# Exploring Mixed Reality in Architectural Design Education: A Systematic Review

Ayşegül Kıdık<sup>1</sup>, Burak Asiliskender<sup>2</sup>

<sup>1</sup> Lecturer Dr., AGU, Faculty of Architecture and Design, Department of Architecture, Kayseri, Türkiye. <sup>2</sup> Prof. Dr., AGU, Faculty of Architecture and Design, Department of Architecture, Kayseri, Türkiye.

## Abstract

This systematic literature review explores the integration and impact of Mixed Reality (MR) technologies in Architectural Design Studio Education (ADSE). Covering the period from 2019 to 2024, this review consolidates the current role of MR in design education by analysing existing studies. The study aims to evaluate both the positive and negative contributions of MR in ADSE and discuss its future potential in this field. The articles were selected and reviewed according to PRISMA (2020) guidelines (Page M.J.et al.,2021), and findings were analysed from databases including ScienceDirect, Web of Science, and Scopus. The review identified articles focusing on the application of MR in ADSE. The research findings indicate that MR technologies significantly enhance experiential learning by providing interactive and immersive environments that allow real-time visualization and manipulation of architectural designs. However, integrating MR into ADSE faces challenges such as high implementation costs and the need for specialized training for instructors. Nevertheless, if these challenges are addressed, MR can offer an alternative reality to ADSE with transformative potential. This paper provides a comprehensive guide for educators, curriculum developers, and students interested in leveraging MR technologies to foster innovative learning environments in ADSE.

**Keywords:** Architectural Design Studio Education, Architectural Education, Mixed Reality (MR), Quality Education (SDG 4).

Corresponding Author: aysegul.kidik@agu.edu.tr Received: 15.05.2024 - Accepted: 10.08.2024

**Cite:** Kıdık, A., & Asiliskender, B. (2024). Exploring mixed reality in architectural design education: A systematic review. DEPARCH Journal of Design Planning and Aesthetics Research, 3 (2), 176-188. <u>https://doi.org/10.55755/DepArch.2023.33</u>

# Mimari Tasarım Eğitiminde Karma Gerçekliği Keşfetmek: Sistematik İnceleme

Ayşegül Kıdık<sup>1</sup>, Burak Asiliskender<sup>2</sup>

<sup>1</sup> Öğr. Gör. Dr., AGU, Mimarlık ve Tasarım Fakültesi, Mimarlık Bölümü, Kayseri, Türkiye. <sup>2</sup> Prof. Dr., AGU, Mimarlık ve Tasarım Fakültesi, Mimarlık Bölümü, Kayseri, Türkiye.

## Özet

Bu sistematik literatür taraması, Karma Gerçeklik (KG) teknolojilerinin Mimari Tasarım Stüdyosu Eğitimi (MTSE) içindeki entegrasyonunu ve etkilerini araştırmaktadır. 2019'dan 2024'e kadar olan dönemi kapsayan bu inceleme, mevcut çalışmalar aracılığıyla KG'nin tasarım eğitimindeki güncel rolünü derlemektedir. Çalışmanın amacı, KG'in MTSE'ndeki olumlu ve olumsuz katkılarını değerlendirmek ve bu alandaki gelecekteki potansiyelini tartışmaktır. Makaleler, PRISMA (2020) kılavuzlarına (Page M.J.et al., 2021) göre seçilmiş ve gözden geçirilmiş, bulgular ScienceDirect, Web of Science ve Scopus veri tabanlarından analiz edilmiştir. İnceleme, KG'in MTSE'ndeki uygulamalarına odaklanan makaleleri belirlemiştir. İncelenen araştırmalardan elde edilen bulgular, KG teknolojilerinin, mimari tasarımların gerçek zamanlı görselleştirilmesi ve manipülasyonuna olanak tanıyan etkileşimli ve sürükleyici ortamlar sağlayarak deneyimsel öğrenmeyi önemli ölçüde artırdığını göstermektedir. Ancak, KG'in MTSE 'ne entegrasyonu, yüksek uygulama maliyetleri ve eğitmenler için özel eğitim gereksinimleri gibi zorluklarla karşı karşıyadır. Bununla birlikte, bu zorluklar aşıldığında, KG MTSE'ne alternatif bir gerçeklik sunarak dönüştürücü bir potansiyel sağlayabilir. Bu makale, KG teknolojilerini kullanarak MTSE'nde yenilikçi öğrenme ortamları geliştirmek isteyen eğitimcilere, müfredat geliştiricilere ve öğrencilere kapsamlı bir rehber sunmaktadır.

Anahtar Kelimeler: Mimari Tasarım Stüdyosu Eğitimi, Mimarlık Eğitimi, Karma Gerçeklik (KG), Kaliteli Eğitim (SKA 4).

Sorumlu Yazar: aysegul.kidik@agu.edu.tr Alınma Tarihi: 15.05.2024 - Kabul Tarihi: 10.08.2024

**Attf:** Kıdık, A., & Asiliskender, B. (2024). Exploring mixed reality in architectural design education: A systematic review. DEPARCH Journal of Design Planning and Aesthetics Research, 3 (2), 176-188. <u>https://doi.org/10.55755/DepArch.2023.33</u>

## INTRODUCTION

Recent progress in digital technology has greatly affected architectural education. Shifting from the conventional studio paradigm, renowned for its tranquil and uninterrupted ambiance that fosters imaginative inquiry (Weiner, 2005), towards incorporating digital resources, has reshaped the instruction, application, and depiction of architectural concepts.

Extended Reality (XR), comprising Augmented Reality (AR), Virtual Reality (VR), and Mixed Reality (MR), introduces revolutionary platforms that merge real and computer-generated environments to generate immersive, participatory interactions. These encounters enrich architectural design's educational and professional facets of architectural design (Gownder, 2016). Such innovations assist in comprehending spatial dynamics critical to architectural learning and facilitate synchronous cooperation and design alterations, which are essential competencies for modern architects. However, integrating XR technologies in higher education, specifically in the field of architecture, poses difficulties. The assimilation of these technologies requires thoroughly examining pedagogical goals, technological framework, and curriculum development. It is apparent that although the potential for XR in education is encouraging, significant transformation in instructional approaches is necessary to fully harness its advantages (Darwish et al., 2023).

Mixed reality (MR) technology tools within the extended reality (XR) technologies framework, such as Microsoft HoloLens, aid students in analysing architectural configurations in a three-dimensional manner within their genuine environmental context. This specific characteristic plays a crucial role in comprehending intricate spatial connections and the magnitude of architectural components, ultimately boosting spatial understanding and design proficiencies (Milgram & Kishino, 1994). Mixed reality (MR) enables real-time engagement with design components, allowing students to adjust and transform architectural prototypes digitally. This interactive involvement enhances comprehension of the repercussions of design choices and advocates for a more iterative and adaptable design methodology (Milman, 2018). Mixed reality (MR) facilitates cooperative design endeavours by empowering multiple students to simultaneously approach and engage with a collective virtual prototype, irrespective of their geographic position. This strategy fosters student cooperation enriches negotiation competencies, and seamlessly integrates diverse design components (Parveau & Adda, 2018).

The application of technology is crucial in determining the curricula and instructional approaches in the rapidly changing domain of architectural design education. This study investigates the integration, effects, and future possibilities of Mixed Reality (MR) technologies in architectural design education. A methodical literature review -from 2019 to 2024- was carried out for this examination. Conventional architectural education typically combines theoretical understanding with practical experience, often constrained by physical models and two-dimensional drawings. The introduction of digital technologies has introduced new dimensions in this field. The fusion of Virtual Reality (VR) and Augmented Reality (AR) to form Mixed Reality (MR) establishes an immersive environment where virtual and real components interact, demonstrating the potential to improve students' spatial comprehension and design skills, thus emerging as a crucial area of concentration. The article explores the integration of MR technologies in architectural design education and evaluates their influence on the educational process and scholarly outcomes. Through an analysis of the shift from conventional methodologies to advanced

178

digital interactions, the objective is to comprehend the changing landscape of architectural education and its alignment with contemporary professional standards.

The research has three main objectives: to evaluate the use of Mixed Reality (MR) technologies in architectural design studio education; to provide a general overview, investigate the positive and negative contributions and impacts of these technologies; to critique the current state of technology in design education; and finally, to discuss the transformative potential of Mixed Reality technologies for architectural design studios in the near future.

The importance of this article lies in its capacity to guide future research pathways and educational approaches. The study is designed to aid educators, curriculum developers, and policymakers in making well-informed decisions about incorporating Mixed Reality (MR) technologies into architectural education programs through a detailed examination of current applications and discoveries. The assessment proceeds with a systematic literature review method following PRISMA principles to integrate and assess relevant research. The method used for selecting and evaluating the research through systematic literature review is explained in the subsequent section, while other sections detail the findings and results. Discussions on future educational implications resulting from integrating MR into architectural design education are presented in the conclusion.

## METHODS

The research employs a systematic review methodology distinguished by thorough and clear information analysis from various studies addressing a particular research query. It entails systematic exploration, meticulous selection, and critical assessment of related literature, preceded by a detailed synthesis of results. The principal research inquiries concentrate on how mixed reality (MR) technology is utilized in architectural design studio education, its impacts on learning encounters, and its prominence in the investigations of the architecture domain. A literature exploration spanning from 2019 to 2024 was carried out utilizing Science Direct, Scopus, and Web of Science databases, with keywords pertinent to the research queries. Chosen studies specifically investigated experiential learning in architectural design studios, notably utilizing MR technology. The research complies with PRISMA guidelines (2020) (Page et al., 2021), which are clear and comprehensive documentation guidelines. Its objective is to offer an evidence-based comprehension of the influence of digital technology, particularly MR, on experiential learning in architectural design education and practice.

## **Eligibility Criteria**

The initial search was conducted by entering the query "mixed reality technology in architectural design studio education" into the selected databases. The search criteria were set as follows: research language: English; document type: review or research article; research fields: engineering, social sciences, arts, and humanities (Table 1). Table 1. Systematic LiteratureReview Results in Science Direct,<br/>Scopus, WoS Databases.

| Database          | Query Formula/Terms                                                                                                                                                                                                                                                                                                                                                                                                                    | Document<br>Type                          | Research Area                                             | Results |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|---------|
| Science<br>Direct | Find articles with these terms: mixed<br>reality technology in architectural<br>design studio education                                                                                                                                                                                                                                                                                                                                | Review<br>article,<br>research<br>article | Engineering,<br>Social Sciences                           | 102     |
| Scopus            | ALL (mixed AND reality AND technology<br>AND in AND architectural AND design<br>AND education) AND PUBYEAR > 2018<br>AND PUBYEAR < 2025 AND (LIMIT-<br>TO (DOCTYPE, "ar")) AND (LIMIT-TO<br>(LANGUAGE, "English")) AND (LIMIT-TO<br>(SUBJAREA, "ENGI") OR LIMIT-TO<br>(SUBJAREA, "SOCI") OR LIMIT-TO<br>(SUBJAREA, "ARTS")) AND (LIMIT-TO<br>(EXACTKEYWORD, "Architectural<br>Design") OR LIMIT-TO (EXACTKEYWORD,<br>"Mixed Reality")) | Article                                   | Engineering,<br>Social Sciences,<br>Art and<br>Humanities | 216     |
| Web of<br>Science | Mixed reality technology in architectural<br>design education (All Fields) and 2019<br>or 2020 or 2021 or 2022 or 2023 or 2024<br>(Final Publication Year) and Review<br>Article <b>or</b> Article (Document Types)                                                                                                                                                                                                                    | Review<br>article,<br>article             | -                                                         | 15      |
| TOTAL             |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                                           | 333     |

Source: Science Direct, Scopus, WoS Databases.

#### RESULTS

The initial search resulted in 333 (three hundred thirty-three) reviews and research articles. The eligibility criteria outline the parameters for selecting studies examining the integration of mixed reality (MR) technology in architectural design studio education. These criteria emphasize investigations exploring the application and effects of MR within this educational context, focusing on articles published in English between 2019 and 2024. The selection process prioritizes papers addressing MR and architectural design studio education, especially those investigating the use of MR technologies for experiential learning in architectural design studios.

#### **Selection Criteria**

Research related to architectural education and MR technology has been included in this study.

Exclusion criteria were established, and in the initial phase, the retrieved studies were assessed by reviewing their abstracts or full texts. The exclusion criteria for this systematic literature review involved filtering out studies that did not focus on Mixed Reality (MR) technology, were unrelated to higher education or architecture, or were off-topic. Only papers directly addressing MR technology in architectural design studio education were included. Non-English studies and duplicate publications were also excluded to maintain methodological rigor and ensure the selection of relevant sources.

The review process followed a clearly defined procedure of identifying, screening, and including articles. This led to the exclusion of numerous papers based on specific criteria: duplicates (n = 4), work unrelated to MR (n = 60), content not related to higher education (n = 141), material not focused on architecture (n = 19), studies outside architectural design education (n = 96), and inaccessible sources (n = 1). This systematic approach identified twelve papers most relevant to the study's objectives. These selected papers were evaluated based on their aims and conclusions to explore the use of MR technology in architectural design studio education (Figure 1).



This systematic literature review examined 12 critical articles selected from 333 reputable databases such as Web of Science, ScienceDirect, and Scopus, focusing on integrating Mixed Reality (MR) technologies in architectural design education. Synthesis and assessment of the outcomes derived from examining these studies are presented here (Table 2).

| no | Торіс         | Author(s)    | Aim                 | Method               | MR Relation       | Conclusions        |
|----|---------------|--------------|---------------------|----------------------|-------------------|--------------------|
| 1  | Architectural | Saleh et al. | To explore          | analyzing            | investigating     | highlights the     |
|    | education     | (2023)       | architectural       | literature on the    | how MR tools      | pandemic's         |
|    | challenges    |              | education           | pandemic's           | enhance           | effects on         |
|    | and           |              | challenges          | impact on            | architectural     | architectural      |
|    | opportunities |              | and proposing       | architectural        | education         | education          |
|    | in a post-    |              | digital strategies  | education            | through           | and as a result    |
|    | pandemic      |              | from pandemic       | to identify          | improving         | suggests a model   |
|    | digital age   |              | opportunities.      | problems and         | design,           | emphasizing        |
|    |               |              |                     | opportunities for    | collaboration,    | networking,        |
|    |               |              |                     | developing new       | and learning      | exploration, and   |
|    |               |              |                     | models.              | environments.     | adaptability with  |
|    |               |              |                     |                      |                   | MR.                |
| 2  | Collaborative | Ali et al.   | To discover trends, | systematic           | MR were           | identifies an      |
|    | Educational   | (2019)       | challenges, and     | mapping of the       | examined for      | increasing         |
|    | Environments  |              | gaps for further    | development          | their application | curiosity in MR    |
|    | Incorporating |              | study on literature | and pinpointing      | in collaborative  | technologies in    |
|    | MR Techs:     |              | in education        | deficiencies in      | learning settings | academia           |
|    | A Systematic  |              | associated with     | MR technologies      |                   |                    |
|    | Mapping       |              | MR.                 | in the               |                   |                    |
|    | Study         |              |                     | educational          |                   |                    |
|    |               |              |                     | tield.               |                   |                    |
| 3  | Exploring     | Almufarreh.  | To investigate how  | a numerical          | MR technologies   | MR technologies    |
|    | the Potential | (2023)       | MR enhances         | method with          | used to blend     | enhance            |
|    | of MR in      |              | education           | a survey and         | digital and       | students' learning |
|    | Enhancing     |              | and scholarly       | data analysis        | physical          | experiences,       |
|    | Student       |              | achievement.        | was executed         | environments      | resulting          |
|    | Learning      |              |                     | utilizing structural | for studying      | in greater         |
|    | Experience    |              |                     | equation             | on immersive      | satistaction       |
|    | ana           |              |                     | modeling (SEM).      | iearning.         | ana academic       |
|    | Academic      |              |                     |                      |                   | achievement.       |
|    | Performance   |              |                     |                      |                   |                    |

Figure 1: Modified Prisma Flow Diagram.

Table 2. Most Related Papers as<br/>a Result of Systematic Literature<br/>Review.

| 4 | XR for<br>enhancing<br>spatial ability<br>in architecture<br>design<br>education                            | Darwish, et<br>al. (2023)         | To examine how<br>early adoption of<br>XR technologies<br>influences<br>spatial skills in<br>architectural<br>education.                                                                              | Uses control and<br>experimental<br>groups to<br>compare the<br>effectiveness of<br>XR integration<br>against<br>conventional<br>teaching<br>methods.                                              | uses XR to<br>measure if<br>it promotes<br>engaging<br>learning,<br>reduces<br>cognitive<br>load, and<br>improves spatial<br>understanding.                                                         | XR enhances<br>spatial skills in<br>architecture<br>students,<br>even with<br>challenges in<br>adapting to new<br>technologies.                                                                                              |
|---|-------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Framework<br>for the Use<br>of Extended<br>Reality<br>Modalities<br>in AEC<br>Education                     | Spitzer et<br>al. (2022)          | To provide a<br>framework to assist<br>AEC educators<br>in selecting XR<br>technologies,<br>taking into<br>account budget,<br>scalability, space<br>requirements,<br>and educational<br>outcomes.     | uses a<br>comprehensive<br>review and<br>analysis of XR<br>modalities in<br>AEC education,<br>proposing a<br>framework for<br>selecting XR<br>tools aligned<br>with educational<br>goals.          | Utilizes MR, VR,<br>and AR within<br>the XR spectrum<br>to evaluate<br>their impact on<br>visualization,<br>engagement,<br>and interactive<br>learning in AEC<br>education.                         | highlights the<br>transformative<br>impact of XR<br>technologies on<br>AEC education,<br>advocating for<br>their integration<br>to enhance<br>student<br>engagement<br>and outcomes.                                         |
| 6 | HoloDesigner:<br>A mixed<br>reality tool for<br>on-site design                                              | Dan et al.<br>(2021)              | To illustrate how<br>MR technology<br>and the<br>HoloDesigner<br>tool improve<br>on-site design<br>through real-time<br>visualization and<br>manipulation of<br>3D models in real-<br>world settings. | Involves using<br>the HoloDesigner<br>tool with<br>Microsoft<br>HoloLens for<br>real-time MR<br>integration,<br>tested at a<br>community park<br>to assess design<br>based on user<br>experiences. | HoloDesigner<br>employs MR to<br>blend virtual 3D<br>models with real<br>environments,<br>enabling<br>designers to<br>adjust designs<br>on-site using<br>spatial mapping<br>and gesture<br>control. | HoloDesigner<br>improves on-<br>site design by<br>offering tools<br>for instant<br>visualization and<br>adjustment of 3D<br>models, thereby<br>enhancing<br>accuracy in<br>architectural and<br>urban planning<br>decisions. |
| 7 | Impact of<br>extended<br>reality on<br>architectural<br>education                                           | Kharvari<br>and Kaiser<br>(2022)  | To evaluate XR<br>technologies<br>in architectural<br>education, assess<br>their impact<br>on student<br>performance,<br>and offer<br>recommendations<br>for curriculum<br>integration.               | Reviews XR<br>technologies<br>in architectural<br>education from<br>2015 to 2020<br>using a modified<br>PICO strategy<br>and databases<br>SciDirect, WoS,<br>and Scopus.                           | Uses the<br>keyword "MR<br>in architectural<br>education" to<br>review its role<br>in enhancing<br>student<br>engagement<br>and learning by<br>merging physical<br>and virtual<br>worlds.           | Finds that XR<br>technologies<br>benefit<br>architectural<br>education by<br>improving the<br>design process,<br>enhancing<br>learning<br>outcomes,<br>and effectively<br>involving<br>end-users.                            |
| 8 | Interactive<br>Parametric<br>Design and<br>Robotic<br>Fabrication<br>within Mixed<br>Reality<br>Environment | Buyruk<br>and<br>Çağdaş<br>(2022) | To test parametric<br>design and<br>robotic fabrication<br>integration in<br>mixed reality<br>for real-time<br>enhancement.                                                                           | Develops a<br>digital twin in<br>mixed reality<br>through<br>parametric<br>modeling<br>and robotic<br>fabrication,<br>incorporating<br>visual updates.                                             | Uses Mixed<br>Reality (MR)<br>to enhance<br>interactivity<br>in parametric<br>design and<br>robotic<br>fabrication,<br>enabling real-<br>time adjustments<br>and multi-user<br>collaboration.       | Combining<br>parametric<br>design and<br>robotic<br>fabrication in<br>mixed reality<br>enhances<br>design flexibility,<br>efficiency, and<br>human-robot<br>collaboration.                                                   |

| 9  | Proposing<br>a Novel<br>Mixed-Reality<br>Framework<br>for Basic<br>Design and<br>Its Hybrid<br>Evaluation<br>Using<br>Linkography<br>and<br>Interviews | Cindioglu<br>et al.<br>(2021) | To examine<br>how MR affects<br>design thinking<br>skills in novice<br>designers within<br>BD education,<br>improving their<br>ability to generate<br>and evaluate<br>design options.                            | Uses linkography<br>and interviews<br>to analyze<br>design decisions<br>and explore<br>how students<br>benefit from MR<br>technology.                                                           | Uses the<br>DesignMR<br>framework to<br>enrich design<br>education<br>with Mixed<br>Reality (MR),<br>enhancing<br>creativity<br>and real-time<br>feedback<br>through the<br>integration of<br>physical and<br>digital elements.              | DesignMR<br>boosts creativity,<br>productivity, and<br>idea exploration<br>for novice<br>designers,<br>making MR<br>valuable in<br>BD education<br>for exploring<br>solutions and<br>engaging in the<br>design process. |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | The<br>Contribution<br>of Digital<br>Tools to<br>Architectural<br>Design<br>Studio: A<br>Case Study                                                    | Ceylan et<br>al. (2024)       | to investigate<br>how digital<br>tools influenced<br>architectural<br>design studios<br>during the<br>pandemic-driven<br>shift to online<br>education.                                                           | Involves a case<br>study with a<br>questionnaire<br>for architecture<br>students to<br>gather opinions<br>on digital tools<br>in the studio<br>process.                                         | MR is used in<br>architectural<br>education<br>to enhance<br>visualization<br>and design<br>features.                                                                                                                                        | MR in<br>architectural<br>education<br>enhances<br>visualization,<br>design, and<br>creativity<br>through<br>real-time<br>changes and<br>collaborative<br>feedback.                                                     |
| 11 | The<br>Application<br>of Extended<br>Reality<br>Technology in<br>Architectural<br>Design<br>Education: A<br>Review                                     | Wang et<br>al. (2023)         | To analyze XR<br>technology in<br>architectural<br>design education<br>over the past five<br>years, providing<br>a framework<br>for future use,<br>and identifying<br>limitations<br>and research<br>directions. | Employs<br>content analysis<br>and a literature<br>review from<br>Science Direct,<br>Google Scholar,<br>and Web of<br>Science to<br>evaluate XR<br>technology in<br>architectural<br>education. | Uses MR and XR<br>as a keyword<br>to determine<br>if it enhances<br>architectural<br>education by<br>merging real<br>and virtual<br>elements,<br>improving<br>understanding,<br>and providing<br>real-time<br>feedback and<br>collaboration. | XR technologies<br>enhance<br>architectural<br>education<br>by fostering<br>active learning,<br>encouraging<br>reflection and<br>communication,<br>and potentially<br>replacing<br>conventional<br>teaching<br>methods. |
| 12 | Design<br>Assessment<br>in Virtual and<br>Mixed Reality<br>Environments:<br>Comparison<br>of Novices<br>and Experts                                    | Wu et al.<br>(2021)           | Explores how<br>VR and MR can<br>link novice and<br>experienced<br>designers in<br>construction,<br>boosting rapid<br>knowledge<br>acquisition and<br>skill development.                                         | Uses VR and<br>MR simulations<br>to assess<br>small house<br>accessibility<br>with students<br>and experts,<br>collecting data<br>via think-aloud<br>protocols,<br>surveys, and<br>recordings.  | Uses VR and MR<br>technologies<br>to create<br>immersive<br>virtual learning<br>experiences,<br>enabling direct<br>interaction with<br>design tasks to<br>boost expertise<br>development.                                                    | VR and MR<br>bridge the<br>gap between<br>novices and<br>experts, allowing<br>novices to<br>undertake<br>expert tasks<br>through<br>immersive<br>learning<br>experiences.                                               |

The reviewed articles consistently highlight the transformative impact of Mixed Reality (MR) on conventional architectural education methods. Technologies like Virtual Reality (VR) and Augmented Reality (AR) provide immersive, handson experiences that greatly improve learning outcomes, as demonstrated by studies such as Saleh et al. (2023). These technologies enhance conventional educational content and introduce novel teaching approaches, encouraging deeper engagement and interaction. This leads to a more dynamic learning environment where students can actively explore and understand complex design principles, marking a new phase in architectural education. Several studies, including one by Darwish et al. (2023), highlight the effectiveness of Mixed Reality (MR) in enhancing key skills for architectural design, such as spatial awareness and visualization. MR's immersive nature provides a deeper understanding of spatial relationships, a crucial aspect of architectural training. By interacting with MR technologies, students can dynamically visualize and engage with structures, which improves their spatial cognition and problemsolving abilities.

The integration of MR has significantly boosted student engagement and satisfaction. Almufarreh's research (2023) demonstrates that MR enhances academic performance and enriches the learning experience. MR technologies make learning more interactive and engaging, capturing students' attention and improving their overall academic results and satisfaction. This transition to interactive learning is essential for keeping pace with digital educational advancements. Wu et al. (2021) state in their research that despite their limited experience, novice students exhibited similar behaviour patterns and achieved design review results comparable to those of seasoned professionals when using VR and MR mock-ups. This study adds to the existing knowledge by offering initial evidence that VR and MR can help bridge gaps in experience and suggests that these technologies could expedite the development of workplace expertise among college students. The insights gained may also guide the development of instructional and pedagogical strategies incorporating VR and MR technology into undergraduate construction and engineering programs.

According to Ceylan et al. (2024), digital technologies have recently exceeded conventional methods in the field of architecture, offering new formal and structural possibilities. The diversity of tools and practical interfaces encourages users at all levels and increases the shift toward digital solutions. Digital tools already play an active role in materializing pre-designed ideas in architectural education and are increasingly integrated into the design process for new experiments. Consequently, the study considered it valuable to explore the transformative effect of digital tools on architectural design education through students who have personally experienced these technologies. However, the value and contributions of conventional methods, such as hand sketching and physical model making, should not be overlooked. Further research is needed to examine their relationship with digital tools to enhance their contribution to architectural education, even in an era dominated by digital technologies.

Despite the benefits, integrating MR into architectural education presents challenges such as high costs, technology integration, and curriculum alignment, as noted by Dan et al. (2021). Implementing MR requires substantial investments in hardware, software, and educator training. Additionally, adapting MR into existing curricula involves reworking course structures and objectives.

Ali et al. (2019) identified research gaps, particularly in augmented virtuality and technical integration. Further research is required to evaluate MR's enduring impacts and establish more effective integration frameworks. Future studies should address these challenges and improve the scalability and accessibility of MR technologies in architectural education.

This review highlights MR's transformative potential in enhancing architectural education by improving experiential learning, increasing student engagement, and developing key skills. However, it also stresses the importance of further research to address the challenges and maximize MR's benefits in educational contexts.

## CONCLUSION

This study has conducted an in-depth review of integrating Mixed Reality (MR) technologies into architectural design education, analysing 12 pivotal articles from an initial pool of 333. The review suggests that MR technologies, such as Virtual Reality (VR) and Augmented Reality (AR), can potentially transform architectural education. These technologies, with their capacity to enhance interaction, experiential learning, and essential design skills, offer a deeper engagement with architectural concepts, inspiring a new era of architectural education.

The review highlights that MR technologies enable students to immerse themselves in virtual environments, allowing for a more nuanced understanding of complex design principles. By facilitating real-time interaction with virtual architectural models, MR enhances spatial cognition and design capabilities, thus aligning educational practices with contemporary industry requirements.

The impact of MR on student engagement and performance underscores its value in modernizing educational methodologies. MR's interactive nature contributes to heightened student involvement and improved academic outcomes, signifying a significant shift from conventional, less dynamic learning approaches.

Despite these advantages, several challenges accompany the integration of MR into architectural education. These include the high costs of technology, the need for specialized educator training, and the adaptation of existing curricula to incorporate MR. However, with strategic planning and investment from educational institutions, these barriers can be overcome, ensuring successful and sustainable implementation of MR technologies in architectural education.

Future research should address the existing gaps by exploring the long-term impacts of MR technologies and developing cost-effective solutions. Research should focus on creating adaptable frameworks that facilitate MR integration across diverse educational settings, instilling confidence in MR's flexibility in education. Enhancements in MR technology, such as user-friendly interfaces and natural interaction simulations, will likely expand its accessibility and effectiveness in education.

Interdisciplinary applications of MR offer exciting opportunities for enriching architectural education. Integrating MR with engineering, urban planning, and interior design can give students broader learning experiences and practical insights. Collaboration with industry partners could also enhance the practical application of MR in real-world scenarios, fostering a more comprehensive educational experience.

"Scalability and inclusivity are essential for the widespread adoption of mixed reality (MR) in education." Future strategies should consider a range of resource levels, and learning needs to ensure that MR technologies are accessible to all students. Implementing adaptive learning systems within MR environments could further personalize educational content and support various learning styles.

Finally, establishing robust longitudinal studies and evaluation frameworks will be essential for assessing MR's impact on educational outcomes. These studies should include quantitative and qualitative measures to capture the full range of MR's effects on spatial reasoning, design skills, and student engagement. Addressing these considerations can help architectural education harness the full potential of MR technologies, creating more engaging and effective learning environments. As MR technology evolves, it will continue to offer new opportunities for advancing educational practices and outcomes in the architectural field (Table 3).

Table 3. Conclusion Summary:Integrating Mixed Reality inArchitectural Education.

| Aspect               | Details                                                                                                  |
|----------------------|----------------------------------------------------------------------------------------------------------|
| Purpose              | Review of integrating Mixed Reality (MR) technologies in architectural design education.                 |
| Benefits             | Enhanced interaction, experiential learning, deeper engagement with architectural concepts.              |
| Impact               | Improved student engagement and performance, modernized methodologies, enhanced spatial cognition.       |
| Challenges           | High costs, specialized educator training needs, curriculum adaptation.                                  |
| Future Research      | Explore long-term impacts, develop cost-effective solutions, create adaptable MR integration frameworks. |
| Opportunities        | Interdisciplinary integration with engineering, urban planning, interior design.                         |
| Scalability          | Ensure accessibility for all students, considering diverse resources and learning needs.                 |
| Adaptive<br>Learning | Personalize educational content, support various learning styles.                                        |
| Evaluation           | Establish robust longitudinal studies with quantitative and qualitative measures.                        |
| Potential            | Advancing educational practices and outcomes in architectural education.                                 |

## Conflict of Interest:

No conflict of interest was declared by the authors.

## Author' Contributions

A.K. and B.A. reviewed the resources regarding the evolution of architectural design studio education. A.K. conducted analyses, while both authors performed the synthesis in preparing the manuscript. All authors have read and agreed to the published version of the manuscript.

## **Financial Disclosure**

This study constitutes an essential dissertation component and was made possible by the generous financial support extended by the TUBITAK-2214/A International Research Fellowship Programme for PhD Students (#1059B142100483). It is imperative to note that all the viewpoints, discoveries, deductions, or suggestions presented in this content are solely those of the authors and do not necessarily reflect the perspectives of TUBITAK.

## **Ethics Committee Approval**

Ethics committee approval was not required for this article.

## Legal Public/Private Permissions

Legal Public/Private Permissions approval was not required for this article.

## Data Availability Statement

The data sets generated and analysed during the current study will be publicly available upon publication.

## REFERENCES

Ali, A. A., Dafoulas, G. A., & Augusto, J. C. (2019). Collaborative educational environments incorporating mixed reality technologies: A systematic mapping study. *IEEE Transactions on Learning Technologies*, 12(3), 321-332. <u>https://doi.org/10.1109/TLT.2019.2926727</u>

Almufarreh, A. (2023). Exploring the potential of mixed reality in enhancing student learning experience and academic performance: An empirical study. *Systems*, *11*(6), 292. <u>https://doi.org/10.3390/systems11060292</u>

Buyruk, Y., & Çağdaş, G. (2022). Interactive parametric design and robotic fabrication within mixed reality environment. *Applied Sciences*, 12(24), 12797. <u>https://doi.org/10.3390/app122412797</u>

Ceylan, S., Şahin, P., Seçmen, S., Somer, M. E., & Süher, H. K. (2024). The contribution of digital tools to architectural design studio: A case study. *Ain Shams Engineering Journal, in press.* <u>https://doi.org/10.1016/j.asej.2024.102795</u>

Cindioglu, H. C., Gursel Dino, I., & Surer, E. (2022). Proposing a novel mixed-reality framework for basic design and its hybrid evaluation using linkography and interviews. *International Journal of Technology and Design Education*, 32(5), 2775-2800. <u>https://doi.org/10.1007/s10798-021-09707-0</u>

Dan, Y., Shen, Z., Xiao, J., Zhu, Y., Huang, L., & Zhou, J. (2021). HoloDesigner: A mixed reality tool for on-site design. *Automation in Construction*, 129, 103808. <u>https://doi.org/10.1016/j.autcon.2021.103808</u>

Darwish, M., Kamel, S., & Assem, A. (2023). A theoretical model of using extended reality in architecture design education. *Engineering Research Journal (Shoubra)*, 52(1), 36-45. <u>https://doi.org/10.21608/erjsh.2022.168677.1099</u>

Darwish, M., Kamel, S., & Assem, A. (2023). Extended reality for enhancing spatial ability in architecture design education. *Ain Shams Engineering Journal*, 14(6), 102104. <u>https://doi.org/10.1016/j.asej.2022.102104</u>

Gownder, J. P., Voce, C., Mai, M., & Lynch, D. (2016, May 10). Breakout vendors: Virtual and augmented reality. Forrester. <u>https://www.forrester.com/report/Breakout+Vendors+Virtual+And+Augmented+Reality/-/E-RES134187/</u>.

Kharvari, F., & Kaiser, L. E. (2022). Impact of extended reality on architectural education and the design process. *Automation in Construction*, 141, 104393. <u>https://doi.org/10.1016/j.autcon.2022.104393</u>

Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. *IEICE Transactions on Information and Systems*, 77(12), 1321-1329.

Milman, N. B. (2018). Defining and conceptualizing mixed, augmented, and virtual reality. *Distance Learning*, 15(2), 55-64.

Parveau, M., & Adda, M. (2018). 3iVClass: A new classification method for Virtual, Augmented and Mixed Realities. *Procedia Computer Science*, 141, 263–270. https://doi.org/10.1016/j.procs.2018.10.180

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *BMJ*, *372*, n71. https://doi.

## org/10.1136/bmj.n71

Saleh, M. M., Abdelkader, M., & Sadek Hosny, S. (2023). Architectural education challenges and opportunities in a post-pandemic digital age. *Ain Shams Engineering Journal*, 14(8), 102027. <u>https://doi.org/10.1016/j.asej.2022.102027</u>

Spitzer, B. O., Ma, J. H., Erdogmus, E., Kreimer, B., Ryherd, E., & Diefes-Dux, H. (2022). Framework for the use of extended reality modalities in AEC education. *Buildings*, *12*(12), 2169. <u>https://doi.org/10.3390/buildings12122169</u>

Wang, J., Ma, Q., & Wei, X. (2023). The application of extended reality technology in architectural design education: A review. *Buildings*, 13(12), 2931. <u>https://doi.org/10.3390/buildings13122931</u>

Weiner, F. (2005). Five critical horizons for architectural educators in an age of distraction. In E. Harder (Ed.), EAAE Prize 2003-2005 Writings in Architectural Education (pp. 21–46). EAAE Council. <u>https://www.eaae.be/wp-content/uploads/2017/04/26 writings-in-architectural-education.pdf</u>

Wu, W., Hartless, J., Tesei, A., Gunji, V., Ayer, S., & London, J. (2019). Design assessment in virtual and mixed reality environments: Comparison of novices and experts. *Journal of Construction Engineering and Management*, 145(9), 04019049. <u>https://doi.org/10.1061/(ASCE)CO.1943-7862.0001683</u>

## **BIOGRAPHY OF AUTHORS**

**Ayşegül Kıdık**, Bachelor's Degree in Architecture from Erciyes University, Kayseri, TR (2001-2006). Completed a Master's Degree in Architectural Design Computing at Istanbul Technical University, İstanbul, TR (2006-2010), with a thesis titled "Cyborg Architecture" under the advisement of L. Dr. Hakan Tong. Worked as an architect in an architectural design office (2007-2019). Started Ph.D. studies in Architecture at Abdullah Gül University, Kayseri, TR (2017-2024), with a thesis on "XR (Extended Reality) Impact on Architectural Design Education," advised by Prof. Dr. Burak Asiliskender. Participated in the TUBİTAK 2214-A Overseas Program at the University of Central Florida (UCF), Orlando, US (2022-2023). Joined AGU School of Architecture as a lecturer in 2019 and has been serving as Lecturer Dr. since 2024. Research Areas: Computing architecture, Technology-based architecture, Architectural Design Education, XR (Extended Reality), and Design Education.

**Burak Asiliskender** is a Professor of Architecture at Abdullah Gül University and the Dean of the Faculty. He has also worked as the Advisor to the Rector for the Bologna Process and Accreditation. He was the former and founding chair of the Department of Architecture and is one of the co-founders of Argeus Architects. His research areas include social sciences and humanities, sociology, social stratification and mobility, architecture, city and regional planning, urban planning and development, building information, building design, architectural design, renovation, history of architecture and restoration, restoration, history of architecture, engineering and technology.

188