

ARAŞTIRMA MAKALESİ

Morphological and molecular identification and determination of host status of *Cuscuta campestris* Yunck. in Thrace Region of Türkiye

Türkiye'nin Trakya bölgesinde *Cuscuta campestris* Yunck.'in morfolojik ve moleküler tanımlaması ve konukçu dizininin belirlenmesi

Bahadır ŞİN¹, Lerzan ÖZTÜRK^{2,}, Zeliha ORHAN ÖZALP³, izzet KADIOĞLU⁴

¹Sakarya University of Applied Science, Faculty of Agriculture, Plant Protection Department, 54050, Sakarya, Türkiye.

²Namık Kemal University, Faculty of Arts and Sciences, Tekirdağ, Türkiye.

³Çanakkale Directorate of Provincial Agriculture and Forestry, 17020, Çanakkale, Türkiye.

⁴433630, Anamur, Türkiye.

ARTICLE INFO	ABSTRACT		
Article history:	Field dodder (<i>Cuscuta campestris</i> Yunck.) is a weed species that parasitizes many cultivated		
Recieved / Geliş: 13.05.2024	plants and has been reported in 40 provinces in Türkiye. Despite being found on so many		
Accepted / Kabul: 28.07.2024	plants, cases of parasitism in the Poaceae family are limited worldwide and there is no		
Keywords:	evidence in Türkiye. In this study, weed parasitism was observed in monocot plants of the		
Field dodder	Poaceae family such as Setaria viridis, Sorghum halepense, Alopecurus myosuroides, Avena		
Molecular identification	fatua, Avena sterilis, Eleusine indica, Echinochloa crus-galli, Bromus tectorum, Hordeum		
Host plants	murinum, Elymus repens, Lolium perenne, Secale cereale and Triticum aestivum growing in Thrace Region in Northwestern part of Türkiye. According to morphological identification		
Distribution			
Thrace Region	parameters, the parasitic weed was identified as <i>C. campestris</i> . <i>C. campestris</i> was observed		
Anghter Kalimalar	to cause high damage to <i>Echinochloa crus-galli</i> and <i>Sorghum halepense</i> weed species. A		
Tarla küskütü	molecular study was conducted to identify the weed on a molecular basis and analyze its		
Moleküler teshis	molecular phylogeny. For this purpose, DNA was extracted, amplified with specific primers,		
Konukcu bitkiler	sequenced and subjected to GenBank sequence comparison using BLAST. In BLAST, the local		
Yaygınlık	population showed higher similarity (99.13%) with other <i>C. compestris</i> accessions (KJ400050		
Trakya Bölgesi	and EU883527) and clustered in the closest class with the same species in the Maximum		
	Likelihood tree generated using Mega / software.		
Corresponding author/Sorumlu yazar:	ÖZET		
lerzanozturk@gmail.com	Tarla küskütü (<i>Cuscuta campestris</i> Yunck.) birçok kültür bitkisinde parazit olan bir yabancı		
	ot türüdür ve Türkiye'de 40 ilde rapor edilmiştir. Bu kadar çok bitkide bulunmasına rağmen		
	Poaceae familyasında parazitizm vakaları dünya çapında sınırlı olup, Türkiye'de de herhangi		
Makale Uluslararası Creative Commons	bir kanıt bulunmamaktadır. Türkiye'nin kuzeybatısındaki Trakya bölgesinde yetişen Setaria		
Attribution-Non Commercial 4.0 Lisansı	viridis, Sorghum halepense, Alopecurus myosuroides, Avena fatua, Avena sterilis, Eleusine		
makaleye uygun şekilde atıf yapılması	indica, Echinochloa crus-galli, Bromus tectorum, Hordeum murinum, Elymus repens, Lolium		
şartıyla, eserin herhangi bir ortam veya	perenne, Secale cereale ve Triticum aestivum dahil olmak üzere Poaceae familyasındaki		
sağlar. Ancak. eserler ticari amaclar icin	monokotiledon bitkilerinde küskütün parazit olduğu gözlemlenmiştir. Morfolojik tanımlama		
kullanılamaz.	parametrelerine göre parazitik olan yabancı ot <i>C. campestris</i> olarak tanımlanmıştır. <i>C.</i>		
© Copyright 2022 by Mustafa Kemal	campestris'in Echinochloa crus-galli ve Sorghum halepense yabancı ot türlerinde yüksek		
https://dergipark.org.tr/tr/pub/mkutbd	oranda zarar meydana getirdiği gözlenmiştir. Yabancı otun moleküler bazda tanımlanması ve		
This work is licensed under a Creative Commons	moleküler filogenisinin analiz edilmesi amacıyla moleküler çalışma yürütülmüştür. Bu amaçla		
Attribution-Non Commercial 4.0 International	küsküt DNA'sı ekstrakte edilmiş, spesifik primerlerle amplifiye edilmiş, sekanslans yapılmış		
License.	ve BLAST kullanılarak GenBank sekans karşılaştırmasına tabi tutulmuştur. Blastn'da yerel		
	popülasyon, diğer <i>C. campestris</i> aksesyonları (KJ400050 ve EU883527) ile daha yüksek		
	benzerlik (%99.13) göstermiş ve Mega 7 yazılımı kullanılarak oluşturulan Maksimum		
BY NC	Likelihood ağacında aynı türlerle en yakın sınıfta kümelenmiştir.		
Şin, B., Oztürk, L., Orha	n Ozalp, Z., & Kadıoğlu, I. (2024). Morphological and molecular identification and determination of host		
Cite/Atıf status of Cuscuta camp	estris Yunck. In Enrace Region of Eurkiye. Mustafa Kemal Universitesi Farim Bilimleri Dergisi, 29 (3), 755-		
Sin, B., Öztürk, L., Orha Cite/Atıf status of <i>Cuscuta camp</i> 768. https://doi.org/10	n Özalp, Z., & Kadıoğlu, İ. (2024). Morphological and molecular identification and determination of host estris Yunck. in Thrace Region of Türkiye. <i>Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29</i> (3), 755- .37908/mkutbd.1483105		

INTRODUCTION

Angiosperms (flowering plants) are seed-producing plants that make up 90% of the world's plant kingdom. The number of known and described flowering plants is 295.383, divided into two groups: monocots, with 7.273 species, and dicots, with 210.008 species (Christenhusz & Byng, 2016). Among angiosperms, parasitic plants are one of the most damaging, with 4.200 species from 18 families and 274 genera. The largest number of species is found in *Cuscuta*, a genus of plants with little or no chlorophyll, which is insufficient for photosynthesis. They, therefore, require invasion of host plants to survive. The genus comprises 170 species infesting up to 200 plants (Kadıoğlu, 1992; Holm et al., 1997; Garcia et al., 2014). Dicotyledonous plants are the primary hosts due to the development of vascular bundles for haustoria attachment. Monocotyledonous plants are rarely parasitized due to a variety of anatomical constraints, such as the lack of vascular bundles or the incompatibility of the signals required for haustoria attachment (Dawson et al., 1994).

Dodder (*Cuscuta* spp) is reported to be a problem in vegetables, causing severe damage (Holm et al., 1997). Yield losses in alfalfa, sugar beet, sesame, lentil, chickpea, broad bean, tomato, alfalfa and chilli can be as high as 100% (Nemli & Öngen, 1982; Parker & Riches, 1993; Mishra et al., 2005, Üstüner, 2024). In nurseries, parasitic weeds retard the growth of young plants. In addition to causing significant yield losses in many crop species, these parasitic weeds are also important as vectors of diseases such as viruses to host plants. For example, *C. campestris* which has been reported to infect 100 plants can transmit grapevine leafroll virus 7 to healthy grapevines. Host plants play an important role in the survival and reproduction of dodder, which can initiate a new round of damage after the growing season (Jones, 2018). Once attached, the parasite can continue to grow, reaching up to 8 cm in length. The flowers set fruit upon maturity and produce seed capsules (Dawson et al., 1984). Germinated seedlings have a short life cycle and require immediate penetration to survive. A single host plant is sufficient for dodder parasitism and survival. Weeds in infested areas are good alternative hosts. Dodder can produce 3000 to 25.000 seeds by attaching itself to plants. For up to 20 years, the seeds can remain viable in the soil. Seeds remaining in the soil can initiate new invasions in the following growing season (Dawson et al., 1984). The prevalence of dodder, which has dozens of hosts, is reported to be low in monocotyledons due to the low levels of enzymes that degrade plant tissue during parasitism on the parasitic plant (Haidar et al., 1997).

Identifying dodder species and their hosts is essential for developing and effectively implementing appropriate control strategies. To this end, ongoing taxonomic studies are being carried out in several provinces. During one of the studies in Thrace, Cuscuta spp. was observed for the first time in monocots such as Setaria viridis (L.) P. Beauv., Sorghum halepense (L.) Pers. and there were differences in the severity of parasitism between host plants. Based on preliminary observations, it was concluded that this species could be Cuscuta campestris Yunck. During the literature review, no data were found on the parasitism of *C. campestris* on monocotyledonous plants in Türkiye. However, various researchers around the world have reported parasitism of wild herbs and cultivated plants such as Aegilops sp., Avena sterilis L., Arundo donax L., Bromus sp. and Echinochloa-crus galli (Qasem, 2008; Baráth, 2021). To confirm whether or not the parasite was C. campestris in monocotyledons, plant samples were collected from infested areas in Thrace for morphological identification and molecular studies. Thrace is located between the Black Sea and the Marmara Sea in the north-western part of Türkiye, bordering Greece and Bulgaria. The region includes the provinces of Edirne, Kırklareli, Tekirdağ and the European parts of the provinces of Istanbul and Çanakkale. The irrigable and non-irrigable agricultural area of the region is 1.385.000 ha (Anonymous, 2023a). Wheat is among the economically most important plants grown in the region, and the amount of total production constitutes 0.3% of world production. Sunflowers and grapevine are the other most common plants in the region (Anonymous, 2023b). The host monocotyledonous plants were also sampled and identified to species level and their parasitism status was recorded. In addition, a literature review was conducted to map the recent host composition of dodder in Türkiye, the species of which were determined after further studies.

MATERIALS AND METHODS

Cuscuta survey, sampling, and morphological identification

At first, *Cuscuta* spp. was observed on some monocotyledon plants in two wheat and sunflower fields and in a vineyard in Tekirdağ province located in Thrace, Türkiye (Figure 1).

Figure 1. Study area map in Türkiye Şekil 1. Türkiye'de çalışma alanı haritası

The study area in the region included orchards, vineyards, wheat, sunflower fields and pastures. Annual rainfall was about 600 mm and the average temperature was 31 °C at the time of the survey. The sampled sites were randomly selected (Anonymous, 2023b). Altogether 1.135 different plantations (274 vineyards, 970 orchards, 111 others) were visited (Table 1). TURKSTAT production area statistics (TUIK, 2014) were used to determine the number of samples. The field survey was conducted according to the partial sampling method of Bora and Karaca (1970), and at least 1% of the surveyed area was sampled. The majority of the surveyed agricultural areas were not irrigated. Plant species infested by parasitic dodder were recorded in the infested fields. Plants parasitised by *Cuscuta* were selected and collected for morphological identification. Samples of *Cuscuta* were also collected for morphological identification of monocotyledonous species. Samples were prepared from each host plant for the morphological identification and allowed to dry completely to prepare the herbarium. After drying, the specimens were glued to cardboard, labelled and covered with a transparent polyethylene sheet for protection against external damage.

The host plant and *Cuscuta* species were identified using published identification keys, including Yuncker, 1932 and Davis, 1982. Species were identified morphologically by examining plant parts with a binocular stereomicroscope; styles, sepals and petals were photographed with a microscope camera. A Nikon Coolpix P900 digital camera was used to photograph host plants.

Dodder prevalence was determined from dodder presence on the same host in different infestations. The severity of the dodder infestation was classified as low, medium and high according to Qasem 2008, as follows;

- Low: A single stem or undeveloped dodder surrounding 1-30% of the plant.
- Moderate: 31-60% of the plant is surrounded and attached by a dodder.
- High: 61-100% of the plant was densely surrounded by dodder, producing few flowers.

Cultivated plants	Number of fields/orchards visited	Total survey
Cultivated plants	Tekirdağ	area (da)
Cherry orchard	106	≈1.250
Walnut orchard	96	≈2.436
Almond orchard	88	≈ 440
Olive orchard	107	≈2.239
Apple orchard	30	≈365
Pear orchard	86	≈680
Policulture	239	≈1.100
Vineyard	274	≈2100
Other	111	≈2500
Total	1.135	≈13.110

Table 1. The list of visited provinces and the number of surveyed areas in Thrace *Çizelge 1. Trakya'da qidilen ilçelerin ve sürvey yapılan alanların sayısı*

Molecular characterisation of Cuscuta spp.

For the identification of *Cuscuta* spp. at the molecular level, dodder DNA was extracted from a p collected from a vineyard in the Süleymanpaşa district of Tekirdağ. DNA was extracted for molecular analysis using the CTAB procedure (Lefort & Douglas, 1999). Briefly, freshly ground plant material (100 mg plant material) was transferred to 1.5 ml polypropylene tubes in liquid nitrogen, and 1 ml DNA extraction buffer [50 mM Tris-HCl pH 8.0, 20 mM EDTA pH 8.0, 0.7 M NaCl, 0.4 M LiCl, 1% w/v CTAB (hexadecyltrimethylammonium bromide), 1% w/v PVP 40, 2% w/v SDS] and 10 μ l β -mercaptoethanol (1% final concentration) were added. After vortexing for 5 seconds, the mixture was incubated for 15 minutes at 65°C in a water bath. After incubation, 0.5 ml chloroform/iso-amyl alcohol (24:1) was added to the tube and centrifuged at 14.000 rpm for 1-5 minutes. As much of the aqueous phase as possible was transferred to a new 1.5 ml tube, centrifuged at 14,.000 rpm for 1 minute, 0.8 ml supernatant was transferred to a new tube, and 0.8 ml isopropanol (optionally cold) was added to the aqueous solution. A white DNA precipitate appeared after gentle mixing of the tube. The tube was then centrifuged at 14.000 rpm for 1 minute, and the supernatant was collected. The DNA pellet was washed with 1 ml of 70% ethanol and centrifuged at 17.000 g for 1 minute. The supernatant was discarded, and the pellet dried for 10 minutes. DNA pellets were suspended in 50-100µl 10mM Tris-HCl pH 8.0, 1mM EDTA.

DNA concentration in extracted samples (A260/280 A260/230) was measured and amplified with forward and reverse primers N-nc26S1 and 1449rev (5'-ACCCATGTGCAAGTGCCGTT-3'). All PCR reactions were performed to a final volume of 20 µl in a 0.2 ml tube. The tube contained 10 µl 2X PCR Ready Mix (Sigma Aldrich), 1 µl reverse primer, 1 µl forward primer, 2 µl template DNA and 6 µl ddH2O. For PCR reactions in which purified DNA was used as a template, 30 ng of DNA was used per reaction. Amplification products were separated on a 1.5% agarose gel stained with ethidium bromide. The gel was run at 80 V for 50 minutes and visualised under a UV transilluminator. The PCR product was sequenced on an ABI sequencer. A phylogenetic analysis was performed to assess the closeness of the identified *Cuscuta* to other published *Cuscuta* species. For this purpose, the sequence data of the local *Cuscuta* were subjected to a sequence comparison in GenBank using BLAST. Clustal W alignment. Maximum likelihood (bootstrap 1000 replicates) trees were constructed using Mega 7 software, in which 19 different *Cuscuta* sequences from NCBI were compared. Pairwise distances were calculated using Mega 7 software.

RESULTS AND DISCUSSION

This study revealed the presence of *Cuscuta* spp. on monocotyledonous plants in Türkiye, with the dodder on these plants identified as *Cuscuta campestris* Yunck. Different degrees of infection on hosts, including weeds like

Alopecurus myosuroides Hudson, Avena sterilis L., A. fatua L., Bromus tectorum L., Eleusine indica (L.) Gaertner, Echinochloa crus-galli (L.) P. Beauv, Elymus repens (L.) P. Beauv., Hordeum murinum L., Lolium perenne L. and Setaria viridis L. were observed. In addition, wheat (*Triticum aestivum* L.) and rye (*Secale cereale* L.) crops were also affected by the parasite, highlighting the wide host range.

The collected *C. campestris* plant had a distinctive appearance, mainly leafless, with yellow or orange stems [0.48 \pm 0.07 (0.36-0.6 mm wide/20 measurements)] and branches. The length of the stem was up to 5 mm.

Twenty randomly selected *C. campestris* plants were described and measured as follows; The parasitic plant had white flowers with a bell-shaped corolla [2.15±0.15 (2.1-2.21 mm long)], five in number, and a calyx with ovate overlapping lobes [1.8±0.11 (1.63-1.93 mm long)], filaments [0.45±0.06 (0.36-0.49 mm long)], filiform styles [1±0.17 (0. 72-1.3 mm long)], 5 sepals, elongated stamens, elliptic anthers [0.44±0.07 (0.32-0.51 mm long)], campanulate corolla tube [0.72±0.03 (0.67-0.73 mm long)], capitate stigma, capsule-like fruit and inflorescence with 4-12 stalked flowers (Figure 2). The petals were triangular with a pointed tip. The stamens were shorter than the corolla lobes, and the anthers were shorter than the filaments. Sepals were 5 in number and had backwards curled tips. Average seed dimensions were 1.2 ± 0.15 (0.9-1.2) mm in length and 0.79 ± 0.27 (1.11-1.6) mm in width. The flowers were yellowish and had 4 to 5 lobes. The average dimensions of the fruits were 2.20 ± 0.42 (1.86-2.43) mm long, and 2.7 ± 0.6 (2.8-3.32) mm wide. The fruit contained 2-4 seeds [3.05 ± 0.73]. The ovary was spherical. The seeds were oval in shape, irregular in size and brown in colour. Seed length was 1.2+0.15 (0.9-1.2) mm and width was 0.79 ± 0.27 (1.11-1.6) mm. Brown seeds were observed on most mature host plants, especially *Echinochloa crus-galli* (L.) P.Beauv.

Figure 2. Cuscuta campestris Yunck. (A) Attachment to host stem. (B) Flower. (C) Styles. (D) Capsule and seeds. (E) A plant moderately parasitized by dodder

Şekil 2. Cuscuta campestris Yunck. (A) Konukçu bitki gövdesine tutunma. (B) Çiçek. (C) Styles. (D) Kapsül ve tohum. (E) Orta derecede parazitlenmiş bitki

A low to moderate degree of attachment to host was observed. Field dodder haustorium was observed on leaf, stem and spikelet (Table 2, Figure 3-4). Partial wilting and yellow to light green color changes were observed on the leaves of plants such as *Avena sterilis* L.. *Alopecurus myosuroides* Hudson and *Sorghum halepense* (L.) Pers. showed extensive *Cuscuta* attachment.

Table 2. The intensity of attachment of Cuscuta on monocotyledon plants (Low: 1-30%, Moderate: 31-60%, High 61-100%)

Host Plants	Intensity Attachment	of	Attached Plant Part	Number Fields	of	Detected
Alopecurus myosuroides Hudson	Moderate		Leaf and stem		17	
Avena sterilis L.	Low		Stem		14	
Avena fatua L.	Low		Stem		17	
Bromus tectorum L.	Moderate		Spikelet and stem		22	
Eleusine indica (L.) Gaertner	Moderate		Leaf, stem, spikelet		17	
Echinocloa crus-galli (L.) P.Beauv.	Moderate		Leaf, stem, spikelet		9	
Elymus repens (L.) Gould	Moderate		Spikelet and stem		9	
Hordeum murinum L.	Moderate		Leaf, stem, spikelet		5	
Lolium perenne L.	Low		Stem		9	
Secale cereale L.	Moderate		Stem		3	
Sorghum halepense (L.) Pers.	Moderate		Leaf and stem		11	
Setaria viridis L.	Moderate		Leaf, stem, spikelet		3	
Triticum aestivum L.	Moderate		Stem		5	

Figure 3. Attachment of Cuscuta campestris Yunck. on (A) Secale cereale L. (B) Lolium perenne L. (C) Avena fatua L. (D) Triticum aestivum L. (E) Alopecurus myosuroides Hudson (F) Sorghum halepense (L.) Pers. (G) Eleusine indica (L.) Gaertner (H) Avena sterilis L. (I) Hordeum murinum L.

Şekil 3. Cuscuta campestris Yunck.'un tutunması (A) Secale cereale L. (B) Lolium perenne L. (C) Avena fatua L. (D) Triticum aestivum L. (E) Alopecurus myosuroides Hudson (F) Sorghum halepense (L.) Pers. (G) Eleusine indica (L.) Gaertner (H) Avena sterilis L. (I) Hordeum murinum L.

Figure 4. Attachment of *Cuscuta campestris* on different plant parts *Şekil 4. Cuscuta campestris'in farklı bitki kısımlarında tutunması*

Molecular characterisation of Cuscuta campestris Yunck.

The PCR amplification sequence contained 599 bases. The sequence data of *Cuscuta campestris* collected in this study was deposited in NCBI GenBank with accession number MW251503. The similarity was compared with Blast records, and local sequence showed higher similarity with other *C. campestris* sequences. Compared with *C. campestris* KJ400050 local population showed 99.13% identity (571/576 nucleotide) and 95% coverage, and with *C. campestris* EU883527 99.13% identity (567/576 nucleotide). The number of gaps in these sequences was 1.

In comparison with other Cuscuta species the closest matches were with *Cuscuta pentagona* KJ400152 (98.26%; 565/575 nucleotide; 1 gap), *C. gymnocarpa* KJ400101 (98.26%; 565/575 nucleotide; 1 gap), *C. harperi* KJ400102 (98.09%; 565/576 nucleotide; 1 gap), *C. australis* KJ400043 (98.09%; 558/569 nucleotide; 1 gap), *C. obtusiflora* KJ400140 (97.91%; 562/574 nucleotide; 1 gap), *C. stenolepis* KJ400101 (97.72%; 556/569 nucleotide; 1 gap), *C. plattensis* KJ400154 (97.59%; 552/566 nucleotide; 1 gap), *C. xanthochortos* var. *carinata* KJ400192 (96.70%; 557/576 nucleotide; 1 gap), *C. corniculata* KJ40006 (96.70%; 556/575 nucleotide; 1 gap).

In the Maximum likelihood tree, sequences were divided into two main clades. Clade I contained 11 sequences. Clade II contained eight accessions including accession from Türkiye (MW251503). MW251503 clustered in closest subclade with other *C. campestris* species (EU883527; KJ400050) and *C. pentagona* (KJ400152) (Figure 5).

So far, *C. campestris* has been detected in 50 cultivated plants and weeds in Turkey, but none of them were monocots (Kaya et al., 2018). Together with the 13 monocotyledonous plants detected in this study in Thrace, the number of haustorium-attached hosts of *C. campestris* rised to 63. Of these, 45 were weeds and the remaining were annual or perennial plants. The full names of the host species and their families are listed in Table 2. The distribution map of the species is shown in Figure 6. The parasitic weed has been reported in 40 out of the 81 provinces.

Common Name	Host Plant	Family	Reference	
Black grass	Alopecurus myosuroides Hudson			
Winter wild oat	Avena sterilis L.			
Wild oat	Avena fatua L.			
Downy brome	Bromus tectorum L.			
Goosegrass	Eleusine indica (L.) Gaertner			
Barnyyard grass	Echinochloa crus-galli (L.) P.Beauv.			
Couch grass	Elymus repens (L.) Gould	Poaceae	This study	
Foxtail barley	Hordeum murinum L.			
Perennial ryegrass	Lolium perenne L.			
Rye	Secale cereale L.			
Johnson grass	Sorghum halepense (L.) Pers.			
Green foxtail	Setaria viridis L.			
Wheat	Triticum aestivum L.			
Pigweed	Amaranthus retroflexus L.	Americantheses		
Lambsquarters	Chenopodium album L.	Amaranthaceae		
Wild carrot	Daucus carota L.	Apiceae	-	
Absinth wormwood	Artemisia absinthium L.		-	
Common coclebur	Xanthium strumarium L.			
Field sow thistle	Sonchus arvensis L.			
Common cichory	Cichorium intybus L.	Asteraceae		
Common dandelion	Taraxacum officinale (L.) Weber ex F.H.Wigg.		Şin et al., 2020	
Canadian horseweed	Conyza canadensis (L.) Cronquist			
Pricky lettuce	Lactuca serriola L.			
Wild raddish	Raphanus raphanistrum L.	Brassicaceae	-	
Bindweed	Convolvulus arvensis L.	Convolvulaceae	-	
Squirting cucumber	Ecbalium elaterium (L.) A.Rich.	Cucurbitaceae	-	
Black horehound	Ballota nigra L.	Lamiaceae	-	
Common mallow	Malva sylvestris L.	Malvaceae	-	
Ribwort plantain	Plantago lanceolata L.	Plantaginaceae	-	
Prostrate knotweed	Polygonum aviculare L.	D	-	
Curly dock	Rumex crispus L.	Polygonaceae		
Common purslane	Portulaca oleracea L.	Portulacaceae		
Stickwilly	Galium aparine L.	Rubiaceae		
Black nightshade	Solanum nigrum L.	Solanaceae		
Puncture vine	Tribulus terrestris L.	Zygophyllaceae		
Oregano	Origanum onites L.	Lamiaceae	Sokat, 2019	
Sea holy	Eryngium sp.	Apiaceae	_	
Rush skeletonweed	Chondrilla juncea L.	Asteraceae		
Bathurst burr	Xanthium spinosum L.	Asteraceae	Zare & Dönmez, 2020	
Barberyy	Berberis sp.	Berberidaceae	-	
Common vetch	Vicia sativa L.			
Camelthorn	Alhagi maurorum Medik.			
Restharrow	Ononis spinosa L.			

Table 2. Updated host plant range of *Cuscuta campestris* in Türkiye

Çizelge 2. Cuscuta campestris'in Türkiye'de güncellenmiş konukçu dizini

Common Name	Scientific Name	Family	Reference	
Flax	Linum usitatissimum L.	Linaceae		
Citrus	<i>Citrus</i> sp.	Rutaceae	Zare & Dönmez, 2020	
Mullein	Verbascum sp.	Scrophulariaceae	-	
Snapdragon	Antirrhinum majus L.	Solanaceae	-	
Sunflower	Helianthus annuus L.	Asteraceae	Özkil et al., 2019	
Sugar beet	Beta vulgaris L.	Amaranthaceae		
Onion	Allium cepa L.	Alliaceae	-	
Anise	Pimpinella anisum L.	Aniagogo	-	
Caraway	Carum carvi L.	Аріасеае		
Melon	Cucumis melo L.	Cucurbitaceae	-	
Alfa alfa	Medicago sativa L.		-	
Chickpea	Cicer arietinum L.			
Clover	Trifolium spp.	Fabaceae		
Faba bean	Vicia faba L.		Üstüner, 2024	
Pepper	Capsicum annuum L.		-	
Eggplant	Solanum melongena L.	Calamanaa	Nemli et al., 2015,	
Potato	Solanum tuberosum L.	Solanaceae		
Tobacco	Nicotiana tabacum L.			
Tomato	Solanum lycopersicum L.			
Grapevine	Vitis vinifera L.	Vitaceae	=	

Table 2 (continued). Updated host plant range of Cuscuta campestris in Türkiye
Cizelae 2 (devamı). Cuscuta campestris'in Türkive'de aüncellenmis konukcu dizini

Figure 6. Distribution map of *Cuscuta campestris* Yunck. in Türkiye (Türkmen, 1998; Söker et al., 2012; Ciğer et al., 2013; Arıtuluk et al., 2014; Satıl et al., 2017; Mumcu & Korkmaz, 2018; Kaya et al., 2018; Sokat, 2019; Sırrı et al., 2020)

Şekil 6. Cuscuta campestris Yunck.'un Türkiye'de yaygınlık haritası (Türkmen, 1998; Söker et al., 2012; Ciğer et al., 2013; Arıtuluk et al., 2014; Satıl et al., 2017; Mumcu & Korkmaz, 2018; Kaya et al., 2018; Sokat, 2019; Sırrı et al., 2020) Species of Cuscuta are generally reported to be unable to infect monocotyledone plants. This is probably due to anatomical factors such as vascular bundle arrangement or the inability to produce signals that play an important role in vascular connection (Dawson et al., 1999). Broad bean (Vicia faba L.), Asparagus (Asparagus officinalis L.) and onion (Allium cepa L.) weeds can be parasitized by dodder and the parasitism can result in severe damage especially in onions (Kaya & Üremiş, 2019; Dechasa & Dechasa, 2021; Üstüner, 2024). However, in this study conducted in Thrace, 11 monocotyledone weed species and two cultivated plants were found to be moderately to slightly parasitized by the field dodder, *Cuscuta campestris*. All plants belonged to Poaceae family. For instance, 1-2 flower clusters were observed on Bromus tectorum L. and Sorghum halepense (L.) Pers. The number of fields where dodder have been detected varies between 3 and 17, and parasitized monocotyledonous plants were generally found in vineyard areas. Similar instances of parasitism on monocotyledons, including both weeds and crops such as Aegilops sp., Avena sterilis L., Arundo donax L., Bromus sp., Echinochloa crus-galli, Cynodon dactylon (L.) Pers, Lolium temulentum L., Triticum durum Desf., Setaria glauca, and Sorghum halepense (L.) Pers., have been reported by various researchers (Qasem, 2008; Baráth, 2021). A study in Nigeria also reported a low level of infection in weeds of the Poaceae family. These observations highlight the limited occurrences of C. campestris parasitism on monocots worldwide. In this case, reduced efficiency of C. campestris enzymes involved in breaking down host monocotyledonous tissues during parasite entry has been suggested as a contributing factor to this phenomenon (Nwokocha & Aigbokhan, 2013).

Dodder not only damages cultivated plants but can also indirectly harm other organisms, animals and human beings Some of the plants that found in this study parasitic in Thrace were consumed as food. Plants like wheat, rye, and weeds such as *Hordeum murinum* L. and *Echinochloa crus-galli* (L.) P.Beauv are utilized as animal feed. Dodder parasitism in these consumable plants underscores the importance of controlling the parasite, particularly in pastures where livestock graze. If as much as 50% of these plants are parasitized by dodder, the fodder made from them can become toxic to cattle and horses. Affected animals typically exhibit symptoms such as abdominal pain, diarrhea, and potential weight loss (Abutarbush, 2013). Thus, effective management strategies for dodder are crucial to safeguard the health of livestock. To determine the most effective control method, accurate identification of the dodder species is essential.

In this study conducted in Thrace, the validity of *Cuscuta campestris* as a species is supported by both morphological and molecular data, particularly through the molecular characterization of the 26S region. Comparisons with GenBank data have highlighted the proximity of the local *C. campestris* to other known species. Notably, the sequence from the study showed a 99% nucleotide similarity with a *C. campestris* record from New Mexico Additionally, the local sequence exhibited close nucleotide similarity with sequences from 16 species, including *C. pentagona* and *C. australis*. These findings underscore the genetic relationships and confirm the taxonomic placement of *C. campestris* in the studied region (Anonymous, 2024).

The 26S rDNA region serves as a pivotal component in this study for comparing similarity with other *Cuscuta* species. This DNA region is favoured for molecular characterization and phylogenetic studies due to its ability to provide ample phylogenetic information, its universal presence across plants, and its ease of amplification and sequencing. These qualities make it a versatile tool in taxonomy and evolutionary studies. Numerous weed species have already been molecularly characterized using the 26S region. In this study, the 26S region of plants was specifically utilized to identify *Cuscuta* spp. within the Convolvulaceae family (Neyland, 2001).

In Türkiye, the identification of *C. campestris* has traditionally relied on morphological characteristics. However, morphological features can sometimes be ambiguous, leading to potential misidentifications. Moreover, this method requires trained personnel in identification process. In contrast, molecular identification offers a rapid and reliable alternative. It enables accurate species identification, even by individuals lacking specialized training. Additionally, molecular techniques allow DNA isolation and analysis at any stage of plant development, enhancing their practical utility (Baldwin, 1995).

In this article, information is given about the results of the study in which the presence of dodder in monocotyledonous plants was examined and *C. campestris* was detected in monocot weeds and some cultivated plants. The parasitic weed has been found to have a wide range of host plants in Türkiye and the situation was previously unknown in monocotyledons. The research is essential to support the literature and update the registered host list, especially from monocotyledon plants in the country.

ACKNOWLEDGEMENTS

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Some parts of the manuscript are represented as abstracts in the Molecular Plant Protection Congress in Adana, Türkiye. The authors thank Assoc. Prof. Tuğba Gürkök for her support in generating Maximum likelihood tree.

STATEMENT OF CONFLICT OF INTEREST

The authors declare no conflicts of interest.

AUTHORS' CONTRIBUTIONS

The authors conducted the study, prepared the manuscript and approved it.

STATEMENT OF ETHICS CONSENT

Since the article does not contain any studies with human or animal subjects, its approval by the ethics committee was not required.

REFERENCES

- Abutarbush, S.M. (2013). Alfalfa dodder (*Cuscuta campestris*) toxicity in horses: Clinical, haematological and serum biochemical findings. *Veterinary Record*, *173*, 95. <u>https://doi.org/doi: 10.1136/vr.101635</u>
- Anonymous (2023a). Turkish statistic institute. Grapevine, stone and pome fruits, vegetables and sunflower production area statistics. <u>https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr</u>

Anonymous (2023b). Meteoroloji genel müdürlüğü. https://www.mgm.gov.tr/

- Anonymous
 (2024).
 National
 library
 of
 Medicine.

 https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_SPEC=GeoBlast&PAGE_TYPE=BlastSearch
- Arıtuluk, Z.C., Ezer, N., & Akaydın, G. (2014). Flora of Tefenni district (Burdur/Turkey). *Biological Diversity and Conservation*, 7 (3), 146-166. <u>https://dergipark.org.tr/tr/pub/biodicon/issue/55880/765587</u>
- Baldwin, B.G., Sanderson, M.J., Porter, J.M., Wojciechowski, M.F., Campbell, C.S., & Donoghue, M.J. (1995). The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. *Annals of the Missouri Botanical Garden*, 82, 247-277. <u>https://doi.org/10.2307/2399880</u>
- Baráth, K. (2021). Effect of species-environment on host preference of *Cuscuta campestris*. *Plant Ecology*, *222*, 1023-1032. <u>https://doi.org/10.1007/s11258-021-01158-w</u>
- Bora, T., & Karaca, İ. (1970). *Kültür bitkilerinde hastalığın ve zararın ölçülmesi.* Ege Üniversitesi Yardımcı Ders Kitabı, Yayın No: 167, E.Ü. Mat., Bornova-İzmir, 42 s.
- Christenhusz, M., & Byng, J. (2016). The number of known plant species in the world and its annual increase. *Phytotaxa*, *261*, 201-217. <u>https://doi.org/10.11646/phytotaxa.261.3.1</u>
- Ciğer, Ü., Kadıoğlu, İ., & Yanar, Y. (2013). Tokat ili şeker pancarı ekim alanlarındaki küsküt (*Cuscuta campestris* Yunck.) üzerinde görülen fungal etmenlerin belirlenmesi. Türkiye İstilacı Bitkiler Kataloğu. Ankara: T.C. Gıda, Tarım ve Hayvancılık Bakanlığı Yayını, 532 s.
- Davis, P.H. (ed.) (1982). Flora of Turkey and the East Aegean Islands. Edinburgh University Press, Edinburgh, 7.

- Dawson, J.H. (1984). Control of *Cuscuta* in alfalfa. *In: Proceedings of the 3rd International Symposium on Parasitic Weeds*. pp. 188-199.
- Dawson, J.H., Musselman, L.J., Wolswinkel, P., & Dorr, I. (1994). Biology and control of *Cuscuta*. *RevWeed Sci*, *6*, 265-317. <u>https://www.cabidigitallibrary.org/doi/full/10.5555/19942309905</u>
- Dechassa, N., & Regassa, B. (2021). Current status, economic importance and management of dodders (*Cuscuta* sSpp) of important crops. *Advances in Life Science and Technology*, *87*, 16-21. <u>https://doi.org/10.7176/ALST/87-04</u>
- Emberger, L. (1960). Les Vegetaux vasculaire. Massin et Cie editeurs, Paris-VI, 11 (2), 1539.
- Garcia, M.A., Costea, M., Kuzmina, M., & Stefanović, S. (2014). Phylogeny, character evolution, and biogeography of *Cuscuta* (dodders; Convolvulaceae) inferred from coding plastid and nuclear sequences. *American Journal of Botany*, 101 (4), 670-690. <u>https://doi.org/doi: 10.3732/ajb.1300449</u>.
- Haidar, M.A., Orr, G.L., & Westra, P. (1997). Effects of light and mechanical stimulation on coiling and prehaustoria formation in *Cuscuta* spp. *Weed Resources, 37,* 219-228.
- Holm, L., Doll, J., Holm, E., Pancho, J., & Herberger, J. (1997). *World weeds: Natural histories and distribution*. John Wiley and Sons Inc: 1129 pp.
- Jones, R.A.C. (2018). Plant and insect viruses in managed and natural environments: Novel and neglected transmission pathways. *Advances in Virus Research*, 149-187. <u>https://doi.org/doi:10.1016/bs.aivir.2018.02.006</u>
- Kadıoğlu, I. (1992). Küsküt (*Cuscuta* spp.) ve mücadelesi. Herboloji Haberleri Ç. Ü., Ziraat Fak., Bitki Koruma Bölümü, 3 (5), 1-11.
- Kaya, H., & Üremiş, İ. (2019). Determination of weed species, their frequencies and densities in onion fields in Hatay province. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 24 (1), 21-30. <u>https://openaccess.mku.edu.tr/xmlui/bitstream/handle/20.500.12483/3157/Kaya-Hikmet-2019.pdf? sequence =1& isAllowed=y</u>
- Kaya, İ., Nemli, Y., & Demir, İ. (2018). Türkiye'de tarım ve tarım dışı alanlarda görülen küsküt türlerinin (*Cuscuta* spp.) taksonomik özellikleri, dağılışları ve konukçuları. *Turkish Journal of Weed Science, 21* (1), 1-7. <u>https://dergipark.org.tr/tr/pub/tjws/issue/42558/512833</u>
- Lefort, F., & Douglas, G.C. (1999). An efficient micro-method of DNA isolation from mature leaves of four hardwood tree species *Acer, Fraxinus, Prunus* and *Quercus. Annals of Forest Science*, *56* (3), 259-263. <u>https://hal.science/hal-00883270/document</u>
- Mishra, J.S., Moorthy, B.T.S., & Manish, B. (2005). Efficacy of herbicides against field dodder (*Cuscuta campestris*) in lentil, chickpea and linseed. *Indian Journal of Weed Science*, *37* (3/4), 220-224. https://www.isws.org.in/IJWSn/File/2005 <u>37</u> Issue-<u>3&4</u> 220-224.pdf
- Mumcu, Ü., & Korkmaz, H. (2018). Ethnobotanical uses of alien and native plant species of Yeşilırmak Delta. *Acta Biologica Turcica*, *31* (3), 102-113. <u>https://dergipark.org.tr/en/pub/actabiotr/issue/38849/452908</u>
- Nemli, Y., & Ongen, N. (1982). Türkiye'nin Trakya Bölgesi küsküt türleri (*Cuscuta* spp.) üzerinde taksonomik araştırmalar. *Doğa Bilim Dergisi: Vet. Hayvancılık/Tarım Orman, 6* (3), 147-154.
- Nemli, Y., Kaya, I., & Tamer, Ş.R. (2015). *Cuscuta campestris*. Türkiye İstilacı Bitkiler Kataloğu, 271-282, Ankara Türkiye.
- Neyland, R. (2001). A. phylogeny inferred from large ribosomal subunit (26S) rDNA sequences suggests that *Cuscuta* is a derived member of Convolvulaceae. *Brittonia 53*, 108-115. <u>https://doi.org/10.1007/BF02805402</u>
- Nwokocha, M.I., & Aigbokhan, E.I. (2013). Host range and preference of *Cuscuta campestris* (Yunck.) among common weeds in Benin City, Nigeria. *Nigerian Journal of Botany*, 26, 183-205. www.researchgate.net/publication/280876289

- Özkil, M., Torun, H., Eymirli, S., Üremiş, İ., & Tursun, N. (2019). Determination of weed frequencies and densities in sunflower (*Helianthus annuus* L.) fields in Adana province. *Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 24* (2), 87-96. <u>https://www.researchgate.net/publication/336085854</u>
- Parker, C., & Riches, C.R. (1993). *Parasitic weeds of the world: Biology and control.* CAB International, Wallingford. 332pp.
- Qasem, J.R. (2008). Dodder (*Cuscuta* spp.) occurrence and natural hosts in Jordan. *Korean Journal of Weed Science*, 28 (4), 343-359. <u>https://www.researchgate.net/publication/273446660_8</u>
- Satıl, F., Tümen, G., & Selvi, S. (2017). Ethnobotanical features of parasitic plants distributed in Balıkesir/Turkey. *Biyolojik Çeşitlilik ve Koruma*, *10* (3), 7-11. <u>https://dergipark.org.tr/tr/pub/biodicon/issue/55729/762124</u>.
- Sırrı, M., Özaslan, C., & Fidan, M. (2020). Parasitic weed species and their hosts in Siirt province of Turkey. *ISPEC Journal of Agricultural Sciences 4* (4), 808-822. <u>https://doi.org/10.46291/ISPECJASvol4iss4pp806-820</u>
- Sokat, Y. (2019) Denizli ve Manisa illeri kekik (*Origanum onites*) fideliklerinde bulunan yabancı ot türleri, yoğunlukları ve rastlanma sıklıkları. *Türk Tarım ve Doğa Bilimleri Dergisi, 6* (4), 808-813. <u>https://doi.org/DOI:</u> <u>10.30910/turkjans.633605</u>.
- Söker, A., Koyuncu, O., Yaylacı, Ö., & Tokur, S. (2012) Eskişehir ve çevresindeki bazı tarım alanlarındaki tarla yabancı otlarının florası. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 13 (1), 109-127. https://ofd.artvin.edu.tr/tr/download/article-file/25780
- Şin, B., Öztürk, L., Sivri, N., Avcı, G.G., & Kadıoğlu, İ. (2020). Weed hosts of field dodder (*Cuscuta campestris* Yunck.) in Northwestern Marmara Region of Turkey. *Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi*, 30 (1), 80-86. <u>https://doi.org/DOI: 10.18615/anadolu.727224</u>.
- TUIK. (2014). Türkiye İstatistik Kurumu, İstatistik Veri Portalı. https://biruni.tuik.gov.tr/medas/?locale=tr
- Türkmen, N., & Düzenli, A. (1998). The flora of Dörtyol and Erzin district of Hatay province in Turkey. *Turkish Journal of Botany, 22* (2), 7. <u>https://journals.tubitak.gov.tr/botany/vol22/iss2/7</u>
- Üstüner, T. (2024). Bakla (*Vicia faba* L.) yetiştiriciliğinde tarla küskütü (*Cuscuta campestris* Yuncker) ile mücadele yöntemlerinin araştırılması. *Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29* (1), 108-119. <u>https://doi.org/10.37908/mkutbd.1339568</u>.

Yuncker, T.G. (1932). The genus Cuscuta. Memoirs of the Torrey Botanical Club, 18, 113-331.

Zare, G., & Dönmez, A. (2020). *Cuscuta campestris* Yunck. morphology, anatomy and traditional use in Turkey. *Hacettepe University Journal of the Faculty of Pharmacy*, 40 (1), 1-10. <u>https://dergipark.org.tr/en/download/article-file/1151385</u>