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Abstract
In this paper, we study a three-dimensional discrete-time model to describe the behavior of cancer cells
in the presence of healthy cells and HIV-infected cells. Based on the Caputo-like difference operator,
we construct the fractional-order biological system. This study’s significance lies in developing a
new approach to presenting a biological dynamical system. Since the qualitative analysis related to
existence, uniqueness, and stability is almost the same as can be found in numerous existing papers,
and comparing this study to other research, constructing a biological discrete system using the Caputo
difference operator can be particularly important. Using powerful tools of nonlinear theory such as
phase plots, bifurcation diagrams, Lyapunov exponent spectrum, and the 0-1 test, we establish that
the proposed system can exhibit different biological states, including stable, periodic, and chaotic
behaviors. Here, the route leading to chaos is period-doubling bifurcation. Furthermore, the level
of chaos in the system is quantified using C0 complexity and approximate entropy algorithms. The
stabilization or suppression of chaotic motions in the fractional-order system is presented, where
an efficient controller is designed based on the stability theory of the discrete-time fractional-order
systems. Numerical simulations are provided to validate the theoretical results derived in this research
paper.
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1 Introduction

In recent years, the modeling of infectious diseases has become an important topic that has been
studied to describe the mechanisms by which disease spreads and then to predict the future
behavior of the disease. The goal of this study is to find solutions and strategies to fight and
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control epidemics and diseases such as cancers and immunodeficiency disease [1]. Mathematical
systems can be used to design new experiments by formulating hypotheses about the spread
and dynamics of disease. In particular, nowadays, mathematical models of HIV-1 have been
extensively studied by researchers around the world to show the interactions between healthy
cells, infected cells, and cancer cells. There are many existing reviews of HIV-1 models that
describe the coexistence of HIV-infected cells with cancer cells, see [2–5]. Our contribution is to
construct a discrete fractional-order model that describes the interactions between these cells, and
then to control the constructed system via an effective fractional-order controller.
Recently, discrete-time systems have been more commonly used than continuous-time systems to
study biological and epidemiological models because discrete-time systems are easier to compute
and numerically simulate [6]. In fact, fractional calculus is a broad field in modern mathematics
that allows us to investigate and describe a new phenomenon modeled with fractional-order equa-
tions. To our best knowledge, the first idea of the fractional derivative is associated with Leibniz
when he discussed the possibility of the construction of a fractional derivative in correspondence
with Bernoulli and Wallis in 1695 [7]. Then, the complete definition of such fractional derivative
was not established until the 19th century as a result of the works of Letnikov, Grunwald, Liouville,
Riemann, etc [8]. It should be noted that Letnikov established the first exact theoretical formu-
lation of the fractional derivation. Today, many types of fractional derivatives exist, with and
without singular kernels. With singular kernels, we have the well-known fractional derivatives,
Caputo fractional derivative [9] and Riemann-Liouville fractional derivative [10]. Without singular
kernels, we have two categories: fractional derivative with the exponential kernel which is the
Caputo-Fabrizio fractional derivative [11], and fractional derivative with Mittag-Leffler kernel
which is called as Atangana-Baleanu fractional derivative [12].
Modeling biological systems with fractional derivatives becomes an important topic due to the
involvement of memory and hereditary properties in the study of the interaction between cancer
cells and HIV-infected cells [13]. The non-integer models incorporate all prior information from
the past due to the memory effect, then we can understand well the dynamics of the model and
predict the spread of the disease [14]. The topics of stability of the equilibrium points, existence
and uniqueness, positivity and boundedness of the solution in the fractional order cancer models
are discussed in detail in [15–20]. Several numerical solutions to solve fractional-order biological
systems are proposed in [21–23].
Nowadays, among several fractional derivatives that exist, the Riemann-Liouville derivative
and the Caputo derivative are the most commonly used [24]. Today, many systems in physics,
chemistry, biology, epidemiology, neurology, viscoelasticity, cryptography, cardiology, etc. have
been studied and developed using fractional calculus theory [25].
On the side of discrete dynamical systems, Diaz and Osler published in 1974 the first concept
of a fractional difference operator defined as a generalization of the binomial formula for the
nth-order difference operator ∆n [26]. Furthermore, Atici et al. introduced the fractional nabla
difference operator, which is analogous to the forward fractional difference proposed by Miller and
Ross in 1989 [27]. Then, Abdeljawad introduced the Caputo fractional delta and nabla difference
operators [28]. Recently, Abdeljawad et al. derived the delta and nabla discrete formulas for
fractional integral and derivative, adopting the binomial theorem [29].
Discrete fractional calculus allows us to study systems in biology and ecology using fractional-
order equations to get better results and understand the interactions between species. Another
advantage of this theory is the speed of calculations with high precision. Additionally, it consumes
minimal computer resources [30]. While discrete fractional calculus offers benefits such as high
flexibility and robustness, it also poses challenges related to nonlinearity and complexity when
we numerically solve a fractional-order system. Furthermore, this theory’s analytical tools have
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limitations in determining the convergence and stability of numerical schemes. Using numerical
methods and approximations to solve a fractional-order equation can lead to significant errors
[31].
Recently, there has been great interest shown in the literature on chaotic dynamical systems due
to their important applications in practice. A chaotic system is defined as a dynamical system
that displays what is called sensitive dependence on initial conditions [32]. A small change in
the initial state of a chaotic system may lead to completely different outcomes. In nonlinear
dynamical analysis, a chaotic system has at least one positive Lyapunov exponent, in which the
Lyapunov exponent is a numerical quantity that measures the rate of convergence and divergence
of neighboring trajectories in nonlinear dynamical system [33].
In the current paper, we report a 3-D discrete-time fractional-order HIV-1 model involving AIDS-
related cancer cells. This model can exhibit chaotic dynamics for some parameter values. By
employing theoretical results and numerical simulations, we can show the chaotic behavior of the
proposed system, which is a popular phenomenon in nonlinear dynamical systems. In Section 2,
basic notions related to discrete fractional calculus are introduced. In Section 3, the discrete
fractional-order system is constructed based on the Caputo-like delta difference operator. In
Section 4, the dynamics of the fractional-order system are analyzed in both commensurate and
non-commensurate fractional-order using powerful tools in nonlinear dynamic analysis such as
phase portraits, bifurcation diagrams, maximum Lyapunov exponent, dynamical maps, etc. In
Section 5, the complexity of the fractional-order system is measured by the 0-1 test, C0 complexity,
and approximate entropy algorithms. In Section 6, a suitable control scheme for stabilizing the
chaotic dynamics in the fractional-order system is constructed. In Section 7, the data analysis and
discussion have been presented. Section 8 contains the conclusions.

2 Mathematical background

In this section, we give some results of discrete fractional calculus, which helped us build this
manuscript.

Definition 1 [27] Consider the real-valued function ϕ(τ) : Nα → R with Nα = N0 + {α} =

{α, α + 1, α + 2, . . .} where α ∈ R. Let ν > 0, the νth-order fractional sum of ϕ(τ) is defined as

∆−ν
α ϕ(τ) =

1
Γ(ν)

τ−ν∑
ξ=α

(τ − ξ − 1)(ν−1)ϕ(ξ), (1)

where the falling factorial τ(ν) is expressed using the Γ-function as

τ(ν) =
Γ(τ + 1)

Γ(τ + 1 − ν)
= τ (τ − 1) . . . (τ − ν + 1) . (2)

Definition 2 [28] Let ϕ(τ) : Nα+(m−ν) → R a real-valued function and ν /∈ N, the Caputo-like discrete
fractional difference operator of ϕ(τ) is defined as

C∆ν
αϕ(τ) = ∆−(m−ν)

α ∆mϕ(τ) =
1

Γ(m − ν)

τ−(m−ν)∑
ξ=α

(τ − ξ − 1)(m−ν−1)∆m
ξ ϕ(ξ), (3)

where ν /∈ N, m = [ν] + 1 and τ ∈ Nα+(m−ν).

By adopting the following theorem, we can define the numerical solution of a discrete fractional-
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order system.

Theorem 1 [34] Given the following Caputo-type discrete initial value problem{ C∆ν
αϕ(τ) = ψ(τ + ν − 1, ϕ(τ + ν − 1)),

∆kϕ(α) = ϕk, m = [ν] + 1, k = 0, 1, 2, . . . , m − 1,
(4)

then the unique solution of problem (4) is given by

ϕ(τ) = ϕ0(τ) +
1

Γ(ν)

τ−ν∑
ξ=α+(m−ν)

(τ − ξ − 1)(ν−1)ψ(ξ + ν − 1, ϕ(ξ + ν − 1)), τ ∈ Nα+m, (5)

where

ϕ0(τ) =
m−1∑
k=0

(τ − α)(k)

Γ(k + 1)
∆kϕ(α) =

m−1∑
k=0

(τ − α)(k)

k!
∆kϕ(α). (6)

The next theorem allows us to construct a stability condition for an equilibrium point of a discrete
fractional-order system in the case of commensurate fractional order.

Theorem 2 [35] For the discrete commensurate fractional-order system

C∆ν
αS(τ) = BW(τ + ν − 1), (7)

where W(τ) = (w1(τ), w2(τ), . . . , wn(τ))
T, B ∈ Rn×n, and τ ∈ N(α−ν)+1, the zero equilibrium point

of (7) is asymptotically stable if

λj ∈
{

z0 ∈ C : |z0| <

(
2 cos

| arg z0|− π

2 − ν

)ν

and | arg z0| > ν
π

2

}
, j = 1, 2, . . . , n, (8)

where λj is an eigenvalue of the matrix B and ν ∈ (0, 1).

3 Discrete fractional-order HIV-1 model

Recently, Lou et al. [36] proposed a three-dimensional continuous-time HIV-1 system with cancer
cells related to AIDS, which is described by the following dynamics:

dC
dt = C

[
α1

(
1 − C+S+R

µ

)
− δ1S

]
,

dS
dt = S

[
α2

(
1 − C+S+R

µ

)
− ηδ1C − δ2R

]
,

dR
dt = R (δ2S − ϱ) ,

(9)

where C represents the number of cancer cells, S represents the number of healthy cells, and
R represents the number of HIV-infected cells. α1, α2, µ, δ1, δ2, η, and ϱ are constant positive
parameters. Here α1 and α2 represent the rate at which cancer cells proliferate uncontrollably and
the healthy cells’ inherent growth rate respectively, with always α1 > α2, then the cancer cells
reproduce faster than the healthy cells. δ1 represents the immune system’s capacity to eliminate
cancerous cells, δ2 represents the rate coefficient of infection, µ represents the effective carrying
capacity of the system, the rate in which cancer cells destroy immune cells is represented by η, ϱ

represents the killing impact on the infected cells.
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In order to enrich the study of the system described in (9) and to contribute to the field of modeling
using the techniques of fractional calculus, the fractional-order version of system (9) is given as
[37] 

CDν1 C(t) = C
[
α1

(
1 − C+S+R

µ

)
− δ1S

]
,

CDν2 S(t) = S
[
α2

(
1 − C+S+R

µ

)
− ηδ1C − δ2R

]
,

CDν3 R(t) = δ2SR − ϱR,

(10)

where ν1, ν2, and ν3 are the fractional-orders such that νi ∈ (0, 1) for i = 1, 2, 3, and CDν is the
Caputo fractional derivative defined in [38].

Definition 3 The Caputo fractional derivative of order ν ∈ R+ of a continuous function g(t) : [t0,+∞[→
R is defined as

CDν
t0

g(t) =
1

Γ(m − ν)

∫ t

t0

g(m)(s)
(t − s)ν+1−m ds, (11)

where t > t0, m − 1 < ν ≤ m, and m = ⌈ν⌉.

For ν1 = ν2 = ν3 = ν = 0.98 and the parameter values listed in Table 1 under the initial conditions
(C(0), S(0), R(0)) = (678, 452, 0.25), the attractor of the commensurate fractional-order system
(10) is shown in Figure 1(a). In addition, when (ν1, ν2, ν3) = (0.96, 0.97, 0.98), the attractor of the
non-commensurate fractional-order system (10) is shown in Figure 1(b).

Table 1. Parameter values of the continuous-time fractional-order system (10)

Parameter Value
α1 0.1785
α2 0.03
δ1 0.0001
δ2 0.0005
η 0.01
µ 1500
ϱ 0.3

To simplify the study, we nondimensionalize the system (9) in order to obtain the scaled system.
We set

u =
C
µ

, v =
S
µ

, w =
R
µ

, τ = α1t, (12)

where the new parameters are given by

b12 =
µδ1

α1
, b23 =

δ2µ

α1
, b22 =

ηδ1µ

α1
, b31 =

δ2µ

α1
, r =

α2

α1
, b32 =

ϱ

α1
. (13)
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(a) commensurate fractional-order (b) non-commensurate fractional-order

Figure 1. Phase portrait of the fractional-order system (10)

Hence, the nondimensionalized system can be expressed as
du
dτ = u (1 − (u + v + w))− b12uv,
dv
dτ = rv (1 − (u + v + w))− b22uv − b23vw,
dw
dτ = b31vw − b32w.

(14)

We can obtain the discrete fractional-order HIV-1 model with cancer cells related to AIDS by
substituting the fractional derivatives CDνi with the Caputo-like discrete fractional difference
operator C∆νi

α as follows

C∆ν1
α u(τ) = u(τ + ν1 − 1)(1 − (u(τ + ν1 − 1) + v(τ + ν1 − 1) + w(τ + ν1 − 1))

− b12u(τ + ν1 − 1)v(τ + ν1 − 1),
C∆ν2

α v(τ) = rv(τ + ν2 − 1) (1 − (u(τ + ν2 − 1) + v(τ + ν2 − 1) + w(τ + ν2 − 1)))

− b22u(τ + ν2 − 1)v(τ + ν2 − 1)− b23v(τ + ν2 − 1)w(τ + ν2 − 1),
C∆ν3

α w(τ) = b31v(τ + ν3 − 1)w(τ + ν3 − 1)− b32w(τ + ν3 − 1).

(15)

For simplification, we will replace u, v, and w by x, y, and z, respectively. Using Theorem 1 with
α = 0, the numerical solution of the discrete fractional-order system (15) is given by

x(n) = x(0) +
1

Γ(ν1)

n∑
s=1

Γ(n − s + ν1)

Γ(n − s + 1)
(x(s − 1)(1 − (x(s − 1) + y(s − 1) + z(s − 1)))

− b12x(s − 1)y(s − 1)),

y(n) = y(0) +
1

Γ(ν2)

n∑
s=1

Γ(n − s + ν2)

Γ(n − s + 1)
(ry(s − 1)(1 − (x(s − 1) + y(s − 1) + z(s − 1)))

− b22x(s − 1)y(s − 1)− b23y(s − 1)z(s − 1)),

z(n) = z(0) +
1

Γ(ν3)

n∑
s=1

Γ(n − s + ν3)

Γ(n − s + 1)
(b31y(s − 1)z(s − 1)− b32z(s − 1)) ,

(16)
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where x(n), y(n), and z(n) represent the number of cancer cells, healthy cells, and HIV-infected
cells respectively.b12, b22, b23, b31, b32, and r are constant positive parameters.

4 Dynamics of the fractional-order discrete system

This section focuses on the analysis of the dynamics of the discrete fractional-order HIV-1 model
with cancer cells related to AIDS (15) in both commensurate and non-commensurate fractional
orders.

Case 1. Commensurate fractional-order

Existence and stability of equilibria
In this part, we study the existence and stability of equilibria in the fractional-order system (15).
The equilibrium points of the fractional-order system (15) are the solutions of the following system
of equations: 

x (1 − (x + y + z))− b12xy = 0,
ry (1 − (x + y + z))− b22xy − b23yz = 0,
b31yz − b32z = 0.

(17)

If we assume that b22 ̸= b23, the equilibrium points of (15) are:

F0 = (0, 0, 0) , F1 = (1, 0, 0) , F2 = (0, 1, 0) , F3 =

(
0,

b32

b31
,

−3r
r + b23

)
,

F4 =

(
rb12

rb12 + b22b12 + b22
,

b22

rb12 + b22b12 + b22
, 0
)

,

F5 =

(
b31b23 − (b23b12 + rb12 + b23)b32

b31(b23 − b22)
,

b32

b31
,
(rb12 + b22b12 + b22)b32 − b31b22

b31(b23 − b22)

)
.

Fix b31 = 0.01, b22 = 0.08, b23 = 0.01, b12 = 0.08, b32 = 0.04, r = 3.4, the fixed points and the
corresponding eigenvalues are shown in Table 2.

Table 2. Equilibria of the fractional-order discrete system (15)

Fixed points Eigenvalues
F0 λ1 = 1, λ2 = 3.4, λ3 = −0.04
F1 λ1 = −1, λ2 = −0.08, λ3 = −0.04
F2 λ1 = −3.4, λ2 = −1.08, λ3 = −0.03
F3 λ1 = 0.0299, λ2 = −13.6299, λ3 = −0.3288
F4 λ1 = −1.5569, λ2 = 0.039, λ3 = −0.0378
F5 λ1 = −30.4586, λ2 = 0.8061, λ3 = 0.0353

The equilibrium points F0, F3, F4, F5 have real positive eigenvalue, then the condition arg(λj) > ν π
2

is not achieved. Based on Theorem 2, the equilibrium points F0, F3, F4, and F5 are unstable. Also,
the equilibrium point F2 is unstable. We found that the corresponding eigenvalues are λ1 = −3.4,
λ2 = −1.08, λ3 = −0.03. Then we have arg(λ1) = π > ν π

2 , but any value of ν can verify

|λ1| <
(

2 cos | arg(λ1)|−π
2−ν

)ν
.

Theorem 3 The equilibrium point F1 of the fractional-order discrete system (15) is locally asymptotically
stable.
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Proof The Jacobian matrix of the system (15) evaluated at the equilibrium point (x, y, z) is given
by

J =

1 − 2x − (y + z)− b12y −(1 + b12)x −x
−(r + b22)y r(1 − (x + y + z))− ry − b22x − b23z −(r + b23)y

0 b31z b31y − b32

 . (18)

The eigenvalues of the matrix J at F1 are λ1 = −1, λ2 = −0.08, λ3 = −0.04. Using Theorem 2, the
equilibrium point F1 is asymptotically stable.

Bifurcation diagrams and maximum Lyapunov exponent

This part focuses on the investigation of the dynamics properties of the commensurate fractional-
order discrete HIV-1 model (15) and the influence of the parameters on the dynamic behavior
of system (15). Fix b31 = 0.01, b22 = 0.08, b23 = 0.01, b12 = 0.08, b32 = 0.04 and vary r in the
interval [2, 3.8] when ν = 0.4, then when ν = 0.92 under the initial conditions (x(0), y(0), z(0)) =
(0.1, 0.2, 0.25). The bifurcation diagrams of the discrete system (15) are shown in Figure 2. We
see that when ν = 0.4, the system is stable for r ∈ [2, 3.23], but when r increases, the system (15)
exhibits chaotic dynamics in the range r ∈ [3.23, 3.8]. For ν = 0.92, the dynamics of the system
are complex, and the chaotic behavior is dominated. Clearly, when r ∈ [2, 2.6], the system (15) is
periodic, but when r ∈ [2.6, 3.6], the system (15) exhibits chaotic behavior, but when r increases,
the chaotic behavior gradually disappears.

(a) for ν = 0.4 (b) for ν = 0.92

Figure 2. Bifurcation diagrams of the fractional-order system (15) as r varies

Now, we investigate the influence of the fractional order on the dynamics of the fractional-order
system (15). Figure 3 represents the bifurcation diagram of the commensurate fractional-order
discrete system (15) for the parameter values b31 = 0.01, b22 = 0.08, b23 = 0.01, b12 = 0.08,
b32 = 0.04, and r = 3.4. As can be observed, the system (15) is periodic at first, but if ν increases,
the dynamics of the system become unstable with the appearance of a chaotic state in the range
ν ∈ [0.14, 1].

We can also investigate the chaotic behavior in the system (15) by exploiting the maximum Lya-
punov exponent. It should be noted that the maximum Lyapunov exponent can be approximated
using the Jacobian matrix algorithm [39]. We set r0 = (x(0), y(0), z(0))T, the Lyapunov exponent
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Figure 3. Bifurcation diagram of the fractional-order system (15) as ν varies

is defined as

λi(r0) = lim
n→∞ 1

n
ln |λ

(n)
i |, i = 1, 2, 3, (19)

where λi (i = 1, 2, 3) are the eigenvalues of the tangent map Jn given by

Jn =

θ1(n) θ2(n) θ3(n)
θ4(n) θ5(n) θ6(n)
θ7(n) θ8(n) θ9(n)

 , (20)

where

θ1(n) = θ1(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(θ1(s − 1)(1 − 2x(s − 1)− y(s − 1)− z(s − 1)− b12y(s − 1))

+θ4(s − 1)(−x(s − 1)− b12x(s − 1))− θ7(s − 1)x(s − 1)),

θ2(n) = θ2(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(θ2(s − 1)(1 − 2x(s − 1)− y(s − 1)− z(s − 1)− b12y(s − 1))

+θ5(s − 1)(−x(s − 1)− b12x(s − 1))− θ8(s − 1)x(s − 1)),

θ3(n) = θ3(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(θ3(s − 1)(1 − 2x(s − 1)− y(s − 1)− z(s − 1)− b12y(s − 1))

+θ6(s − 1)(−x(s − 1)− b12x(s − 1))− θ9(s − 1)x(s − 1)),

θ4(n) = θ4(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(θ1(s − 1)(−ry(s − 1)− b22y(s − 1)) + θ4(s − 1)(r − rx(s − 1)

−2ry(s − 1)− rz(s − 1)− b22x(s − 1)− b23z(s − 1)) + θ7(s − 1)(−ry(s − 1)− b23y(s − 1)),

θ5(n) = θ5(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(θ2(s − 1)(−ry(s − 1)− b22y(s − 1)) + θ5(s − 1)(r − rx(s − 1)

−2ry(s − 1)− rz(s − 1)− b22x(s − 1)− b23z(s − 1)) + θ8(s − 1)(−ry(s − 1)− b23y(s − 1)),
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θ6(n) = θ6(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(θ3(s − 1)(−ry(s − 1)− b22y(s − 1))

+θ6(s − 1)(r − rx(s − 1)− 2ry(s − 1)− rz(s − 1)− b22x(s − 1)− b23z(s − 1))

+θ9(s − 1)(−ry(s − 1)− b23y(s − 1)),

θ7(n) = θ7(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(b31θ4(s − 1)z(s − 1) + θ7(s − 1)(b31y(s − 1)− b32),

θ8(n) = θ8(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(b31θ5(s − 1)z(s − 1) + θ8(s − 1)(b31y(s − 1)− b32),

θ9(n) = θ9(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(b31θ6(s − 1)z(s − 1) + θ9(s − 1)(b31y(s − 1)− b32),

with θ1(0) = θ5(0) = θ9(0) = 1, θi(0) = 0 (i = 2, 3, 4, 6, 7, 8). Figure 4(a) and Figure 4(b) show
the maximum Lyapunov exponent of the fractional-order system (15) with respect to parameter
r under the parameter values b31 = 0.01, b22 = 0.08, b23 = 0.01, b12 = 0.08, b32 = 0.04, and the
fractional-orders ν = 0.4 and ν = 0.92 respectively. In Figure 4(a), when r ∈ [2, 3.8], we see that
the MLE is equal to zero when r ∈ [2, 3.22] and the system (15) is periodic, but when r increases,
the MLE has positive values, meaning that the discrete fractional-order system (15) transitions
from a periodic state to a chaotic state. In Figure 4(b), the MLE of the system (15) is negative at the
minimum values of r, then the system (15) is periodic. In addition, when r ∈ [2.6, 3.4], the MLE
is positive, then the system (15) is chaotic. As can be observed, when r increases, the MLE takes
positive and negative values, and then the appearance of periodic orbits in the chaotic regions
is confirmed. Now, we analyze the MLE of the discrete fractional-order system (15) when the

(a) for ν = 0.4 (b) for ν = 0.92

Figure 4. MLE spectrum of the fractional-order system (15) as r varies

fractional-order varies. Figure 5 represents the maximum Lyapunov exponent when ν ranges from
0 to 1. As can be observed, the MLE of system (15) is equal to zero when ν ∈ (0, 0.15], and then
the system (15) remains in periodic state, but when ν ≥ 0.15, the MLE is positive, and then the
system (15) exhibits chaotic behavior. The attractor of the fractional-order discrete system (15) for
various ν-values is depicted in Figure 6.
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Figure 5. MLE spectrum of the fractional-order system (15) as ν varies

Case2. Non-commensurate fractional-order

Now, we study the dynamic behavior of the system (15) in the non-commensurate fractional-order
case. Fix b31 = 0.01, b22 = 0.08, b23 = 0.01, b12 = 0.08, b32 = 0.04, r = 3.4, ν1 = 0.21, ν3 = 0.34,
and vary ν2 from 0 to 1. Figure 7 shows the bifurcation diagram and its corresponding MLE
spectrum. By examining the MLE and the bifurcation diagram displayed in Figure 7, we find that
the fractional-order discrete system (15) may experience two scenarios according to the values
of ν2. When ν2 ∈ [0, 0.18], the MLE is negative or equal to zero, then the state of system (15) is
periodic, but when ν2 ∈ [0.18, 0.91], the MLE is positive, then the system (15) exhibits robust
chaos across this parameter ν2 range. Finally, when ν2 > 0.91, the MLE is equal to zero once again,
meaning that the system (15) is periodic.

Now, we study the dynamics of the discrete incommensurate fractional-order system (15) when
ν1 varies. Figure 8 represents the bifurcation diagram and its corresponding MLE spectrum for
ν2 = 0.3, and ν3 = 0.4. We see that the MLE is positive when ν1 ∈ [0, 0.4], and then the system
(15) exhibits robust chaos, but when ν1 > 0.4, the chaotic state arises with the appearance of the
periodic state, as shown by the MLE’s oscillation between positive and negative values.

Moreover, to show the dynamic behavior of the non-commensurate fractional-order system (15),
we vary ν3 when ν1 = 0.5, and ν2 = 0.6. Figure 9 shows the bifurcation diagram and the MLE
spectrum of the fractional-order system (15). As we can see, at the minimum values of ν3, the
discrete non-commensurate fractional-order system (15) has a negative or zero MLE, but when ν3
increases, the MLE has strictly positive values, meaning that the system transitions from a periodic
state to a chaotic state.

To provide further clarification, the phase portrait of the non-commensurate fractional-order
system (15) is shown in Figure 10 for different values of (ν1, ν2, ν3).

5 0-1 test and complexity of the fractional-order system

Test 0-1 for Chaos

The 0-1 test is an efficient technique to detect chaos in discrete fractional-order systems. We review
the steps of this algorithm [40]. Based on the state x(n) in Eq. (16), we construct the translation
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(a) for ν = 0.12 (b) for ν = 0.24

(c) for ν = 0.36 (d) for ν = 0.75

(e) for ν = 0.89 (f) for ν = 0.96

Figure 6. Attractor of the fractional-order discrete system (15) for different values of ν

components pc and qc as follows

pc(n) =
n∑

k=1

x(k) cos(kc), qc(n) =
n∑

k=1

x(k) sin(kc), (21)
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(a) Bifurcation diagram as ν2 varies (b) The MLE spectrum as ν2 varies

Figure 7. Bifurcation and MLE spectrum diagrams for ν2

(a) Bifurcation diagram as ν1 varies (b) The MLE spectrum as ν1 varies

Figure 8. Bifurcation and MLE spectrum diagrams for ν1

where c is a random constant selected from (0, π). We can plot pc and qc to verify if the chaotic
behavior appears when the bounded motions of pc and qc imply regular dynamics, whereas the
asymptotic Brownian movement implies chaotic dynamics. Figure 11 shows the results.

C0 complexity

We can evaluate the complexity of a discrete chaotic system via the C0 algorithm. Assume that
x(j) (j = 0, 1, . . . , L − 1, where L ≥ 1 is a sequence of data selected from the discrete system (15).
The corresponding discrete Fourier transformation for this data set is given by

XL(k) =
L−1∑
j=0

x(j)exp
[
−2πijk

L

]
, (22)

where k = 0, 1, . . . , L − 1, and i is the imaginary unit. Next, the mean of XL is obtained as

ML =
1
L

L−1∑
k=0

|XL(k)|2. (23)
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(a) Bifurcation diagram as ν3 varies (b) The MLE spectrum as ν3 varies

Figure 9. Bifurcation and MLE spectrum diagrams for ν3

A control parameter υ is introduced as

X̃L(k) =
{

X(k) if |XL(k)|2 > υML,
0 if |XL(k)|2 ≤ υML.

(24)

The inverse discrete Fourier transformation of X̃L is given by

x̃(j) =
1
L

L−1∑
k=0

X̃L(k)exp[
2πijk

L
], (25)

where j = 0, 1, . . . , L − 1. Finally, the C0 complexity is defined as [41]

C0(x, υ, L) =

∑L−1
j=0 |x(j)− x̃(j)|2∑L−1

j=0 |x(j)|2
. (26)

Fix b31 = 0.01, b22 = 0.08, b23 = 0.01, b12 = 0.08, b32 = 0.04, r = 3.4, ν1 = 0.21, ν3 = 0.34, the C0
complexity with respect to fractional-order ν2 is shown in Figure 12. As can be observed, the complexity of
the fractional-order system (15) changes as we vary ν2, which agrees well with the findings of the bifurcation
diagram and maximum Lyapunov exponent.

Approximate entropy

In the dynamical analysis of nonlinear chaotic systems, approximate entropy (ApEn) is an efficient technique
that allows us to measure the level of complexity in chaotic systems. In brief, we review the steps to
evaluate the approximate entropy for the fractional-order system (15). We select a sequence of data x(j) (j =
1, 2, . . . , N) from the system (15), then we construct a sequence of vectors µ(1), µ(2), . . . , µ(N − m + 1)
as: µ(j) = [x(j), x(j + 1), x(j + 2), . . . , x(j + m − 1)], and µ(i) = [x(i), x(i + 1), x(i + 2), . . . , x(i + m − 1)],
where m is a positive integer representing the embedding dimension. The distance between two vectors is
given by

d (µ(j), µ(i)) = max {|x(j + s − 1)− x(i + s − 1)|} , s = 1, 2, . . . , m. (27)

We take a non-negative number r and we denote by L the number of j where d (µ(j), µ(i)) ≤ r, the
approximate entropy is defined as [42]

ApEn = Λm(r)− Λm+1(r), (28)
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(a) for (ν1, ν2, ν3) = (0.3, 0.3, 0.4) (b) for (ν1, ν2, ν3) = (0.4, 0.55, 0.6)

(c) for (ν1, ν2, ν3) = (0.6, 0.96, 0.58) (d) for (ν1, ν2, ν3) = (0.4, 0.9, 0.4)

(e) for (ν1, ν2, ν3) = (0.6, 0.9, 0.4) (f) for (ν1, ν2, ν3) = (0.36, 0.98, 0.7)

Figure 10. Attractor of the non-commensurate fractional-order system (15)

where Λm(r) is determined as

Λm(r) =
1

N − m + 1

N−m+1∑
j=1

log Qm
j (r), (29)
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(a) for (ν1, ν2, ν3) = (0.3, 0.3, 0.4) (b) for (ν1, ν2, ν3) = (0.4, 0.9, 0.4)

(c) for (ν1, ν2, ν3) = (0.5, 0.5, 0.5) (d) for (ν1, ν2, ν3) = (0.5, 0.65, 0.3)

(e) for (ν1, ν2, ν3) = (0.38, 0.82, 0.6) (f) for (ν1, ν2, ν3) = (0.35, 0.98, 0.65)

Figure 11. Dynamics of the translation components pc and qc

and Qm
j (r) is given by

Qm
j (r) =

L
N − m + 1

. (30)
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Figure 12. C0 complexity of the fractional-order system (15) as ν2 varies

Fix b31 = 0.01, b22 = 0.08, b23 = 0.01, b12 = 0.08, b32 = 0.04, r = 3.4, ν1 = 0.21, and ν3 = 0.34, the
approximate entropy of the fractional-order system (15) with respect to ν2 is shown in Figure 13. As can be
observed, the approximate entropy of the system (15) changes when we vary ν2, which agrees well with the
findings derived in Section 4.

Figure 13. Approximate entropy of the fractional-order system (15) as ν2 varies
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6 Control scheme for the discrete fractional-order chaotic system

This section is devoted to the chaos control in the discrete commensurate fractional-order system (15) where
an active fractional-order controller is designed.
The fractional-order system (15) with the controller (u1, u2, u3)

T is described as

C∆ν
θ x(τ) = x(τ + ν − 1) (1 − (x(τ + ν − 1) + y(τ + ν − 1) + z(τ + ν − 1)))

− b12x(τ + ν − 1)y(τ + ν − 1) + u1(τ + ν − 1),
C∆ν

θ y(τ) = ry(τ + ν − 1) (1 − (x(τ + ν − 1) + y(τ + ν − 1) + z(τ + ν − 1)))

− b22x(τ + ν − 1)y(τ + ν − 1)− b23y(τ + ν − 1)z(τ + ν − 1) + u2(τ + ν − 1),
C∆ν

θ z(τ) = b31y(τ + ν − 1)z(τ + ν − 1)− b32z(τ + ν − 1) + u3(τ + ν − 1),

(31)

where τ ∈ N(α − ν) + 1. Our goal is to design a suitable control law that guarantees that all states of the
fractional-order system (15) converge towards zero asymptotically.

Theorem 4 The discrete fractional-order chaotic system (15) is stabilized under the following 3-D control law
u1(τ) = x(τ) (x(τ) + y(τ) + z(τ)− 2) + b12x(τ)y(τ),
u2(τ) = ry(τ) (x(τ) + y(τ) + z(τ))− 4y(τ) + b22x(τ)y(τ) + b23y(τ)z(τ),
u3(τ) = −0.96z(τ)− b31y(τ)z(τ).

(32)

Proof Substituting (32) into (31), we obtain
C∆γ

θ x(τ) = −x(τ + ν − 1),
C∆γ

θ y(τ) = (r − 4)y(τ + ν − 1),
C∆γ

θ z(τ) = −(b32 + 0.96)z(τ + ν − 1),
(33)

which can be expressed as

C∆ν
θ (x(τ), y(τ), z(τ))T = N (x(τ), y(τ), z(τ))T , (34)

where

N =

−1 0 0
0 r − 4 0
0 0 −(b32 + 0.96)

 . (35)

Then, the eigenvalues of the matrix N are λ1 = −1, λ2 = r − 4, λ3 = −(b32 + 0.96). It is easy to verify that
λj (j = 1, 2, 3) satisfy

| arg λj| = π > ν
π

2
, and |λj| <

(
2 cos

| arg λj|− π

2 − ν

)ν

, ν ∈ (0, 1). (36)

Therefore, using Theorem 2, we can conclude that the zero equilibrium of (34) is asymptotically stable.
Thus, the stabilization of the fractional-order discrete system (31) is achieved.

For numerical simulations, the parameter values are selected as b31 = 0.01, b22 = 0.08, b23 = 0.01,
b12 = 0.08, b32 = 0.04, r = 3.4, and the fractional-order as ν = 0.82, under the initial conditions
(x(0), y(0), z(0)) = (0.1, 0.2, 0.25). Figure 14 shows the time evolution of the controlled states of the
system (31). As we can see, the states x(n), y(n), and z(n) converge towards zero asymptotically. This
shows the accuracy and feasibility of the constructed control scheme.

7 Data analysis, results and discussion

We conclude our analysis using time-series plots in order to obtain a better comprehension of the pro-
posed fractional-order biological model. For the parameter values mentioned in Table 1, Figure 15(a)
and Figure 16(a) show the time evolution of cancer cells (C), healthy CD4+T lymphocyte cells (S), and
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(a) x(n) with n (b) y(n) with n

(c) z(n) with n (d) phase space

Figure 14. Evolution of the controlled states of the commensurate fractional-order system (31) for ν = 0.82
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(a) Continuous F-O model for ν1 = ν2 = ν3 = 0.69
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(b) Discrete F-O model for ν1 = ν2 = ν3 = 0.69

Figure 15. Time series of the fractional-order (F-O) models
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Table 3. The minimum and maximum numbers of biological cells in the commensurate case ν1 = ν2 = ν3 = 0.69

Biological cells
Continuous fractional-order

model (min,max)
Discrete fractional-order

model (min,max)
Average number of

biological cells
Cancer cells C (245, 678) (240, 678) 380
Healthy cells S (452, 784) (452, 787) 602
HIV-Infected (0, 37) (0, 38) 18

Cells R

HIV-infected cells (R) of the continuous fractional-order model (10) for ν1 = ν2 = ν3 = 0.69 (commensurate
fractional-order) and (ν1, ν2, ν3) = (0.91, 0.92, 0.93) (non-commensurate fractional-order), respectively,
while the time series plots obtained from the corresponding discrete fractional-order system constructed
using the Caputo-like delta difference operator are shown in Figure 15(b) and Figure 16(b), respectively.
By comparing the findings, we find that the results obtained from the continuous fractional-order system
are identical to the results of the discrete fractional system. Using the time series results, we expect the
population numbers of the three biological cells in sufficient time when the oscillations are stabilized for
commensurate and non-commensurate fractional orders. The results are shown in Table 3 and Table 4. The
average number of cell populations can help biologists collect statistical data to fight the disease.

0 500 1000 1500 2000 2500 3000 3500 4000

t

0

100

200

300

400

500

600

700

800

900

1000

P
o
p
u
la

ti
o
n
 n

u
m

b
e
rs

 o
f 
c
e
lls

C(t)

S(t)

R(t)

(a) Continuous model for (ν1, ν2, ν3) = (0.91, 0.92, 0.93)
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(b) Discrete model for (ν1, ν2, ν3) = (0.91, 0.92, 0.93)

Figure 16. Time series of the fractional-order models

Table 4. The numbers of biological cells in the non-commensurate case (ν1, ν2, ν3) = (0.91, 0.92, 0.93)

Biological cells
Continuous fractional-order

model (min,max)
Discrete fractional-order

model (min,max)
Average number of

biological cells
Cancer cells C (111, 678) (114, 678) 376
Healthy cells S (452, 907) (452, 918) 602
HIV-Infected (0, 99) (0, 110) 19

Cells R

8 Conclusion

In this paper, a 3-D discrete-time fractional-order chaotic system which is composed of cancer, healthy, and
HIV-infected cells is analyzed. We demonstrated that the biological system can exhibit chaotic behavior
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for some parameter values. The dynamical behaviors are analyzed using powerful nonlinear dynamic
analysis tools such as phase plots, bifurcation diagrams, and the maximum Lyapunov exponent, which
show that the discrete system constructed using the Caputo-like-delta difference operator has rich dynamic
behaviors. Furthermore, an efficient fractional-order controller is designed to stabilize the chaotic motions
of the discrete system states. In biological systems, chaos and bifurcation are common phenomena. The
biological implications of chaos and bifurcation in such a model involve studying population dynamics,
where bifurcation points represent critical transitions. When the parameters change, the system can shift
from a stable state to a chaotic state. Moreover, the chaotic dynamics can lead to population fluctuations,
and then the extinction risk increases. Stable equilibria in a dynamical system are essential for species
persistence, and bifurcation can lead to unstable fixed points. Thus, the transition to a chaotic state can lead
to complex and unpredictable behavior. Understanding bifurcation behavior allows us to suggest efficient
strategies to control chaotic dynamics in biological systems for the reasons stated above. Furthermore,
researchers and biologists can use these insights to explain many biologically observed HIV-cancer states,
including stable, periodic, quasiperiodic, and chaotic behaviors. Then, they can develop control techniques
for suppressing chaos in biological dynamical systems.
In the near future, we plan to work on this topic, since we believe that controlling or suppressing chaos in
fractional-order HIV-1 models involving AIDS-related cancer cells can help biologists and scientists in the
fight against AIDS and cancer.
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