brain regions. These values are then used to compare 

the similarity between two PDFs of two brain regions. This 

approach generally exhibits several limitations. Firstly, there 

are significant differences in terms of sizes for various brain 

regions. Secondly, range values for the same brain regions 

may vary between subjects belonging to different groups 

(such as healthy control and patient groups). Therefore, 

using fixed settings for range values and sampling points 

may lead to the loss of information or over/underestimation. 

Thirdly, choosing the appropriate fixed settings also requires 

experiments, which is a time-consuming process. Fourthly, 

when working with brain networks at multiple scales, the 

need to select appropriate settings to well represent PDFs is 

crucial and unavoidable. To overcome these limitations, in 

this study, we propose a new approach for building FDG-

PET-based individual graph, in which, KDE estimation is 

adapted in terms of range values and sampling points based 

on observations from the data. We refer to this as data-driven 

KDE estimation. Additionally, to capture both probability 

differences and variations in range values when comparing 

two PDFs, we use Wasserstein distance (WD) as a similarity 

metric. With this approach, we expect that our approach is 

more suitable for studying individual brain networks at 

different scales. 

In short, in this study, we proposed several improvements 

in the way of constructing individual brain networks using 

KDE estimation from static FDG-PET images and their 

application in AD analysis. More specifically, our 

contributions can be summarized as follows: 

 We select more optimal settings for KDE: estimating 

KDE at an adapted value range and number of sampling 

points using the concept of Interquartile Range (IQR), 

Sturge’s, and Freedman-Diaconis rules. 

 We apply Wasserstein distance to compare the 

similarity between two KDEs: building brain networks 

at multiple scales using Schaefer atlases. 

 We validate the effectiveness of the proposed method 

on the ADNI dataset: performing connectivity analysis 

across various stages of AD and comparing the 

sensitivity of the proposed method with a baseline 

method. 

With this study, our primary objective is to validate the 

effectiveness of adapted KDE settings, and Wasserstein 

distance in constructing individual brain networks at 

multiple scales. 
 

2. Materials and Methods 

2.1 Dataset 

Data used in the experiment is 18F-FDG PET images 

downloaded from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database. In the ADNI dataset, 

participants can take several scans at different time points, 

the first time of scan refers to a baseline scan. Time points 

after baseline are considered as follow-up time. Data is 

selected based on following criteria: 

• Cognitive Normal (CN) - subjects diagnosed as 

cognitive control at the baseline and do not change over 

time. 

• stable Mild Cognitive Impairment (sMCI) – subjects 

diagnosed as MCI at the baseline and did not convert to AD 

in the follow-up period at least 24 months. 

• progressive MCI (pMCI) - subjects diagnosed as MCI 

at the baseline and progressed to AD in the available scan 

time. 

• Alzheimer’s Disease (AD) - subjects diagnosed as 

Alzheimer’s disease at the baseline and do not change within 

the follow-up time. 

The data is then pre-processed by the following steps: 

spatially normalized to a standard template, smoothed, and 

intensity normalization. More details about these steps can 

be found in (Tuan et al., 2023). The demographic and 

clinical information of subjects is provided in Table I, in 

which MMSE stands for the Mini Mental State Examination 

(Mitchell, 2009). 

2.2 Methods 

The flowchart of the proposed method is depicted in Fig. 

1. To construct an individual graph from a single FDG-PET 

image, we need to determine nodes and connections. Here, 

we use predefined atlases, Schaefer atlases (Schaefer et al., 

2018), to separate the brain into regions of interest (ROI) and 

treat each region as a node. The connections between nodes 

are computed using KDE to estimate the PDF of voxel 

values in each region, and Wasserstein distance to assess 

PDF similarity. More details about these steps are provided 

in the following sections. 

a) Node Representations (KDE-based phase):  

In this study, we use Schaefer atlases at multiple scales 

(100, 200, 300, and 500 regions) to define the nodes. 

Specifically, the Schaefer atlas is used to segment the brain 

image into ROIs, treated as nodes. We then extract voxel 

intensity values within each ROI and use them to estimate 

the PDF using the KDE method. 

KDE method is a non-parametric technique used to 

estimate the PDF of a random variable based on a set of 

observed data points (Weglarczyk, 2018). The KDE 

estimation process involves placing a kernel on each data 

point and then summing up these kernels to obtain the 

density estimate. In our study, KDE is applied to each brain 

region in the FDG-PET image to estimate the underlying 

distribution of glucose metabolism levels within that region. 

Following that, we use KDE to estimate values of PDF at 

specific points, employing these points to compare the 

similarity between PDFs of two ROIs. 

However, instead of using KDE at a specific value range 

and a fixed number of points as in previous studies (Wang et 
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al., 2020, Li et al., 2023), we use the IQR to select optimal 

range values and apply Sturges’ and Freedman-Diaconis 

rules to determine the optimal number of sample points. 

More details about these steps are described below. 

Data range selection using IQR: The optimal range 

value for each region is estimated using concept of 1.5 IQR. 

The IQR, calculated as the difference between the third 

quartile (Q3) and the first quartile (Q1), captures the middle 

50% of the data. To identify potential outliers and establish 

data limits, a multiplier of 1.5 times the IQR is employed, 

striking a balance between outlier sensitivity and 

preservation of valuable data. Lower and upper limits are 

determined by subtracting and adding 1.5 times the IQR to 

Q1 and Q3, respectively: 

𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡 =  𝑄1 −  1.5 ×  𝐼𝑄𝑅, 

𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡 =  𝑄3 + 1.5 ×  𝐼𝑄𝑅. 

This method, widely accepted in data analysis, proves 

particularly useful for creating box-and-whisker plots and 

conducting preliminary outlier detection (Hubert and 

Vandervieren, 2008). 

Selecting number of sampling points for PDF: To 

compare two PDF functions, the easiest method is to 

evaluate them at a set of sampling bins. Selecting the 

appropriate number of bins is crucial. In this study, we 

combine Sturges’ rule and the Freedman-Diaconis rule to 

determine the optimal one. 

Sturges Rule : is a simple and widely used formula for 

estimating the number of bins (k) in a histogram (Scott, 

2007). It is based on the assumption of a normal distribution 

and is defined as: kSturges = 1 + log2(n), where n is the number 

of data points in the dataset. Sturges’ rule tends to produce 

histograms with a moderate number of bins, suitable for 

visualizing general data distributions. 

Freedman-Diaconis Rule : provides a more robust 

approach to bin estimation, taking into account the data’s 

spread and potential outliers (Birgé and Rozenholc, 2006). 

It is defined as: , where IQR(x) is the 

interquartile range. In our case, for each ROI, x and n 

correspond to all voxels belonging to the region and its 

total number of voxels, respectively. The Freedman-

Diaconis rule yields a larger number of bins when the data 

exhibits greater variability or the presence of outliers, 

ensuring a more detailed representation. 

We then select the maximum of these two values as the 

optimal number of points: kKDE = max(kSturges,kFD). This 

approach allows us to adapt the binning strategy to the 

characteristics of the dataset, ensuring that our sampling 

points effectively capture the underlying data distribution 

while avoiding under-simplification or over-complication. 

b) Connectivity Representations (WD-based phase): 

Once KDE, with the proposed improvements, is applied 

to the FDGPET data for each brain region, the Wasserstein 

distance (Panaretos and Zemel, 2019) is utilized to compute 

the dissimilarity between the metabolic activity patterns of 

all possible pairs of brain regions. The Wasserstein distance, 

denoted as WD(P,Q), quantifies diy between two PDFs P 

and Q: 

 

Here, γ represents a transportation plan specifying mass 

movement from xi in P to yj in Q. The transportation plan γ 

 
Fig. 1. Workflow for constructing an individual graph from a static FDG-PET image. 

Table I.      Demographic and Clinical information of subjects 

Characteristic CN sMCI pMCI AD 

Number of subjects 242 360 209 237 

Female/Male 122/120 153/207 87/122 97/140 

Age (Mean ± std.) 73.66 ± 5.66 71.73 ± 7.66 73.89 ± 6.88 75.00 ± 7.91 

MMSE (Mean ± std.) 29.03 ± 1.20 28.20 ± 1.59 27.13 ± 1.71 23.19 ± 2.12 
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belongs to the set Γ(P,Q), which consists of all possible valid 

transportation plans. γij represents the amount of mass to be 

transported from xi to yj according to the transportation plan 

γ. d(xi,yj) represents the distance or dissimilarity between the 

points xi and yj in the PDFs. To compute the Wasserstein 

distance, we identify the optimal transportation plan γ 

minimizing total cost, further details can be found in 

(Ramdas et. Al., 2017). One of the advantages of WD for 

comparing the similarity between two PDFs is its 

consideration of both probability differences and variations 

in the range of values. 

Based on the WD between two ROIs, the connection 

between two nodes is computed as cWD(P,Q) = e−WD(P,Q). For 

each FDG-PET image, applying this process for any pair of 

ROIs yields a similarity matrix that quantifies the connection 

between brain regions. This matrix forms the basis for 

further network analysis. 

c) Connectivity Analysis:  

To evaluate the effectiveness of our proposed method, we 

analyze connectivity matrices from two different 

perspectives: 

 Visualization: We plot connectivity matrices to 

determine whether it is possible to capture 

differences between various stages of AD. 

 Classification: We use connectivity matrices as 

features for training Support Vector Machine (SVM) 

classifiers on various AD classification tasks. To 

evaluate the effectiveness, we compare the 

performance between our proposed method and a 

baseline method. Specifically, we use Kullback-

Leibler Similarity (KLS) Wang et al., 2020) with 

fixed settings of KDE as the comparison method. 

For the classification task, we implement a 5-fold cross-

validation. To mitigate biases, we conduct experiments 100 

times and report the averaged results. 

3.  Results and Discussion  

3.1 Results 

a) Visualizing the Connectivity Matrices: 

The connectivity matrices show the differences between 

various stages of AD: Fig. 2 compares the average 

connectivity matrices using the proposed method at different 

stages of AD (from left to right: CN, sMCI, pMCI, and AD, 

respectively) and at different scales of Schaefer atlases (from 

top to bottom: 100, 200, 300, and 500 regions, respectively). 

In the first row (networks with 100 regions), a decreasing 

trend in connectivity measures is observed as the disease 

progresses. When comparing the CN group to other groups, 

subtle differences exist between CN and sMCI, while 

significant differences are apparent between CN and pMCI, 

as well as AD. The most notable differences are found in 

regions belonging to the Default Mode Network (DMN) of 

the Schaefer atlas (Schaefer et al., 2018). Similar trends are 

observed in the other rows of Fig. 2. When comparing 

different rows, it becomes evident that, while similar trends 

persist, the higher scale (e.g., Schaefer 500 regions) provides 

more precise information about the regions where the 

changes occur. The above observations suggest that the 

proposed method demonstrates the capability to capture 

differences between various stages of AD, and indicating the 

effectiveness of the adapted settings for KDEs. 

The decreasing trend in the number of connections 

between various stages of AD: Fig. 3 depicts the relationship 

between threshold values and the proportion of strongest 

connections. We observe that, at the same threshold value, 

the number of connections in the CN group is higher 

compared to pMCI and AD, while very similar to sMCI. This 

observation holds true across all network scales. These 

findings imply that, at the same threshold of connectivity 

values, the network of AD patients has fewer connections 

compared to that of CN subjects. In other words, this 

indicates diminished effectiveness in information 

transmission between nodes in the brain networks of the 

disease groups. 

The decreasing trend is also observed at the subject level: 

Fig. 4 provides a more detailed comparison based on a 

subject connectivity matrix. Specifically, the figure 

compares connectivity matrices for a randomly selected 

subject from each group—CN, sMCI, pMCI, and AD—

across various network scales. It is easy to observe that there 

is a decrease in connectivity value when comparing CN 

subjects with pMCI and AD subjects, and between pMCI 

and AD subjects. Additionally, higher network scales seem 

to provide more precise information about regions where 

changes occur. These observations suggest that our method 

also has the capability to capture changes at the individual 

level. 

The above observations highlight a consistent decline in 

connectivity values across different stages and scales of AD 

networks. It indicates a significant loss of connectivity 

within the AD groups, implying reduced efficiency in 

information transmission within the brain networks. These 

findings collectively provide evidence supporting the 

efficacy of our proposed method in constructing networks at 

various scales and detecting changes within networks at both 

group and individual levels. 

b)  Performance on Classification Tasks: 

The importance of multiple scale analysis: Tables II, III 

and Fig. 5 present a comparative analysis of SVM classifier 

performance using connectivity matrices obtained through 

different methods, including Wasserstein Distance with 

fixed and adapted KDE settings (referred to as WD and WA, 

respectively), alongside a baseline method (KLS) that 

utilizes fixed KDE settings. These analyses are conducted 

across diverse classification tasks (AD and MCI 

classification) and scales of the Schaefer atlas (100, 200, 

300, 500 regions). Overall, we consistently observe that 

increasing scales (number of regions) contribute to a slight 

improvement in performance. This observation can be seen 

across different methods, as well as various classification 

tasks. Specifically, using the Schaefer atlas with 500 regions  
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Fig. 2. The average similarity matrices between various stages of AD, including (from left to right) CN, sMCI, pMCI, and AD, are calculated 

using Schaefer atlases with (from top to bottom) 100, 200, 300, and 500 regions. 

 

 
Fig. 3. Relationship between threshold Values and strongest Connections Proportion across various stage of AD, computed based on average 

similarity matrices. 

 

 

 



  36 

increases performance by approximately 1-4 percent across 

all metrics and tasks when compared with using the Schaefer 

atlas with 100 regions. This observation emphasizes the 

advantage of exploring higher scales. However, certain 

instances reveal competitive performance at lower scales, 

such as KLS with 200 regions in the MCI task. This 

observation indicates that performance may not always 

linearly correlate with the number of regions used. All of 

those observations provide evidence for the advantages of 

studying multiple scales, emphasizing the importance of 

considering different scales in the analysis. 

Table II.      Performance on CN vs. AD classification task 

 ACC SEN SPE AUC 

KLS + Schaefer (100) 85.44 84.54 86.33 92.79 

KLS + Schaefer (200) 87.83 86.27 89.36 93.26 

KLS + Schaefer (300) 87.25 85.46 89.01 93.25 

KLS + Schaefer (500) 89.03 87.36 90.67 94.43 

WD + Schaefer (100) 90.08 88.22 91.90 95.34 

WD + Schaefer (200) 88.83 88.47 89.17 95.21 

WD + Schaefer (300) 89.48 89.30 89.65 95.85 

WD + Schaefer (500) 91.54 90.75 92.31 96.72 

WA + Schaefer (100) 90.07 88.23 91.88 95.33 

WA + Schaefer (200) 88.95 88.49 89.38 95.27 

WA + Schaefer (300) 89.67 89.43 89.90 95.94 

WA + Schaefer (500) 91.61 90.84 92.35 96.83 

KLS and WD use fixed KDE settings for different scales of the Schaefer 

atlases, while WA uses adaptive KDE settings selected by IQR, Sturges’, 

and Freedman-Diaconis rules. 

 

Table III.       Performance on sMCI vs. pMCI classification task 

 ACC SEN SPE AUC 

KLS + Schaefer (100) 71.21 57.44 79.19 75.13 

KLS + Schaefer (200) 72.43 58.23 80.67 76.49 

KLS + Schaefer (300) 72.49 56.60 81.71 75.84 

KLS + Schaefer (500) 71.28 55.78 80.28 75.26 

WD + Schaefer (100) 70.26 57.51 77.67 75.14 

WD + Schaefer (200) 69.87 58.79 76.31 74.84 

WD + Schaefer (300) 69.89 58.00 76.79 75.06 

WD + Schaefer (500) 72.73 60.15 80.03 76.89 

WA + Schaefer (100) 70.59 57.60 78.12 75.32 

WA + Schaefer (200) 69.81 58.67 76.28 74.73 

WA + Schaefer (300) 69.71 57.86 76.60 74.92 

WA + Schaefer (500) 72.73 60.12 80.04 76.68 

 

The effectiveness of Wasserstein Distance: When 

comparing methods with fixed KDE settings (KLS vs. WD) 

in Fig. 5, WD generally outperforms KLS, especially in AD 

classification. However, in MCI classification, KLS shows 

slightly better performance at lower scales, while WD 

demonstrates comparable or superior performance at higher 

scales, suggesting its competitiveness. This observation can 

be attributed to WD’s similar or superior capability in 

detecting group differences compared to KLS when using 

the same KDE settings. 

The effectiveness of adapted KDE settings: Comparing 

adapted KDE settings to fixed settings (WA vs. KLS, WD), 

WA’s performance is either better or closely comparable to 

WD. Notably, with 500 regions, WA outperforms KLS and 

slightly improves upon WD, especially in AD classification. 

This highlights the comparative advantage of adaptive 

settings over fixed KDE settings and emphasizes the 

suitability of adaptive KDE settings and Wasserstein 

distance for comparing group differences. 

Our findings collectively underscore the advantages of 

studying higher scales, emphasizing the importance of 

exploring multiple scales. Additionally, all observations 

provide evidence for the benefits of employing adaptive 

KDE settings and Wasserstein distance in computing 

similarity matrices. This implies that by utilizing our 

proposed method (WA), we can save time typically spent on 

experiments with KDE settings, while also expecting very 

comparable performance. This streamlines the process of 

constructing similarity matrices and enhances efficiency. 

3.2 Discussion 

Align with prior studies: Both the pMCI and AD groups 

exhibited lower connectivity values compared to the CN 

group. This reduced connectivity, particularly pronounced in 

the DMN, suggests that, at the same threshold of 

connectivity values, the network of AD patients has fewer 

connections compared to that of CN subjects. In other words, 

this indicates diminished effectiveness in information 

transmission between nodes in the brain networks of the 

disease groups. This finding is consistent with previous 

studies (Farahani et. al., 2019), (Zhong et al., 2014) that 

showed a significant reduction in the number of connections 

in DMN during the later phase of AD. Furthermore, 

decreasing trends in connectivity matrices between various 

stages of AD were also observed in previous studies with 

both group-based and individual brain networks (Huang et 

al., 2017), (Huang et al., 2020). 

Effectiveness of the Proposed Method: Our proposed 

method consistently demonstrates comparable or superior 

performance to the baseline when employing connectivity 

matrices as features for classification tasks. This, combined 

with its ability to showcase distinct visual patterns across 

various stages of AD, suggests that our method is effective 

in capturing distinctions among these stages, thereby 

enhancing diagnostic capabilities. The superior performance 

of our proposed method can be attributed to our strategy of 

selecting adapted settings for KDE and combining it with the 

WD, which is well-known for capturing probability 

differences. Consequently, our method becomes more 

adaptive in building metabolic brain networks. 

The need for multi-scale analysis: Fig. 6 compares the 

performance of the proposed methods and the baseline 

method across various scales. Our observations indicate that, 

for AD classification, increasing the scale generally  
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Fig. 4. The similarity matrices for random selected subject in each group of data, including (from left to right) CN, sMCI, pMCI, and AD, 

are calculated using Schaefer atlases with (from top to bottom) 100, 300 and 500 regions. 

 

 
Fig. 5. Comparison of performance between proposed methods (WD, WA) and the baseline method (KLS) on the AD (left) and MCI (right) 

classification task. 

 
Fig. 6. Comparison of the dependence of performance on network scales for the AD (left) and MCI (right) classification tasks. 
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enhances performance. However, for the MCI classification 

task, this trend is not consistently observed. These variations 

across different scales and classification tasks suggest that 

each scale has its own capability to capture information. 

Therefore, the choice of scale is critical and depends on 

multiple factors, including the specific method and task. This 

underscores the importance of multi-scale analysis and 

suggests that integrating insights from different scales can 

potentially lead to overall performance improvement. 

Future work: Further experiments on other brain diseases 

and datasets are necessary to validate the effectiveness of the 

proposed method. Moreover, in this study, we assumed that 

the PDF follows a Gaussian distribution. However, this 

assumption may not hold true in reality. Therefore, 

conducting additional experiments with different PDF 

shapes and investigating the relationship between adaptive 

KDE settings and the dataset characteristics is crucial. 

Additionally, although our analysis is preliminary, future 

research could delve into graph metric analysis (Sporns, 

2018) or explore the application of graph neural networks 

(Wu et al., 2020) to enhance diagnostic performance. 

4. Conclusion 

In this study, we introduced a novel method utilizing 

KDE and WD to construct multi-scale individual brain 

networks from FDG-PET images. Instead of relying on fixed 

KDE settings, we selected optimal settings using IQR, 

Sturges’, and Freedman-Diaconis rules. Our approach 

revealed disruptions in information transmission within 

brain networks across various AD stages and supports the 

effectiveness of KDE and Wasserstein in constructing multi-

scale brain networks. This method shows promise for 

applications in diagnosing other brain disorders, enabling 

personalized diagnosis. 
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