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ÖZET 

 

Bu çalışmada, 4 boyutlu yarı Öklid uzayında tessarinesleri 

kullanarak, Hamilton operatörlerine benzer bir matris verdik ve 
çeşitli cebirsel özelliklerini tanımladık. Daha sonra bu hareketin 
homotetik hareket olabilmesi ispatlandı. Bir parametreli homotetik 

hareket için, pol noktaları , pol eğrileri ve hız merkezleri hakkında 

bazı teoremler tanımladık. Sonunda, her 𝑡 anında, bir 𝑀𝑖3
 

hiperyüzeyi üzerinde eğrilerin türevleri ve 𝑟’ inci dereceden regular 

eğriler tarafından tanımlanan hareketin sadece (𝑟 −  1)’ inci 
derecen bir hız merkezine sahip olduğu bulundu. 

Tessarinesler ile verilen konudaki yöntemden dolayı, çalışma 
homotetik hareket hakkında bilinmeyen cebirsel özellikleri ve bazı 

formulleri , gerçekleri ve özellikleri veriyor. 

Anahtar kelimeler: Tessarineler, Homotetik hareketler, Pol eğrileri, 
Hiperyüzey. 
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ABSTRACT 

 

In this study, by using tessarines in 4-dimension semi-Euclidean 
space, we describe a variety of algebraic properties and give a 

matrix that is similar to Hamilton operators and we show that the 

hypersurfaces are obtained and a new motion is defined in 𝐸2
4. 

Then, this motion is proven to be homothetic motion. For this one 

parameter homothetic motion, we defined some theorems about 
velocities, pole points, and pole curves. Finally, It is found that this 
motion defined by the regular curve of order r on the hypersurface 

𝑀𝑖3
, at every 𝑡- instant, has only one acceleration centre of order 

(𝑟 − 1). 

Due to the way in which the matter is given with tessarines, the 

study gives some formulas, facts and properties about homothetic 
motion and variety of algebraic properties which are not generally 

known. 

Keywords: Tessarines, Homothetic motions, Pole curves, 
Hypersurface.  
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1. INTRODUCTION 

    First time, James Cockle defined the tessarines in 1848, using 

more modern notation for complex numbers as a successor to 

complex numbers and algebra similar to the quaternions. The 

tessarines are coincided with 4 -dimensional vector space R⁴ over 

real numbers. Cockle used tessarines to isolate the hyperbolic 

cosine series and the hyperbolic sine series in the exponential 

series. He also showed how zero divisors arise in tessarines, 

inspiring him to use the term "impossibles." The tessarines are now 

best known for their subalgebra of real tessarines 𝑡 = 𝑤 + 𝑦𝑗 also 

called split−complex numbers, which express the parametrization 
of the unit hyperbola [1-5]. 

    Homothetic motion is a general form of Euclidean motion. It is 

crucial that homothetic motions are regular motions. These motions 

have been studied in kinematic and differential geometry in recent 

years. In 4-dimensional semi-Euclidean space, a one-parameter 
homothetic motion of a rigid body is generated analytically by 

                              𝑌 = ℎ(𝑡)𝐴(𝑡)𝑋0(𝑡) + 𝐶(𝑡)                             (1)                    

 in which 𝑋0 and 𝑌 correspond the position vectors of the same 

point with respect to the rectangular coordinate frames of the 

moving space 𝐾0 and the fixed space 𝐾, respectively. At the inital 

time 𝑡 = 𝑡0 we suppose that the coordinate system in  𝐾0 and 𝐾 are 

coincident. 𝐴 is an orthonormal 𝑛 × 𝑛 matrix that satisfies the 

property 𝐴𝑇𝜀𝐴 = 𝜀, 𝐶 is a translation vector and 𝑔 is the 

homothetic scale of the motion. Also 𝑔, A  and  C  are continuously 

differentiable function of 𝐶∞
 class of a real parameter 𝑡. It is 

showed that the Hamilton motions are the homothetic motions in 4- 

dimensional Euclidean space and at  (𝐸8)  with Bicomplex 

Numbers 𝐶3, respectively, [6-9]. 

    In this study, we define a variety of algebraic properties and give 

a matrix that is similar to Hamilton operators. By using tessarines 

product and addition rules we define the hypersurface and a new 

motion in 𝐸2
4. Then, this motion is proven to be homothetic motion. 

For this one parameter homothetic motion, we define some 

theorems about velocities, pole points and pole curves. Finally, It is 

found that this motion defined by the regular curve of order 𝑟 on 
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the hypersurface 𝑀3 at every 𝑡 − instant, has only one acceleration 

centre of order (𝑟 − 1). 

   

2. TESSARINES 

    A tessarine  𝑤 is an expression of the for 

                             𝑤 = 𝑤1 + 𝑤2 𝑖1 + 𝑤3𝑖2 + 𝑤4𝑖3                           (2) 

where 𝑤1 , 𝑤2 ,  𝑤3  and
 
 𝑤4 are real numbers and the imaginary 

units 𝑖1 , 𝑖 2 and 𝑖3 are governed by the rules: 

𝑖1
2 = −1,  𝑖2

2 = +1,  𝑖3
2 = −1

 𝑖1𝑖2 = 𝑖2𝑖1 = 𝑖3 ,   𝑖1𝑖3 = 𝑖3𝑖1 = −𝑖2,   𝑖2𝑖3 = 𝑖3𝑖2 = 𝑖1
                          

  

    here it is easy to see that the multiplication of two tessarine is 

commutative. It is also convenient to write the set of tessarines as 

𝑇 = {𝑤 |  𝑤 = 𝑤1 + 𝑤2 𝑖1 + 𝑤3𝑖2 + 𝑤4𝑖3,   𝑤1−4 ∈ 𝑅} 

 

Definition 1. (Conjugations of Tessarines ) : Conjugation plays 

an important role both for algebraic and geometric properties for 

tessarines, In that case, there are different conjugations according 

to the imaginary units 𝑖1 ,  𝑖2  and 𝑖3 for tessarines as follows: 

𝑤∗ = (𝑤1 − 𝑤2𝑖1) + 𝑖2(𝑤3 − 𝑤4𝑖1)

𝑤∗ = (𝑤1 + 𝑤2𝑖1) − 𝑖2(𝑤3 + 𝑤4𝑖1)
𝑤∗ = (𝑤1 − 𝑤2𝑖1) − 𝑖2(𝑤3 − 𝑤4𝑖1)

 

    where, 

    1.  𝑤𝑤∗ = 𝑤1
2 + 𝑤2

2 + 𝑤3
2 + 𝑤4

2 + 2𝑖2(𝑤1𝑤3 + 𝑤2𝑤4)

   2.  𝑤𝑤∗ = 𝑤1
2 − 𝑤2

2 − 𝑤3
2 + 𝑤4

2 + 2𝑖1(𝑤1𝑤2 − 𝑤3𝑤4)

     3.  𝑤𝑤∗ = 𝑤1
2 + 𝑤2

2 − 𝑤3
2 − 𝑤4

2 + 2𝑖3(𝑤1𝑤4 − 𝑤2𝑤3).

 

    The multiplication of a tessarine  𝑤 = 𝑤1 + 𝑤2 𝑖1 + 𝑤3𝑖2 + 𝑤4𝑖3  

by a real scalar 𝜇 is defined as 

𝜇𝑤 = 𝜇𝑤1 + 𝜇𝑤2 𝑖1 + 𝜇𝑤3𝑖2 + 𝜇𝑤4𝑖3. 

 

(3) 



83 

A New Approach to Homothetic Motions with Tessarines in Semi-Euclidean Space     

 
83 

 

 
𝐸2

4 

 
Definition 2. ( Product of Tessarines ) : Define the product in 𝑇 

by 

𝑤𝑢 = 𝑢𝑤 = (𝑤1 + 𝑤2𝑖1 + 𝑤3𝑖2 + 𝑤4𝑖3)(𝑢1 + 𝑢2𝑖1 + 𝑢3𝑖2 + 𝑢4𝑖3)

= (𝑤1 𝑢1 − 𝑤2𝑢2 + 𝑤3𝑢3 − 𝑤4𝑢4) + 𝑖1(𝑤1 𝑢2 + 𝑤2𝑢1 + 𝑤3𝑢4 + 𝑤4𝑢3)

+𝑖2(𝑤1 𝑢3 − 𝑤2𝑢4 + 𝑤3𝑢1 − 𝑤4𝑢2 ) + 𝑖3(𝑤1 𝑢4 + 𝑤2𝑢3 + 𝑤3𝑢2 + 𝑤4𝑢1)

 

It is easy to see that the product of two tessarine is commutative. 

Since the tessarines product is associative, commutative and it 

distributes over vector addition, 𝑇 is a real algebra with tessarines 

product.  According to the imaginary units  𝑖1 , 𝑖 2 and 𝑖3, by 

considering   the product and addition rules of  tessarines and the 

conjugates of the tessarines to be able to define norms, let us 

consider the hypersurfaces 𝑀1, 𝑀2  and 𝑀3  as follows, 

𝑀1 = {𝑤 ∣∣ 𝑤 = 𝑤1 + 𝑤2 𝑖1 + 𝑤3𝑖2 + 𝑤4𝑖3, 𝑤1𝑤3 + 𝑤2 𝑤4 = 0 }

𝑀2 = {𝑤 ∣∣ 𝑤 = 𝑤1 + 𝑤2 𝑖1 + 𝑤3𝑖2 + 𝑤4𝑖3 , 𝑤1𝑤2 − 𝑤3 𝑤4 = 0 }

𝑀3 = {𝑤 ∣∣ 𝑤 = 𝑤1 + 𝑤2 𝑖1 + 𝑤3𝑖2 + 𝑤4𝑖3 , 𝑤1𝑤4 − 𝑤2 𝑤3 = 0 }
 

 

Definition 3. ( Norms of Tessarines ) : Norms on 𝑀1 , 𝑀2  and 𝑀3 
hypersurfaces are defined as following 

‖𝑤‖ = 𝑤1
2 + 𝑤2

2 + 𝑤3
2 + 𝑤4

2

‖𝑤‖ = 𝑤1
2 − 𝑤2

2 − 𝑤3
2 + 𝑤4

2

‖𝑤‖ = 𝑤1
2 + 𝑤2

2 − 𝑤3
2 − 𝑤4

2.

 

    The system 𝑇  is a commutative algebra. It is referred as the 

tessarines algebra and shown with 𝑇, briefly one of the bases of this 

algebra is  {1, 𝑖1 , 𝑖 2 , 𝑖3} and the dimension is 4. By using 

equations (2) and (3), we can give this representation to show a 

mapping into 4x4 matrices (It is possible to give the production 𝑇 
similar to Hamilton operators which has defined  [6-9] ). 

                   𝜑:𝑤 = 𝑤1 + 𝑤2 𝑖1 + 𝑤3𝑖2 + 𝑤4𝑖3 ∈ 𝑇 ⇢ 𝜑(𝑤) =

                                            [

𝑤1 −𝑤2 𝑤3 −𝑤4

𝑤2   𝑤1  𝑤4    𝑤3

𝑤3

𝑤4

−𝑤4

   𝑤3

𝑤1 −𝑤2

𝑤2      𝑤1

], 

   

𝑇 is algebraically isomorphic to the matrix algebra 
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𝜉 = {[

𝑤1 −𝑤2
𝑤3 −𝑤4

𝑤2   𝑤1  𝑤4    𝑤3

𝑤3

𝑤4

−𝑤4

   𝑤3

𝑤1 −𝑤2

𝑤2      𝑤1

] | (𝑤1 , 𝑤2 ,  𝑤3, 𝑤4) ∈ 𝑅} 

 and 𝜑(𝑤) is a faithful real matrix representation of 𝜉. Moreover, 

∀ 𝑤, 𝑢 ∈ 𝑇 and ∀ 𝛾 ∈ 𝑅, we obtain 

𝜑(𝑤 + 𝑢) = 𝜑(𝑤) + 𝜑(𝑢),

𝜑(𝛾𝑤) = 𝛾𝜑(𝑤),

𝜑(𝑤𝑢) = 𝜑(𝑤)𝜑(𝑢).

 

 

Definition 4. 𝐸𝑛 with the metric tensor 

         < 𝑤, 𝑣 >= − ∑𝑤𝑘𝑣𝑘

𝑣

𝑘

+ ∑ 𝑤𝑗𝑣𝑗   … … . . 𝑤, 𝑣 ∈ 𝐸𝑛,   0 ≤ 𝑣 ≤ 𝑛

𝑛

𝑗=𝑣+1

 

  

 is called semi-Euclidean space and is defined by 𝐸𝑣
𝑛  where 𝑣 is 

called the index of the metric. The resulting semi-Euclidean space 

𝐸𝑣
𝑛 is reduced to 𝐸𝑛 if 𝑣 = 0. For 𝑛, 𝐸1

𝑛 is called Minkowski 𝑛 

space,if 𝑛 = 4, it is the simplest example of a relativistic space 
time. 

 

Definition 5. Let 𝐸1
𝑛 be a semi-Euclidean space furnished with a 

metric tensor < ,> A vector v to 𝐸1
𝑛 is called spacelike if   <   𝑣 ,

𝑣 > > 0  or  𝑣 = 0, null (a light vector) if  

 <   𝑣 , 𝑣 > = 0   or  timelike if <   𝑣 , 𝑣 > < 0.   

In the case when 0 ≤ 𝑣 ≤ 𝑛, the signature matrix 𝜀 is the diagonal 

matrix [𝛿𝑖𝑗𝜀𝑗] whose diagonal entries are 𝜀1 = 𝜀2 = ⋯ = 𝜀𝑣 = −1  

and 𝜀𝑣 = 𝜀𝑣+1 = ⋯ = 𝜀𝑛 = 1.  Hence  

𝜀 = [
−𝐼𝑛 0
0 𝐼𝑛−𝑣

]. 

 



85 

A New Approach to Homothetic Motions with Tessarines in Semi-Euclidean Space     

 
85 

 

 
𝐸2

4 

 
Definition 6. The set of all linear isometries 𝐸𝑣

𝑛 ⟶ 𝐸𝑣
𝑛 is the same 

as the set 𝑂(𝑣 ; 𝑛) of all matrices 𝐴𝜖𝐺𝐿(𝑛, 𝑅) preserving the scalar 
product 

<   𝑤 , 𝑣 > = 𝜀𝑤𝑣;    𝑤, 𝑣𝜖𝐸𝑣
𝑛 

   

    The group 𝑂(𝑣, 𝑛)  is denoted by 𝑂𝑣(𝑛). Hence 

𝑂𝑣(𝑛) = {𝐴𝜖𝐺𝐿(𝑛, 𝑅) ∶ < 𝐴𝑤,𝐴𝑣 > =< 𝑤, 𝑣 > ;  𝑤, 𝑣𝜖𝐸𝑣
𝑛} 

  
𝑆𝑂𝑣(𝑛) = {𝐴𝜖𝑂𝑣(𝑛): 𝑑𝑒𝑡𝐴 = 1}. 

    The following conditions of an 𝑛𝑥𝑛 matrix are equivalent 

(i) 𝐴𝜖𝑂𝑣(𝑛)    
(ii)  𝐴𝑇 = 𝜀𝐴𝑇−1𝜀    

(iii) The columns [rows] of 𝐴 form an orthonormal basis for 

𝐸𝑣
𝑛 ( first 𝑣 vectors timelike) 

(iv)  𝐴  carries one (hence every) orthonormal basis for 𝐸𝑣
𝑛 to 

an orthonormal basis. 

                The matrix 𝐴 is called a real semi-orthogonal matrix [10]. 

 

3. HAMILTON MOTIONS WITH TESSARINES IN SEMI-

EUCLIDEAN SPACE 
4

2E  

Denote a hypersurface 𝑀3 and a unit sphere 𝑆2
3, respectively, by 

considering   the product and addition rules of  tessarines and one 

of the conjugates of the tessarines according to the imaginary unit 

𝑖3 as following, 

𝑀3 = {𝑤 ∣∣ 𝑤 = 𝑤1 + 𝑤2  𝑖1 + 𝑤3𝑖2 + 𝑤4𝑖3 , 𝑤1𝑤4 − 𝑤2 𝑤3 = 0 }, 

𝑆2
3 = {𝑤 ∣∣ 𝑤1

2 + 𝑤2
2 − 𝑤3

2 − 𝑤4
2 = 1 }, 

 

𝐾 = {𝑤 ∣∣ 𝑤1
2 + 𝑤2

2 − 𝑤3
2 − 𝑤4

2 = 0 } 

 be a null cone in 𝐸2
4.  
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Let us define the following parametrized curve, 

𝑤: 𝐼 ⊂ 𝑅 ⟶ 𝑀3 ⊂ 𝐸2
4 given by 

𝑤(𝑡) = |𝑤1 + 𝑤2 𝑖1 + 𝑤3𝑖2 + 𝑤4𝑖3|  for every  𝑡 ∈ 𝐼 . 

 We suppose that the curve 𝑤(𝑡)
 
is differentiable regular curve of 

order𝑟. Let position vector of the curve be timelike. Let the curve 

be a unit velocity  timelike curve (< 𝑤, 𝑣 > > −1). The operator Γ 

similar to the Hamilton operator, corresponding to 𝑤(𝑡) is defined 
by the following matrix: 

Γ = Γ(𝑤(𝑡)) = {[

𝑤1 −𝑤2 𝑤3 −𝑤4

𝑤2   𝑤1  𝑤4    𝑤3

𝑤3

𝑤4

−𝑤4

   𝑤3

𝑤1 −𝑤2

𝑤2      𝑤1

] | (𝑤1, 𝑤2,  𝑤3,𝑤4) ∈ 𝑅}. 

 

Theorem 1. The Hamilton motion determined by equation (1) in 

semi-Euclidean space 𝐸2
4 is a homothetic motion. 

Proof. Let  ‖𝑤′(𝑡)‖ = 1, 𝑤(𝑡) be a unit velocity curve. If  𝑤(𝑡) 
does not pass through the orijin and 𝑤(𝑡), the above matrix can be 

represent as Γ = 𝑔ξ  where ξ =
Γ

𝑔
 , 

               Γ = 𝑔

[
 
 
 
 
 
 

    

𝑤1

𝑔

−𝑤2

𝑔

𝑤3

𝑔

−𝑤4

𝑔

𝑤2

𝑔

  𝑤1

𝑔
 
𝑤4

𝑔
   

𝑤3

𝑔

𝑤3

𝑔
𝑤4

𝑔

−𝑤4

𝑔
𝑤3

𝑔

𝑤1

𝑔

−𝑤2

𝑔
𝑤2

𝑔

 𝑤1

𝑔

   

]
 
 
 
 
 
 

                         (4) 

  

 and 

𝑔: 𝐼 ⊂ 𝑅 ⟶ 𝑅

𝑡 ⟶ 𝑤(𝑡) = √|𝑤1
2 + 𝑤2

2 − 𝑤3
2 − 𝑤4

2|.
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As the position of the curve are defined by using tessarines  is 

timelike, 

 𝑤1
2 + 𝑤2

2 − 𝑤3
2 − 𝑤4

2 > 0. In the equation (3), we find  ξεξ𝑇 =
ξ𝑇𝜀ξ = 𝐼4   

and  det𝜉 = 1, where 

𝜀 = [
−𝐼2 0
0 𝐼2

] 

 Thus Γ is a homothetic matrix. Since Γ = 𝑔ξ is a homothetic 
matrix determines a homothetic motion.  

Theorem 2. Let 𝑤(𝑡) ∈ 𝑆2
3 ∩ 𝑀3. In equation Γ(t) = 𝑔(𝑡)ξ(t),

ξ(t)
  

is a scalar matrix then , ξ matrix is a semi-orthogonal matrix 

"the matrix ξ is 𝑆𝑂(4 ;  2) ". 

Proof. If 𝑤(𝑡) ∈ 𝑆2
3, where 𝑤1

2 + 𝑤2
2 − 𝑤3

2 − 𝑤4
2 = 1. Using 

equation (4), in equation Γ(t) = 𝑔(𝑡)𝜉(t), we have Γ⁻¹ = 𝜀Γ𝜀 and 

detξ = 1. 

Theorem 3. In equation Γ(t) = 𝑔(𝑡)ξ(t), the matrix ξ in 𝐸2
4  is 

semi-orthogonal matrix. 

Proof. Since (𝑡) ∈ 𝑀3 , 𝑤(𝑡) ∉ 𝐾 and 𝑤1𝑤4 − 𝑤2 𝑤3 = 0. 

  In equation Γ(t) = 𝑔(𝑡)𝜉(t). The matrix 𝜉 has been shown by 

ξ𝑇𝜀ξ = 𝜀. Let the signature matrix be given as 

ε = [  

1 0 0 0
0 1 0 0
0
0

0
0

−1 0
0 −1

  ] 

 

where, the matrix 𝜉 is semiorthogonal matrix and det𝜉=1. 

Theorem 4. Let 𝑤(𝑡) be a unit velocity curve and 𝑤′(𝑡) ∈ 𝑀3 then 

the derivation operator Γ′ of Γ = 𝑔𝜉 is real semi-orthogonal matrix 

in  𝐸2
4. 

Proof. Since 𝑤(𝑡)  is a unit velocity curve, 𝑤1
2 + 𝑤2

2 − 𝑤3
2 − 𝑤4

2 =
1 and 𝑤′(𝑡) ∈ 𝑀3, then 𝑤1𝑤4 − 𝑤2  𝑤3 = 0. Thus, Γ′𝜀(Γ𝑇)′ =
(Γ𝑇)′𝜀Γ′  and detΓ′=1. 
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Theorem 5. In semi-Euclidean space 𝐸2
4, Hamilton motion 

determined by the derivation operator is a regular motion and it is 

independent of 𝑔. 

Proof. This motion is regular as detΓ′=1  also, the value of detΓ′ is 

independentof 𝑔. 

 

4. POLE POINTS AND POLE CURVES OF THE MOTION 

WITH TESSARINES IN SEMI-EUCLIDEAN SPACE 𝐸2
4 

    To find the pole points in semi-Euclidean space 𝐸2
4 we have to 

solve the equation 

Γ′𝑋₀ + 𝐶′ = 0.                                       (5) 

 Any solution of equation (5) is a pole point of motion at that 

instant in 𝐾₀. Because, by Theorem 4, we have det Γ′ =1. Hence the 

equation (4.1) has only one solution, i.e. 

𝑋0 = (−Γ′)−1(𝐶) 

 at every 𝑡-instant. In this case the following theorem can be given. 

Theorem 6. If 𝑤(𝑡) is a unit velocity curve and 𝑤′(𝑡) ∈ 𝑀3, then 

the pole point corresponding to each 𝑡-instant in 𝐾₀ is the rotation 

by (−Γ′)−1 of the speed vektor (𝐶′) of the translation vector at that 

moment. 

Proof. As the matrix Γ′ is semi-orthogonal, the matrix (Γ′)−1  is 
orthogonal too. Thus, it makes a rotation. 

 

5. ACCELARATION CENTRES OF ORDER (𝒓 −  𝟏) OF 

THE MOTION WITH TESSARINES IN SEMI-EUCLIDEAN 

SPACE 𝐸2
4 

Definition 7. The set of the zeros of sliding acceleration of order 𝑟 

is called the acceleration centre of order (𝑟 − 1). 

    In order to find the acceleration centre of order (𝑟 − 1) , by 
using definition 7, we have to find the solutions of the equation 

                                   Γ(𝑟)𝑋₀ + 𝐶(𝑟) = 0                                   (6) 

 where 
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𝐸2

4 

 

Γ(𝑟) =
𝑑𝑟Γ

𝑑𝑡𝑟
  and  C(𝑟) =

𝑑𝑟C

𝑑𝑡𝑟
. 

 Let 𝑤  be a regular curve of order 𝑟 and 𝑤(𝑟) ∈ 𝑀3. Then we have 

𝑤1
(𝑟)

𝑤4
(𝑟)

− 𝑤2
(𝑟)

 𝑤3
(𝑟)

= 0. 

 Thus, 

|(𝑤1
(𝑟)

)
2
+ (𝑤2

(𝑟)
)
2
− (𝑤3

(𝑟)
)
2
− (𝑤4

(𝑟)
)
2
| ≠ 0. 

Also,we have 

detΓ(𝑟) = (𝑤1
(𝑟)

)
2
+ (𝑤2

(𝑟)
)
2
− (𝑤3

(𝑟)
)
2
− (𝑤4

(𝑟)
)
2
. 

 Then detΓ(𝑟). Therefor matrix Γ(𝑟) has an inverse and by equation 

(6), the acceleration centre of order (𝑟 − 1)  at every t −instant, is 

𝑋₀ = [Γ(𝑟)]⁻¹[−𝐶(𝑟)]. 

 

Example 1. Let 𝑤: 𝐼 ⊂ 𝑅 →  𝑀3 ⊂ 𝐸2
4 be a curve given by 

 𝑡 → 𝑤(𝑡) =
1

√2
(𝑐ℎ𝑡, −𝑐ℎ𝑡, 𝑠ℎ𝑡, 𝑠ℎ𝑡, 𝑠ℎ𝑡).  

 Note that 𝑤(𝑡) ∈ 𝑆2
3 and since ‖𝑤(𝑡)‖ =  1, then 𝑤(𝑡)  is a unit 

velocity curve. Moreover, 𝑤(𝑡) ∈ 𝑀3, 𝑤′(𝑡) ∈ 𝑀3,..., 𝑤(𝑟)(𝑡) ∈
𝑀3. Thus 𝑤(𝑡) satisfies all conditions of the above theorems. 

Example 2. : 𝐼 ⊂ 𝑅 →  𝑀3 ⊂ 𝐸2
4 is defined by 𝑤(𝑡) =

(𝑠𝑖𝑛ℎ 𝑡, 𝑡, 𝑐𝑜𝑠ℎ 𝑡, √3𝑡) for every 

 𝑡 ∈ 𝐼. Let 𝐶(0, 𝑡, 0, 0).  Because 𝑤(𝑡) = (𝑠𝑖𝑛ℎ 𝑡, 𝑡, 𝑐𝑜𝑠ℎ 𝑡, √3𝑡) 

does not pass through the origin, the matrix Γ can be represented as 

 Γ = Γ(𝑤(𝑡)) = √2𝑡2 + 1

[
 
 
 
 
 
 

𝑠𝑖𝑛ℎ𝑡

√2𝑡2+1

−𝑡

√2𝑡2+1

𝑐𝑜𝑠ℎ𝑡

√2𝑡2+1

−√3𝑡

√2𝑡2+1

𝑡

√2𝑡2+1

𝑠𝑖𝑛ℎ𝑡

√2𝑡2+1
 √3𝑡

√2𝑡2+1
   

𝑐𝑜𝑠ℎ𝑡

√2𝑡2+1
𝑐𝑜𝑠ℎ𝑡

√2𝑡2+1

√3𝑡

√2𝑡2+1

−√3𝑡

√2𝑡2+1
𝑐𝑜𝑠ℎ𝑡

√2𝑡2+1

𝑠𝑖𝑛ℎ𝑡

√2𝑡2+1

−𝑡

√2𝑡2+1
𝑡

√2𝑡2+1

𝑠𝑖𝑛ℎ𝑡

√2𝑡2+1 ]
 
 
 
 
 
 

 

    where 



Faik BABADAĞ 

 
90 

 

 

𝑔 ∶ 𝐼 ⊂ 𝑅 →  𝑅

                                    𝑡  → 𝑔(𝑡) = ‖𝑤(𝑡)‖ = √| − (2𝑡² + 1)|.
 

  

 

 We find ξ𝑇𝜀𝜉𝜀 = 𝐼4  and det𝜉=1 and Γ′ ∈𝑆𝑂(4 ; 2).  In this case, in 

equation (4), the  motion is given by 

 

 𝑌 = √2𝑡2 + 1

[
 
 
 
 
 
 

𝑠𝑖𝑛ℎ𝑡

√2𝑡2+1

−𝑡

√2𝑡2+1

𝑐𝑜𝑠ℎ𝑡

√2𝑡2+1

−√3𝑡

√2𝑡2+1

𝑡

√2𝑡2+1

𝑠𝑖𝑛ℎ𝑡

√2𝑡2+1
 √3𝑡

√2𝑡2+1
   

𝑐𝑜𝑠ℎ𝑡

√2𝑡2+1
𝑐𝑜𝑠ℎ𝑡

√2𝑡2+1

√3𝑡

√2𝑡2+1

−√3𝑡

√2𝑡2+1
𝑐𝑜𝑠ℎ𝑡

√2𝑡2+1

𝑠𝑖𝑛ℎ𝑡

√2𝑡2+1

−𝑡

√2𝑡2+1
𝑡

√2𝑡2+1

𝑠𝑖𝑛ℎ𝑡

√2𝑡2+1 ]
 
 
 
 
 
 

𝑋0 + [

0
𝑡
0
0

].  

 

 

    Hence geometrical path of pole points in the Hamilton motion is 

determined by above equation as 

 

𝑋0 = [

−1
−𝑐𝑜𝑠ℎ𝑡

−√3
−𝑠𝑖𝑛ℎ𝑡

]. 

 

6. CONCLUSION 

Using   the product and addition rules of  tessarines and one of the 
conjugates of the tessarines 

the hypersurface and a new motion are defined in 𝐸2
4. Then, this 

new motion is proven to be homothetic motion. It is found that this 
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𝐸2

4 

 
new motion defined by the regular curve of order r on the 

hypersurface 𝑀3 at every 𝑡 - instant, has only one acceleration 

centre of order (𝑟 − 1). 
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