Erzincan Universitesi Egitim Fakiiltesi Dergisi

Erzincan University Journal of Education Faculty

2024 Cilt 26 Say1 4 (554-564) https://doi.org/10.17556/erziefd.1485760

Arastirma Makalesi / Research Article

Coding Analogy
Analojiyi Kodlamak
Aykan Kog¢ 1 (?) Elif Tashibeyaz?

1 Asst. Prof. Dr. Erzincan Binali Yildirim University, Faculty of Education, Erzincan, Tiirkiye
2 Assoc. Prof. Dr. Erzincan Binali Yildirim University, Faculty of Education, Erzincan, Tiirkiye

Makale Bilgileri
Gelis Tarihi (Received Date)

17.05.2024

Kabul Tarihi (Accepted Date)

30.09.2024

*Sorumlu Yazar

Ayhan Kog

Erzincan Binali Yildirim
University, Faculty of
Education, Erzincan, Tiirkiye

ayhankoc@Erzincan.Edu. Tr

Abstract: This study aimed to examine the pre-service teachers’ experiences in preparing and using analogies within
a programming course to better understand and evaluate the concepts. The research design of this study was identified as
a case study. The 21 participants of the study took an elective introductory programming (Python) course at a state
university over 14 weeks. They prepared analogies during the course, and 11 of them attended a focus group interview at
the end of the course. The data collection tools used in the study included a questionnaire in which learners indicated the
topics they found challenging within the programming course, the analogies they created based on programming
education, and interview questions that explored their views at the end of the course. These data were analyzed
descriptively. The results indicated that although learners experienced difficulties in understanding algorithms,
programming logic, and learning loops, the use of analogies in programming education offered positive contributions.

Keywords: Analogy, programming, programming education, Python, pre-service teachers

Ozi Bu caligmanin amaci, programlama dersinde kavramlart daha iyi anlamak ve degerlendirmek i¢in analoji hazirlama
ve kullanma konusunda 6gretmen adaylarinin deneyimlerini incelemektir. Bu ¢aligmanin arastirma tasarimi bir durum
calismasi olarak belirlenmistir. Caligmanin 21 katilimeisi, 14 hafta boyunca bir devlet iiniversitesinde segmeli bir
Programlamaya Giris (Python) dersi almustir. Ders sirasinda analojiler hazirlamiglar ve 11'i dersin sonunda odak grup
goriismesine katilmistir. Arasgtirmada kullanilan veri toplama araglari arasinda; 6grencilerin programlama dersi igerisinde
zorlandiklarimi belirttikleri bir anket, programlama 6gretimine dayali olarak olusturduklari analojiler ve ders sonunda
onlarim gorislerini ortaya ¢ikaran goriisme sorulari yer almaktadir. Bu veriler betimsel olarak analiz edilmistir. Sonuglar,
ogrencilerin algoritmalari, programlama mantigini ve 6grenme dongiilerini anlamada zorluklar yasamalarina ragmen,
programlama egitiminde analoji kullaniminin olumlu katkilar sagladigini gostermistir.

Anahtar Kelimeler: Analoji, programlama, programlama 6gretimi, Python, 6gretmen adaylari

Kog, A & Taglibeyaz, E. (2024).
https://doi.org/10.17556/erziefd.1485760

Coding analogy, 26(4),

542-564. Erzincan University Journal of Education Faculty

Introduction

21st century skills encompass a wide array of abilities aimed
at preparing individuals for social and occupational demands.
Key skills include critical thinking, problem-solving,
technological literacy, effective communication,
collaboration, programming, and computational thinking
(Altbach et al., 2009; Ambrosio, 2014; Dede, 2013; Tiirel et
al., 2023). These skills are crucial for keeping pace with
contemporary developments and contributing to society. One
of the most significant areas focused on this contribution is
undoubtedly education. Therefore, educational institutions are
increasingly emphasizing the development of these skills to
adapt to the rapidly evolving and changing conditions
(Longjun, 2023).

Programming skill is frequently emphasized in educational
environments (Raman, 2020). It is a fundamental skill for
securing success and employment opportunities in the future
society (Yang et al., 2018). Programming is also recognized as
a valuable 21st century skill that prepares individuals for the
digital era and the future job market (Yang et al., 2018).
Particularly, the development of problem-solving and
computational thinking skills, often highlighted as essential for
the 21st century, is associated with programming-related
activities. It is even suggested that programming education
starting at an early age can enhance these skills (Laato et al.,
2020). In Turkey, programming education is increasingly
incorporated into the curricula at primary and secondary
education levels (Atabas, 2018; Betchie, 2019; Deniz &
Eryilmaz, 2019). This integration of programming skills
development into educational settings emphasizes the

importance of preparing learners for the demands of the
contemporary world.

Numerous academic studies have been published in the
literature with an increasing interest in programming
education. Some of these studies have explored the
relationship between programming education and different
skills. The findings indicate that programming education
positively affects students' computational thinking and
problem-solving skills, as well as their ability to think
algorithmically (Boom, 2022; Hromkovic et al., 2017; Kiss &
Arki, 2017; Kong & Wang, 2020; Rim, 2017; Selby, 2015).
The problem-solving skills present in learners positively
contribute to the ability to learn programming (Y1ldiz Durak,
2020). On the other hand, there has been a positive correlation
between mathematical skills and programming (P6rn et al.,
2021).

Some of the research in programming education also
focuses on the methods and techniques used to enhance its
effectiveness and success. For example, problem-based
learning approaches are identified as effective in programming
education (Bawamohiddin & Razali, 2017; Chung et al., 2020;
Goletti et al., 2021; Peng, 2010). To overcome the challenges
in teaching and learning programming languages, a problem-
based e-learning model that integrates traditional problem-
based learning with e-learning environments has also been
proposed (Bashir & Hoque, 2016). The positive impact of
online instructional design in programming education has been
emphasized, highlighting the importance of peer-assessment
and the design of online learning environments (Sabarinath &
Quek, 2020). Another method utilized in programming
education is blended learning. Studies suggest that blended

https://doi.org/10.17556/erziefd.1485760
https://doi.org/10.17556/erziefd.1485760
https://orcid.org/0000-0003-0365-3560
https://orcid.org/0000-0001-9770-6824

A. Kog & E. Taslibeyaz / Erzincan University Journal of Education Faculty, 26(4)

learning models in programming courses can improve
educational outcomes (Shi & Zheng, 2019). Specifically,
programming education conducted using the Flipped
Classroom Model has been found to be more efficient than
traditional methods, with positive effects on student learning,
motivation, and engagement in the courses (Alper & Oztiirk,
2019; Herala et al., 2015; Tolano-Gutiérrez et al., 2022).
Lastly, it has been emphasized that game-based learning
methods are increasingly popular techniques to enhance
learning, interest, and comprehension in programming,
particularly among younger students (Kanika & Chakraborty,
2020).

One of the techniques employed in programming education
involves the use of analogies. Analogies are cognitive
mechanisms that facilitate the application of knowledge from
one situation to another by identifying similarities and
differences (Gentner & Hoyos, 2017). They are extensively
used in science and mathematics education to assist students
in understanding complex concepts and reasoning (Jonane,
2015; Heywood, 2002). Analogies, which support engagement
in the learning process (Heywood, 2002), can simplify the
teaching of challenging scientific concepts, making them more
accessible and comprehensible to learners. This approach can
be particularly effective in programming education, where
abstract concepts and logical structures often parallel patterns
in mathematics and science, allowing analogies to bridge the
gap between familiar knowledge and new programming skills.

The focus is on the use of analogies, metaphors, and
various scenarios in programming education studies in
literature. Although analogies and metaphors have different
properties and roles, they are similar elements used
interchangeably (Yildirim & Giirsu, 2018). In fact, metaphors
can shape thought, especially in relation to complex concepts.
Sometimes metaphors are used in a situation where words are
insufficient or in a situation where the expression needs to be
strengthened. On the other hand, analogy helps to explain an
unknown, unfamiliar phenomenon with similarities and
differences (Gentner & Hoyos, 2017) and directly compares
two fields (Nakiboglu & Yildirim, 2019). One of the studies
on this subject Gokoglu (2017) investigated computer
programming students' perceptions of the concept of
algorithms through metaphor analysis, aiming to categorize
the emergent metaphors under conceptual categories. Kandin's
(2019) thesis examined the use of metaphors and scenarios in
early programming education while other studies have also
focused on the impact of analogy techniques used in teaching
concepts in Mathematics, Information Technologies, and
Science courses (Kaya, 2011; Ketenci, 2019; Ozcan, 2013).
The results of these studies generally highlight the positive
effect of metaphors and analogies used in classrooms on
learning the subjects. These research contributions are
significant in understanding the effects of various methods and
techniques used in education and improving educational
processes. While metaphors are generally used in
programming teaching, which is the subject of our research,
the number of studies using analogies is quite limited.
However, in teaching some courses such as programming,
explaining abstract and difficult concepts by comparing them
with familiar concepts can facilitate learning. Therefore, the
current study focused specifically on analogies.

Moreover, the present research selected pre-service
teachers taking a programming course, and analogies related
to programming education were prepared by these students.
Similarly, Harper et al., (2023) formed groups within a

programming course, asking students to prepare analogies
about key concepts. These analogies were then presented, as it
was believed that analogies prepared by learners could
contribute more to learning and encourage deeper reflection
than those prepared by teachers (Fincher et al., 2020; Harper
et al., 2023). Additionally, as stated in the constructivist
learning approach, better learning outcomes emerge when
learners are active and construct their own learning (Mascolo
& Fischer, 2005). In our study, students individually prepared
analogies and these were presented in a classroom setting to
gather peer and instructor feedback.

In conclusion, our study will provide guidance on the use
of analogies in programming, as the participants are pre-
service teachers, and will be able to offer a different
perspective to overcome the challenges in programming
teaching. In addition, the study is notable in terms of focusing
on the use of analogies in programming teaching and the
preparation of these analogies by pre-service teachers. This
process can enable them to prepare analogies to help their own
learning and to use them in their future teaching to facilitate
the learning of their students. Therefore, this study aims to
examine the pre-service teachers’ experiences in preparing and
using analogies within a programming course to better
understand and evaluate the concepts. The research questions
of the study are as follows:

1. How have the analogies prepared in the programming
course affected the pre-service teachers' understandibility
of the subjects?

2. What are the experiences of pre-service teachers in
preparing and using analogies in the context of
programming education?

3. What are the views of pre-service teachers on preparing
analogies in other subjects?

Method
Research Design

This study is qualitative research. A case study was used in the
study. The case study included an in-depth examination of the
research question (Yildirim & Simsek, 2013). Prior to the
analogy generation process, a pre-questionnaire and post-
questionnaire focusing on programming difficulties were
administered. Following this, the experiences of pre-service
teachers regarding the analogy generation process and views
about preparing analogies were deeply examined. Finally, a
focus group interview was conducted with students to examine
their views on the use of analogy in programming education in
depth.

Participants

The participants of the study were 21 pre-service teachers who
took an elective course on introductory programming (Python)
at a state university for 14 weeks. These participants were
students in the 2nd, 3rd, and 4th years of the Mathematics
Department at the Faculty of Education. These participants
were students in the 2nd, 3rd, and 4th years of the Mathematics
Department at the Faculty of Education. They enrolled in the
introductory programming (Python) course. There were 21
people, 13 girls and eight boys. Since they were selected from
among the students taking the programming course, a
purposive sampling method was used. Given the subject
matter focused on teaching programming, this course's
students were included in the study. In our study, before and
after the programming course, volunteers responded to a
questionnaire titled "Topics that participant found most

555

challenging” (Appendix-1), with 18 participating in the pre-
questionnaire and 16 in the post-questionnaire. Following the
course, a focus group discussion was conducted with 11
participants who were selected from among the participants
voluntarily.

Data Collection Instruments

The data collection instruments used in the study include a
questionnaire where participants indicated the topics, they
struggled with during the programming course, analogies
prepared by them based on programming education, and the
interview questions that examined learners' views on learning
and their views on analogies at the end of the course.

The questionnaire asked learners to mark the topics
covered in the course that they found challenging. It was
created and administered using Google Forms. This
questionnaire was reapplied after the analogies were prepared
and reviewed in class. This questionnaire was prepared by the
course instructor. The questionnaire included topics covered in
the course. Students were asked to choose one of the topics in
this questionnaire that they had difficulty with.

The interview questions (Appendix-2) were designed to
explore learners' attitudes and learning experiences within the
scope of the research questions. These questions were prepared
by the researchers of the study in light of the research
questions. These were then reviewed by field experts and
finalized. These questions were posed to students during a
focus group interview. This format was chosen to facilitate
rich data collection, allowing participants to remind each other
as necessary. In order to ensure consistency in the research,
expert opinions were sought during the preparation of data
collection tools and data analysis stages. Both quantitative and
qualitative data were presented to support the research findings
and for credibility. In addition, while presenting qualitative
data for confirmability, sample answers to the questions were
presented in the findings as direct quotes.

Analogy Preparation Process

The analogies were created by the participants on topics
mentioned in the course selected during the course and were
reviewed in class with peer and instructor evaluations. The
analogies were updated by them in the following week. While
creating the analogies, participants followed the stages below
(Harper et al., 2023):

1. Identifying the target concept and its essential
characteristics: This involves understanding the new or
complex concept that the analogy aims to explain.
Detailed information and example applications are
provided to students during the class on the topics they
would use to create analogies.

2. Brainstorming on potential source domains that share
similarities with the target concept: This encourages
divergent thinking and helps students explore various
familiar concepts that can be used in the analogy. After
selecting the topics for their analogies, students are shown
various examples of analogies and given the opportunity
to develop ideas.

3. Selecting the most suitable source domain: This step
emphasizes the need to carefully choose the source
domain that best fits the target concept. Students are
asked to find an example analogy related to the topic they
chose.

4. Mapping the similarities between the source and target
domains: This step focuses on creating a clear and

Coding analogy

accurate correlation between the two domains. Students
are asked to list the similarities between the topic they
chose and the analogy.

5. Identifying and addressing differences or limitations in
the analogy: This step fosters critical thinking by helping
students recognize and address the limitations of the
analogy. In this part, students are asked to list the
differences between the topic they chose and the analogy.
The analogies in this study aim at aiding subsequent
learners and facilitating the acquisition of programming
skills, are presented in the appendix (see Appendix-3).

The Role of Researchers

One of the researchers in the study was the instructor of the
course. This researcher asked the learners to fill out a
questionnaire regarding the topics they struggled with during
the course. In this questionnaire, students individually marked
the topics they found difficult to learn. Subsequently, learners
were assigned to prepare analogies related to the topics
covered. Each student selected a topic within the course and
created an analogy related to it. These analogies were
presented in class a week later and subjected to peer and
instructor evaluations. After the evaluations, the analogies
were finalized in the following week. At the end of the course,
the researcher reapplied the questionnaire and asked the
learners to reflect on whether the analogies helped them
understand the topics they struggled with.

The researchers of this study reviewed and edited the
analogies submitted by the students. They also developed
interview questions as part of the study. In the final week of
the course, they conducted a focus group interview with 11
voluntarily participating students, recorded the interview with
the students' permission, and later analyzed the responses to
the interview questions and other data.

Data Analysis

The data obtained from the questionnaire were descriptively
analyzed, and frequency values were derived. The results were
presented in tables and charts. The data from the focus group
interview were subjected to descriptive content analyses. In the
analysis, the participants' perspectives on the topics they found
challenging in programming education were coded according
to the subjects and objectives of the course. Additionally, the
responses regarding the contributions and suggestions of the
process were subjected to content analysis. In content analysis,
data collected from participants are analyzed, similar data are
grouped under a common theme, and interpreted (Yildirim &
Simgek, 2013). During the analysis, the qualitative findings
were coded by the researchers and these codes were subjected
to expert opinion. In order to ensure the transferability of the
research findings, the participants were described in detail and
the codes obtained were presented with their coding numbers.
In addition, the participant names were kept confidential and
coded as Participants 1-11 in the findings section, and direct
quotes from some participants were included in the findings
section.

Findings

The study aims to examine the pre-service teachers’
experiences in preparing and using analogies within a
programming course to better understand and evaluate the
concepts. The findings of these studies are presented below in
light of the research questions.

556

A. Kog & E. Taslibeyaz / Erzincan University Journal of Education Faculty, 26(4)

Table 1. Topics that participant found most challenging

Topics

Pre-questionnaire Post-questionnaire

f % f %
Loop Structures (for, while) 13 68,4 13 76,5
Nested Control Structures (if, else, elif) 12 63,2 4 23,5
Control Structures (if, else) 11 57,9 3 17,6
String Operations (len, etc.) 10 52,6 4 23,5
Data Type Conversions 5 26,3 3 17,6
Logical Operators (and, or, not) 5 26,3 2 11,8
Array Definition and Usage (list definition) 4 211 6 35,3
Comparison Operators (<, >) 3 15,8 0 0,0
Problem Solving Process 2 10,5 1 59
Algorithms 2 10,5 0 0,0
Variables and Data Types 2 10,5 1 59
Assignment Operators (=, +, -) 2 10,5 1 59
Computer and Programming & What is Programming? 1 5,3 0 0,0

Total (Participants)

18 16

Participants' Understanding of the Subjects

In this section, the results of the "Topics that participant found
most challenging” questionnaire, administered as pre- and
post-questionnaire, before and after the analogy preparation
process, were evaluated and presented in Table 1.

It was evident from the pre-questionnaire responses in the
programming education session that participants
predominantly struggled with loop structures (f=13), nested
control structures (f=12), control structures (f=11), and string
operations (f=10) in Table 1. Moderate difficulties were
observed in other topics.

Following the analogy creation process, the post-
questionnaire responses revealed a significant decrease in
difficulties previously identified in the pre-questionnaire,
particularly in nested control structures (f=4), control
structures (f=3), and string operations (f=4). Additionally,
there were notable decreases in other areas such as data type
conversions (f=3), logical operators (f=2), comparison
operators (f=0), problem-solving processes (f=1), algorithms
(f=0), variables and data types (f=1), assignment operators
(f=1), and an introduction to computers and programming
(f=0). According to Table 1, loop structures (for, while)
remained a challenging topic for the students, with no

Conversely, an increase in difficulty was noted in the area of
array definition and usage (list definition) in the post-
questionnaire (f=6).

Participants' Experiences on Analogy Preparation and
Usage Process

The process of preparing analogies was examined after which,
based on the guiding research questions, interview questions
were developed. These questions were then administered
through a focus group discussion. The outcomes were
analyzed using content analysis, and the results were presented
in Table 2. organized by categories, codes, frequencies, and
sample quotes.

It was observed that, in accordance with the feedback from
the participants, the most challenging topics in programming
education are syntax rules and loops in Table 2. Participants
expressed that they struggle with writing code due to spelling
errors (such as the need to close a parenthesis, not using
Turkish characters when defining variables, etc.), thus
encountering difficulties during the coding process. Moreover,
both types of loops, whether with an undefined repetition
structure or a defined one, were found to be the subjects
participants struggled with the most in terms of
comprehension. This finding was further supported by Table

observed improvement post-analogy process (f=13). 1
Table 2. Perspectives on the most challenging topics in programming education
Category Code f Sample Quotes
Loops Code 1: While Loop 6 Codel “While loops...” P3
Code 2: For Loop 6 Code 2 “For loops...” P2
Spelling Rules Code 3: Syntax Rules 3 Code 3 “...Spelling rules and parentheses are a bit of a hassle.” P4

Table 3. Topics of analogy prepared by participants

Code (Node) f Sample Quotes

Code 1: Comparison Operators 3 "Mine was one of the comparison operators." P10

Code 2: Loops 2 "Mine was the While loop..." P2

Code 3: Arrays (Lists) 1 "l had done an array, it was a list." P9

Code 4: Nested Controls 1 "It was nested controls..." P8

Code 5: Logical Operators 1 "... logical operators." P1

Code 6: String Operations 1 "Mine was also string operations." P6

Code 7: Problem-Solving Process 1 "Mine was the problem-solving process.”" P5

Code 8: Programming Logic 1 "Computer programming and what programming is about, that was

the topic." P11

557

Coding analogy

Table 4. The views on difficulties encountered when creating analogies

Category Code

f Sample Quotes

Thinking Process Code 1: Defining and Selecting
Characteristics

Code 2: Setting Boundaries

Code 3: Identifying Differences

2 "... I struggled a bit there, wondering which features to
add..." P7
2 "... when you determine a very large area, you can't just

make it up, you have to find boundaries. It's a bit
difficult to set those boundaries." P3

1 "... at first, we focus on their similarities and start
writing. Then, when it comes to their differences, well,
now you have to think a little about what those
differences are." P10

Table 5. The views of analogy creation process

Category Code

f Sample Quotes

Peer Support Code 1: Idea Exchange

Code 2: Comparison

Code 3: Peer Review

w

"When preparing with P5, we looked at each other's
work. We had a for loop in P5 too. We looked
together.” (P 4)

2 "So, | did mine, then they did theirs. Finally, we
compared each other's work. We supported each other
to make it look a bit more professional, for example.”
(P3)

1 "l write and send it. | wonder if it's okay? P7 sends it

back, asking where | can fix it." (P6)

It was noted that, according to the feedback from the
participants, the topics most frequently analogized were
comparison operators and loops in Table 3. Additionally,
analogies were formed in topics such as arrays, nested
controls, logical operators, string operations, problem-solving
processes, and programming logic. This finding suggested that
the analogies created by participants in these topics facilitated
the understanding when interpreted alongside the pre-
questionnaire and post-questionnaire data from Table 1.
Interestingly, the lack of sufficient analogies in topics such as
loops and array declaration might indicate that difficulties
persist in these areas.

Participants primarily struggled with the process of
thinking about how to create analogies. They mentioned
experiencing difficulty in translating abstract concepts in
programming education into analogies. In the analogies they
created, participants found it most challenging to identify the
characteristics, set boundaries or in other words, determine
similarities and differences in programming concepts when
making comparisons.

Table 5 presents the participants' views on the process of
preparing analogies. Although assignments were given

Table 6. The views in contributions of analogy creation process

individually, participants were found to collaborate during the
process of selecting a topic from programming subjects and
creating analogies related to that topic. These collaborating
individuals expressed engaging in idea exchange, comparing,
and verifying the analogies they prepared during the analogy
creation process. This finding, while not imposing any
limitations on our research, actually encouraged collaboration,
demonstrating that mutual exchanges of ideas not only led to
the formation of better examples but also contributed more to
the participants' learning process through mutual idea
exchanges.

According to Table 6, participants not only expressed a
positive view (f=5) regarding the contribution of the analogy
preparation process to their understanding of programming
topics but also noted its beneficial aspects in making
programming topics more meaningful (f=2), facilitating the
understanding of both the chosen topic in the analogy and the
programming subjects (f=1), and reinforcing the subjects
(f=1). Additionally, participants expressed the opinion that the
experience gained from the process was enjoyable (f=1).

Category Code f Sample Quotes
Learning Code 1:Contribution 5 "... | think it contributes." (P7)

Code 2: Making Information 2 "At first, these loops, operators, and so on seem

Meaningful meaningless. Then, when you relate them, they become
a bit more meaningful." (P6)

Code 3: Mutual Understandability 1 "At first, to think of an analogy, you need to understand
its definitions first. When creating an analogy, we also
understand its definition at the same time, it happens
simultaneously. So, both make it easier for each other
to understand.” (P3)

Code 4: Reinforcement 1 "... helped with reinforcement.” (P8)

Experience Code 5: Experience 1 "Moreover, it is a good experience, in my opinion."
(P6)

558

A. Kog & E. Taslibeyaz / Erzincan University Journal of Education Faculty, 26(4)

Table 7. The views about usage of analogies in different courses

Category Code f

Sample Quotes

Positive Mathematics Code 1: Analytical 2

Geometry

Code 2: Analysis 1

Code 3: Algebra 1

Code 4: Probability 1

Computer 1
Science Code 5: Algorithm and
Programming
Partially 1
Code 6: Algebra
Code 7: Abstract contents 2
and subjects

Negative

"... in analytical geometry, most of the class, even the teacher
sometimes gets stuck. If they were connected to an analogy, and
then discussed in a narrative process, there would likely be
easier learning, especially with newly added topics." (P3)

"... can be used in subjects like analysis, which are a bit more
concrete, manual, and suitable for calculation.”" (P4)

"... example topics can be very abstract in algebra for children.
What are these x's and y's? How am | going to find this? It's like
going from basic arithmetic to algebra. Analogies can be very
useful in these topics..." (P7)

"Probability also comes to mind. In probability, for example, an
event occurs, then when another example is given, it presents
another event. ... probabilities can be built upon a single
analogy." (P3)

"... used in classes involving programming or algorithms.
Especially Python, Java..." (P4)

"... can be used to some extent in algebra, | think..." (P3)

"So, the very abstract ones are very difficult. Because they
inherently have very abstract expressions.” (P4)

The Views of Participants on Preparing Analogies in
Other Subjects

According to Table 7, participants expressed their views
regarding the use of analogies, particularly in mathematics
classes. It was noteworthy that these pre-service teachers, who
are students of mathematics education, emphasized the use of
analogies, especially in teaching abstract concepts in
mathematics (f=5). There was also emphasis on the
importance of using analogies in computer science classes
(f=1). Additionally, participants highlighted the challenge of
structuring highly abstract subjects (f=2) using analogies as a
negative comment.

Discussion

The remarkable responses given to the interview questions
prepared under the research questions were discussed in light
of previous studies in this section.

Students mentioned that they had difficulty in creating
analogies due to the abstract structure of programming. This
first major finding has also been emphasized in previous
studies and the difficulty in teaching has been expressed as the
difficulty of teaching programming (Gomes & Mendes, 2007).
The topic of algorithms, the problem-solving process, and
establishing programming logic were also the difficulties
encountered in programming, mentioned by the participants
(Giinbas & Tlgiin, 2023; Ozmen & Altun, 2014; Sayginer &
Tiiziin, 2017). Other challenging topics in programming were
syntax rules, loops, and decision structures. Participants
expressed struggling with spelling errors (such as the need to
close parentheses, not using Turkish characters when defining
variables, etc.) while coding, leading to difficulties in the
coding process. The finding was interpreted as consistent with
previous research by Baltali (2016) and Jancheski (2017)
indicating that students faced difficulties in syntax in
programming education. Furthermore, participants’ struggles
with topics such as loops, decision structures, and operators
align with other challenges encountered in text-based
programming languages (Kadin, 2019).

Another finding was related to the participants' processes
of creating analogies. The process of creating analogies
contributed to making topics more meaningful and reinforced

the subjects. This finding aligned with the findings of studies
conducted by Dinger (2005), Eriimit et al. (2019), Harper et al.
(2024) and Kaya & Durmus (2011) in the field of Computer
Science. Similarly, there were studies suggesting that creating
analogies in different subjects supports learning (Bayazit,
2011; Bozkurt, 2019; Sahin et al., 2001; Yilmaz et al., 2002).

Participants encountered difficulty in determining the
characteristics and differences when selecting source and
target concepts during the analogy preparation process. This
finding was supported by studies suggesting that students may
face challenges in establishing connections between source
and target concepts during the analogy preparation process
(Harper et al., 2023; Ugar, 2021). According to Kobal et al.
(2014), it was also believed that this difficulty experienced
during the process may stem from students' insufficient prior
knowledge about the source concept. Based on the research
findings, collaborative work with peers during the analogy
preparation process, involving mutual idea exchanges and
comparisons, proved effective in overcoming this difficulty at
various stages of the process. In addition to peer support during
the analogy preparation process, instructor was contributed to
completing participants' prior knowledge about the source and
target concepts in the analogy and reinforcing the
understanding of unfamiliar topics.

Finally, the participants had positive views mentioned in
Table 7 regarding the use of analogies in their field
(mathematics education) for teaching abstract concepts. This
finding was supported by research on the use of analogies in
mathematics education (Bayazit, 2011; Ozcan, 2013; Saygils,
2008). Analogies were commonly used in science and
mathematics education to assist learners in understanding
complex concepts, reasoning, and forming correct
interpretations (Jonane, 2015; Heywood, 2002). Additionally,
analogies facilitated the learning of abstract concepts and
helped overcome misconceptions (Zorluoglu & Sozbilir,
2016).

Conclusion and Suggestions

The research findings demonstrated that the use of analogies
in programming courses Yyielded positive contributions to
programming education. It was observed that the process of
preparing analogies by pre-service teachers contributed to

559

making programming topics more understandable for learning.
The utilization of analogies in programming courses emerged
as a facilitator for students' comprehension of abstract
concepts and supported the learning process. These findings
underscore the significance of employing analogies in
programming education and indicate their potential to
contribute to students' learning more effectively.

In the research, participants were involved in creating
analogies. Although they encountered certain difficulties
during the process of analogy formation, it enhanced their
ability to establish connections between source and target
concepts. Collaborative work among them and teacher support
during the analogy preparation process played a significant
role in helping them overcome challenging topics.
Additionally, the fact that the target audience of this study was
pre-service teachers may contribute to both assisting their own
learning through analogy preparation and facilitating their
future professional practices.

Based on the research findings, specialized training
programs can be provided to teacher candidates to enhance
their skills in preparing analogies for programming courses.
These programs could assist them in understanding the
analogy formation process and effectively implementing it.
Additionally, receiving regular feedback is crucial for
evaluating the impact of using analogies in programming
courses. To achieve this, new research could be planned by
employing various analogy techniques in different groups to
assess their effectiveness.

Author Contributions

All authors took an equal part in all processes of the article.
All authors have read and approved the final version of the
study.

Ethical Declaration

This study was conducted with the approval of the Erzincan
Binali Yildirrm University Applied Research Ethics Center,
Human Research Ethics Committee (Protocol No. 06/17),
obtained at the meeting held on 29.03.2024.

Conflict of Interest

The authors declare that there is no conflict of interest with any
institution or individual related to this study.

References

Alhazbi, S. (2016, December). Using flipped classroom
approach to teach computer programming. In 2016 IEEE
International Conference on Teaching, Assessment, and
Learning for Engineering (TALE) (pp. 441-444). |IEEE.

Alper, A., & Oztiirk, S. (2019). Programlama Ogretimindeki
Ters-Yiiz Ogretim Yéonteminin Ogrencilerin Basarilarina,
Bilgisayara Yénelik Tutumuna ve Kendi Kendine Ogrenme
Diizeylerine Etkisi. Bilim Egitim Sanat Ve Teknoloji
Dergisi, 3(1), 13-26.

Altbach, P. G., Reisberg, L. & Rumbley, L. E. (2009). Trends
in global higher education: Tracking an academic
revolution. The United Nations Educational, Scientific and
Cultural Organization.
http://atepie.cep.edu.rs/public/Altbach, Reisberg, Rumbl
ey _Tracking_an_Academic_Revolution, UNESCO 2009
.pdf

Ambrosio, A. P., Almeida, L. S., Macedo, J., & Franco, A. H.
R. (2014). Exploring core cognitive skills of computational

Coding analogy

thinking. Psychology of Programming Interest Group
Annual Conference 2014, Brighton.
https://hdl.handle.net/1822/30076

Anne, Jantos., Lisa-Marie, Langesee. (2023). 21st century
skills in higher education - an empirical analysis of current
challenges and potentials at a university of excellence.
INTED proceedings,
https://doi.org/10.21125/inted.2023.0438

Atabas, S. (2018). Programlama basarisini etkileyen bazi
faktorlerin incelenmesi. [Investigation of some factors
affecting programming success] [Unpublished Master's
thesis]. Ondokuz Mayis Universitesi Egitim Bilimleri
Enstitiisii, Samsun.

Baltali, S. (2016). Programlama 6gretiminde kullanilabilecek
yazilimlara iliskin 6gretmen goriisleri. [Teachers' views on
software that can be used in teaching
programming][Unpublished Master’s Thesis]. Uludag
Universitesi Egitim Bilimleri Enstitiisii, Bursa.

Bashir, G.M., & Hoque, A.S. (2016). An effective learning and
teaching model for programming languages. Journal of
Computers in Education, 3, 413 - 437.
https://doi.org/10.1007/s40692-016-0073-2

Bawamohiddin, A. B., & Razali, R. (2017). Problem-based
learning for programming education. International Journal
on Advanced Science Engineering Information
Technology, 7 (6).2035-2050
https://www.doi.org/10.18517/ijaseit.7.6.2232

Bayazit, I. (2011). Ogretmen adaylarinin matematik
ogretiminde analoji kullanimlar1 konusundaki goriis ve
yeterlilikleri. Selcuk Universitesi Ahmet Kelesoglu Egitim
Fakiiltesi Dergisi, 31, 139-158.

Betchie, E., Aguinaldo. (2019). 21st Century Learning Skills
Predictive Model Using PART Algorithm.
https://doi.org/10.1145/3310986.3310992

Boom, K. D., Bower, M., Siemon, J., & Arguel, A. (2022).
Relationships between computational thinking and the
quality of computer programs. Education and Information
Technologies, 27(6), 8289-8310.

Bozkurt, U. (2019). Ogretmenlerin analojive yénelik
goriislerinin degerlendirilmesi. [Evaluation of teachers'
views on analogy] [Unpublished Master's thesis]. Erzincan
Binali Yildirim Universitesi Fen Bilimleri Enstitiisi,
Erzincan.

Chang, C. S., Chung, C. H., & Chang, J. A. (2020). Influence
of problem-based learning games on effective computer
programming learning in higher education. Educational
technology research and development, 68, 2615-2634.

Chen, H. R., & Hsu, W. C. (2022). Do flipped learning and
adaptive instruction improve student learning outcome? a
case study of a computer programming course in Taiwan.
Frontiers in Psychology, 12, 768183.
https://doi.org/10.1007/s11423-020-09784-3

Dede, C., Mishra, P., & Voogt, J. (2013, October). Working
group 6: Advancing computational thinking in 21st century
learning. In EDUsummIT 2013, International summit on ict
in education.
http://www.edusummit.nl/fileadmin/contentelementen/ke
nnisnet/EDUSummIT/Documenten/2013/Advancing_com
putational_thinking_in_21st_century learning.pdf

Deniz, G., & Eryilmaz, S. (2019). Tiirkiye’de Programlama
Egitimi ile Ilgili Yapilan Calismalarin Incelenmesi: Bir
Betimsel Analiz Caligmasi. Egitimde Kuram Ve
Uygulama, 15(4), 319-338.
https://doi.org/10.17244/eku.645387

560

http://atepie.cep.edu.rs/public/Altbach,_Reisberg,_Rumbley_Tracking_an_Academic_Revolution,_UNESCO_2009.pdf
http://atepie.cep.edu.rs/public/Altbach,_Reisberg,_Rumbley_Tracking_an_Academic_Revolution,_UNESCO_2009.pdf
http://atepie.cep.edu.rs/public/Altbach,_Reisberg,_Rumbley_Tracking_an_Academic_Revolution,_UNESCO_2009.pdf
https://hdl.handle.net/1822/30076
https://doi.org/10.21125/inted.2023.0438
https://doi.org/10.1007/s40692-016-0073-2
https://www.doi.org/10.18517/ijaseit.7.6.2232
https://doi.org/10.1145/3310986.3310992
https://doi.org/10.1007/s11423-020-09784-3
http://www.edusummit.nl/fileadmin/contentelementen/kennisnet/EDUSummIT/Documenten/2013/Advancing_computational_thinking_in_21st_century_learning.pdf
http://www.edusummit.nl/fileadmin/contentelementen/kennisnet/EDUSummIT/Documenten/2013/Advancing_computational_thinking_in_21st_century_learning.pdf
http://www.edusummit.nl/fileadmin/contentelementen/kennisnet/EDUSummIT/Documenten/2013/Advancing_computational_thinking_in_21st_century_learning.pdf
https://doi.org/10.17244/eku.645387

A. Kog & E. Taslibeyaz / Erzincan University Journal of Education Faculty, 26(4)

Dinger, S. (2005). Bilgisayar ve teknolojileri 6greniminde
analoji (benzetme) yoOnteminin yararlar1 ve ydntemleri.
Akademik Bilisim Konferansi, Gaziantep.

Erimit, K. A., Karal, H., Sahin, G., Aksoy, D. A., Gencan, A.
A., & Benzer, A. 1. (2019). A model suggested for
programming teaching: Programming in seven steps.
Egitim ve Bilim, 44(197), 155-1883.
https://doi.org/10.15390/EB.2018.7678

Fincher, S., Jeuring, J., Miller, C. S., Donaldson, P., Du
Boulay, B., Hauswirth, M., ... & Petersen, A. (2020).
Notional machines in computing education: The education
of attention. In Proceedings of the working group reports
on innovation and technology in computer science
education pp. 21-50).
https://doi.org/10.1145/3437800.3439202

Gentner, D., & Hoyos, C. (2017). Analogy and abstraction.
Topics in cognitive science, 9(3), 672-
693.https://doi.org/10.1111/tops.12278

Gokoglu, S. (2017). Programlama egitiminde algoritma algisi:
Bir metafor analizi. Cumhuriyet International Journal of
Education, 6(1), 1-14.
https://doi.org/10.30703/cije.321430

Goletti, O., Mens, K., & Hermans, F. (2021, June). Tutors'
Experiences in Using Explicit Strategies in a Problem-
Based Learning Introductory Programming Course. In
Proceedings of the 26th ACM Conference on Innovation
and Technology in Computer Science Education V. 1 (pp.
157-163). https://doi.org/10.1145/3430665.3456348

Gomes, A., & Mendes, A. J. (2007). Learning to program -
difficulties and solutions | Academic Conference Paper. In
International Conference on Engineering Education—
ICEE, 7(May), 3-7.
https://www.researchgate.net/publication/228328491 L ea
rning_to_program_-_difficulties_and_solutions

Giinbas, N., & Ilgiin, S. (2023). Algoritma ve Programlama
Dersinin Matematik Ogretmen Adaylar1 Perspektifinden
Degerlendirilmesi. In Ondokuz Mayis University Journal
of Education Faculty (Vol. 42, Issue December).
https://doi.org/10.7822/omuefd.1298139

Gutierrez, H. T., Valdez, L. A., Pefiufiuri, L. T. P., & Brindis,
J. C. V. (2022). Methodology for teaching programming:
Integrating best practices in the teaching and learning
process with undergraduate students. Revista de Docencia
e Investigacion FEducativa: Journal of Teaching and
Educational Research, 8(22), 1-7.
https://www.doi.org/10.35429/JTER.2022.22.8.1.7

Harper, C., Bockmon, R., & Cooper, S. (2023). Investigating
Themes of Student-Generated Analogies. CompEd 2023 -
Proceedings of the ACM Conference on Global Computing
Education, 1, 64-70.
https://doi.org/10.1145/3576882.3617914

Harper, C., Rance, J., Owens, P., & Cooper, S. (2024). Tool-
Driven Scaffolding of Student-Generated Analogies in
CS1. ACM International Conference Proceeding Series, 5—
8. https://doi.org/10.1145/3633053.3633061

Herala, A., Vanhala, E., Knutas, A., & lkonen, J. (2015,
November). Teaching programming with flipped
classroom method: a study from two programming
courses. In Proceedings of the 15th Koli Calling
Conference on Computing Education Research (pp. 165-
166). https://doi.org/10.1145/2828959.2828983

Heywood, D. (2002). The place of analogies in science
education. Cambridge Journal of Education, 32(2), 233-
247. https://doi.org/10.1080/03057640220147577

Hromkovi¢, J., Kohn, T., Komm, D., & Serafini, G. (2016).
Examples of algorithmic thinking in programming
education. Olympiads in Informatics, 10(1-2), 111-124.
https://doi.org/10.15388/i0i.2016.08

Jancheski, M. (2017). Improving teaching and learning
computer programming in schools through educational
software. Olympiads in Informatics, 11, 55-75.
https://doi.org/10.15388/i0i.2017.05

Jonane, L. (2015). Analogies in science education.
Pedagogika/Pedagogy, 119(3), 116-125.
https://doi.org/10.15823/p.2015.027

Kandin, E. (2019). 5. sinif dgrencilerine programlama
ogretiminde hedefe dayali senaryo kullaniminin etkisi ve
ogrenci goriisleri. [The effect of goal-based scenario used
for programming education of 5th graders and students'
opinions] [Unpublished Master's thesis], Ondokuz Mayis
Universitesi Egitim Bilimleri Enstitiisii, Samsun.

Kanika, Chakraverty, S., & Chakraborty, P. (2020). Tools and
techniques for teaching computer programming: A review.
Journal of Educational Technology Systems, 49(2), 170-
198. https://doi.org/10.1177/0047239520926971

Kaya, S., & Durmus, A. (2011). Bilisim Teknolojileri
Ogretimi Icin Gelistirilen Ornek Analojilerin Incelenmesi.
Ahi Evran Universitesi Egitim Fakiiltesi Dergisi, 12(2),
235-254.

Ketenci, O. (2019). Madde ve Isi Konusunda Uygulanan
Analoji (Benzesim) Uzerine Bir Arastirma. [A research on
analogy applied in matter and heat] [Unpublished Master’s
Thesis] Necmettin Erbakan Universitesi Egitim Bilimleri
Enstitiisti, Konya.

Kiss, G., & Arki, Z. (2017). The influence of game-based
programming education on the algorithmic thinking.
Procedia-Social and Behavioral Sciences, 237, 613-617.
https://www.doi.org/10.1016/j.sbspro.2017.02.020

Kobal, S., Sahin, A., & Kara, I. (2014). Fen ve teknoloji
dersinde analojilere dayali &gretimin dgrencilerin
basarilart ve hatirda tutma diizeyi iizerindeki -etkisi.
Pamukkale Universitesi Egitim Fakiiltesi Dergisi, 36(36),
151-162.

Kong, S. C., & Wang, Y. Q. (2020). Formation of
computational identity through computational thinking
perspectives development in programming learning: A
mediation analysis among primary school students.
Computers in Human Behavior, 106, 106230.
https://doi.org/10.1016/j.chb.2019.106230

Laato, S. Rauti and E. Sutinen, (2020). The Role of Music in
21st Century Education-Comparing Programming and
Music Composing.
http://dx.doi.org/10.1109/ICALT49669.2020.00088

Mascolo, M. F., & Fischer, K. W. (2005). Constructivist
theories. Cambridge Encyclopedia of Child Development
(pp. 49-63). Cambridge, England: Cambridge University
Press.

Mithun, S., & Evans, N. (2018, June). Impact of the flipped
classroom on students' learning and retention in teaching
programming. In 2018 ASEE Annual Conference &
Exposition. http://dx.doi.org/10.18260/1-2--30608

Mozelius, P., Tomos, F., Shabalina, O., Miller, C., Malliarakis,
C., C Balan, O., & Chickerur, S. (2016). Game-based
technologies in teaching programming in higher education:
Theory and practices. Recent Patents on Computer
Science, 9(2), 105-113.
http://dx.doi.org/10.2174/2213275908666151030212745

Nakiboglu, C., & Yildirim, S. (2019). 10. Sinif Ogrencilerinin

561

https://doi.org/10.15390/EB.2018.7678
https://doi.org/10.1145/3437800.3439202
https://doi.org/10.1111/tops.12278
https://doi.org/10.30703/cije.321430
https://doi.org/10.1145/3430665.3456348
https://doi.org/10.7822/omuefd.1298139
https://www.doi.org/10.35429/JTER.2022.22.8.1.7
https://doi.org/10.1145/3576882.3617914
https://doi.org/10.1145/3633053.3633061
https://doi.org/10.1145/2828959.2828983
https://doi.org/10.1080/03057640220147577
https://doi.org/10.15388/ioi.2016.08
https://doi.org/10.15388/ioi.2017.05
https://doi.org/10.15823/p.2015.027
https://doi.org/10.1177/0047239520926971
https://www.doi.org/10.1016/j.sbspro.2017.02.020
https://doi.org/10.1016/j.chb.2019.106230
http://dx.doi.org/10.1109/ICALT49669.2020.00088
http://dx.doi.org/10.18260/1-2--30608
http://dx.doi.org/10.2174/2213275908666151030212745

Kimyasal Bag ile ilgili Algilari, Kimyasal Bagi
Tanimlamada Kullandiklar1 Metaforlar1 ve Yaptiklari
Benzesimler. Turkiye Kimya Dernegi Dergisi Kisim C:
Kimya Egitimi, 4(2), 61-80.

Ozcan, F. Z. (2013). Analoji tekniginin égrencilerin akademik
basarilarina etkisinin incelenmesi ve bu siirece iligkin
ogrenci goriiglerinin belirlenmesi: 5.sinif matematik dersi
ornegi. [The analysis of effects of analogy method on
students academic success and the determination of
students opinions about the process: A sample of 5th grade
maths class] [Unpublished Master’s Thesis]. Gazi
Universitesi Egitim Bilimleri Enstitiisii, Ankara.

Ozmen, B., & Altun, A. (2014). Undergraduate Students’
Experiences in Programming: Difficulties and Obstacles
Universite Ogrencilerinin Programlama Deneyimleri:
Giigliikler ve Engeller. Turkish Online Journal of
Qualitative Inquiry, 5(3), 9-27.
https://doi.org/10.17569/t0jqi.20328

Pawelczak, D. (2017, June). Comparison of traditional lecture
and flipped classroom for teaching programming. In
Proceedings of the 3rd International Conference on
Higher Education Advances (pp. 391-398). Editorial
Universitat Politécnica de Valéncia.
http://dx.doi.org/10.4995/HEAd17.2017.5226

Peng, W. (2010, September). Practice and experience in the
application of problem-based learning in computer
programming course. In 2010 International Conference on
Educational and Information Technology (Vol. 1, pp. V1-
170). IEEE. https://doi.org/10.1109/ICEIT.2010.5607778

Porn, R., Hemmi, K., & Kallio-Kujala, P. (2021). Inspiring or
Confusing--A Study of Finnish 1-6 Teachers' Relation to
Teaching Programming. LUMAT: International Journal
on Math, Science and Technology Education, 9(1), 366-
396. http://dx.doi.org/10.31129/L UMAT.9.1.1355

Raman, Nambiar. (2020). Coding as an Essential Skill in the
Twenty-First Century. https://www.doi.org/10.1007/978-
981-15-7018-6_29

Rim, H. (2017). A Study on Teaching using Website'Code.
org'in Programming Education based on Computational
Thinking. Journal of Korea Multimedia Society, 20(2),
382-395.http://dx.doi.org/10.9717/kmms.2017.20.2.382

Sabarinath, R., & Quek, C. L. G. (2020). A case study
investigating programming students’ peer review of codes
and their perceptions of the online learning environment.
Education and Information Technologies, 25(5), 3553-
3575. https://doi.org/10.1007/s10639-020-10111-9

Sahin, F., Mertoglu, H., & Comek, A. (2001). Ogrencilerin
olusturduklar1 analojilerin 6grenmeye etkisi. Yeni Bin Yilin
Basinda Tiirkiye'de Fen Bilimleri Egitimi Sempozyumu,
Istanbul.

Saygili, S. (2008). Analoji ile dgretim yonteminin 9. simf
ogrencilerinin matematik bagsarilarina ve yaratict
diistinmelerine etkisi. [The effect of analogy-enhanced
teaching on mathematical success and creative thinking
ability of 9th high school students] [Unpublished Master's
thesis]. Canakkale Onsekiz Mart Universitesi Egitim
Bilimleri Enstitiisti, Canakkale.

Saygmer, $., & Tiziin, H. (2017). Programlama Egitiminde
Yasanan Zorluklar ve Coziim Onerileri. 11th International
Computer Education and Instructional Technologies
Symposium.

Selby, C. C. (2015, November). Relationships: computational
thinking, pedagogy of programming, and Bloom's
Taxonomy. In Proceedings of the workshop in primary and

Coding analogy

secondary computing education (pp.
https://doi.org/10.1145/2818314.2818315

Shi, Y., Huang, S., & Zheng, C. (2019, June). Research on
programming courses teaching based on blended learning.
In Proceedings of the 5th International Conference on
Frontiers of Educational Technologies (pp. 30-34).
http://dx.doi.org/10.1145/3338188.3338198

Taspolat, A., Ozdamli, F., & Soykan, E. (2021). Programming
language training with the flipped classroom model. Sage
Open, 11(2), https://doi.org/10.1177/21582440211021403

Tolano-Gutierrez, K., Amavizca-Valdez, O., Tadeo
Portelapefiufiuri, L., & Vazquez-Brindis, C. (2022).
Methodology for teaching programming: Integrating best
practices in the teaching and learning process with

80-87).

undergraduate students. Journal of Teaching &
Educational ~ Research/Revista de Docencia &
Investigacion Educativa, 8(22).

http://dx.doi.org/10.35429/JTER.2022.22.8.1.7

Tiirel, Y. K., Simsek, A., Sengiil Vautier, C. G., Simsek, E., &
Kiziltepe, F. (2023). 21. Yiizy1l Becerileri ve Degerlere
Yonelik Aragtirma Raporu.
https://ttkb.meb.gov.tr/meb_iys_dosyalar/2023 05/11153
521 21.yy becerileri_ve_degerlere_yonelik_arastirma_ra
poru.pdf

Ugar, E. U. (2021). Fen bilgisi gretmen adaylarinin bireysel
analoji olusturmalarina ve uygulamalarina yénelik bir
arastrma. [A study on the making and applications of
individual analogy of science teacher candidates]
[Unpublished Master’s Thesis]. Kastamonu Universitesi
Fen Bilimleri Enstitiisii, Kastamonu.

Yang, J., Wong, G.K.W., Dawes, C. (2018). An Exploratory
Study on Learning Attitude in Computer Programming for
the Twenty-First Century. In: Deng, L., Ma, W., Fong, C.
(eds) New Media for Educational Change. Educational
Communications and Technology Yearbook. Springer,
Singapore. https://doi.org/10.1007/978-981-10-8896-4 5.

Yildiz Durak, H. (2020). The effects of using different tools in
programming teaching of secondary school students on

engagement, computational thinking and reflective
thinking skills for problem solving. Technology,
Knowledge and Learning, 25(1), 179-195.

https://doi.org/10.1007/s10758-018-9391-y

Yildirim, A., & Simsek, H. (2013). Sosyal bilimlerde nitel
aragtirma yontemleri. Ankara: Segkin Yaymevi

Yilmaz, S., Eryilmaz, A., & Geban, O. (2002). Birlestirici
benzetme yoOnteminin lise &grencilerinin mekanik
konularindaki kavram yanilgilar1 {izerindeki etkisi. V.
Ulusal Fen Bilimleri ve Matematik Egitimi Kongresi Tam
Metin Kitabi, Ankara.

Zhao, D., Muntean, C. H., Chis, A. E., Rozingj, G., &
Muntean, G. M. (2022). Game-based learning: enhancing
student experience, knowledge gain, and usability in higher
education programming courses. IEEE Transactions on
Education, 65(4), 502-513.
http://dx.doi.org/10.1109/TE.2021.3136914

Zhou, L. (2023). How to Develop 21st Century Skills in
Students: The Role of LEGO Education. Science insights
education frontiers,15(2), 2281-2283.
https://www.doi.org/10.15354/sief.23.co066

Zorluoglu, S. L., & Sozbilir, M. (2016). Iyonik ve kovalent
baglar konusunda uygulanan analoji tekniginin 6grenci
basarisina etkisi. Bayburt Egitim Fakiiltesi Dergisi, 11(1),
84-99.

562

https://doi.org/10.17569/tojqi.20328
http://dx.doi.org/10.4995/HEAd17.2017.5226
https://doi.org/10.1109/ICEIT.2010.5607778
http://dx.doi.org/10.31129/LUMAT.9.1.1355
https://www.doi.org/10.1007/978-981-15-7018-6_29
https://www.doi.org/10.1007/978-981-15-7018-6_29
http://dx.doi.org/10.9717/kmms.2017.20.2.382
https://doi.org/10.1007/s10639-020-10111-9
https://doi.org/10.1145/2818314.2818315
http://dx.doi.org/10.1145/3338188.3338198
https://doi.org/10.1177/21582440211021403
http://dx.doi.org/10.35429/JTER.2022.22.8.1.7
https://doi.org/10.1007/s10758-018-9391-y
http://dx.doi.org/10.1109/TE.2021.3136914
https://www.doi.org/10.15354/sief.23.co066

A. Kog & E. Taslibeyaz / Erzincan University Journal of Education Faculty, 26(4)

Appendix-1

Topics that participants found most challenging
Loop Structures (for, while)
Nested Control Structures (if, else, elif)
Control Structures (if, else)
String Operations (len, etc.)
Data Type Conversions
Logical Operators (and, or, not)
Array Definition and Usage (list definition)
Comparison Operators (<, >)
Problem Solving Process
Algorithms
Variables and Data Types
Assignment Operators (=, +, -)
Computer and Programming & What is Programming?

Appendix-2

Interview Questions

e What are the most challenging topics in programming
education?

e Which topic did you create an analogy on?

e Can you tell us about your experience creating an
analogy?

e What were the difficulties you encountered during the
process?

e Were there any parts you liked during the process?

e Do you think the analogy creation process
contributed to your learning?

e What do you think about its use in other courses?

Appendix-3

Analoji-1: Canli yagsam ve Su iliskisi

1-) Kosul ifadeleri (if-else):

Analoji: Kosul ifadeleri, gezegenlerdeki canli yasamiyla
benzetilebilir. Ornek; "Eger gezegende su varsa, canli yasami
vardir. Aksi halde canli yasami yoktur." seklinde bir diisiince,
kosul ifadeleriyle benzerlik tasir.

2-) Kosul Ifadeleri (if):

Analoji: "Gezegende su varsa" ifadesi,
Gezegenlerdeki canli yasaminda bir kosul ifadesini temsil
eder. Bu durumda, belirli bir sart gergeklesirse (Gezegende su
varsa) belirli bir duruma varilir (canlt yasami vardir).

3-) Else (aksi halde):

Analoji: "Aksi halde, canli yasami yoktur" ifadesi,
kosul ifadesinde saglanan sartin karsilanmamasi durumunda
yapilacak ¢ikarimi belirtir. Yani, eger su yoksa canli yagami
yoktur.

Bu analoji, Canli yasami ve su iligkisi iizerinden kosul
ifadelerini agiklar. Her iki durumda da belirli sartlar altinda
farkli durumlar gergeklestirilmesi gerekliligi, kosul
ifadelerinin temel mantigiyla benzerlik gosterir.
Benzerlikler

e Canli yasami ve su iliskisiyle kontrol yapilarmm

benzer olmasmin sebebi islem asamasinda
gergeklestirilen eylemlerin bir kosula bagli olacak
sekilde yapilmasidir.

e Siralama yoninden benzerdirler. Mesela canli
yasamini su ile iliskilendirdigimiz zaman suyun
olmadig1 bir durumda (bu bir kosul ifadesidir) belirli
bir sonuca varilabilir. Ayn1 sey kontrol yapilar1 i¢inde

gegerlidir. Coziim belli bir kosulu baz alarak
yapildig1 i¢in bu kistmda asamalar benzerlik gosterir.

Farkhhklar

e Dogal yasamda, suyun akist ve etkilesimi dogal
olarak geligirken, programlama kontrol yapilar
insanlar tarafindan bilingli bir sekilde tasarlanir ve
uygulanir.

e Dogal yasamdaki kontrol yapilar1 genellikle dogal
secilim ve evrimsel siirecler tarafindan sekillenirken,
programlama kontrol yapilar1 insanlar tarafindan
bilingli olarak uygulanir.

Analoji-2: Sayilarin karsilastirilmasi

Karsilastirma operatorlerini, iki sayr arasindaki iliskiyi
karsilastirmak i¢in kullanilan birer terazi olarak diisiinebiliriz.
Terazinin bir kefesine bir say1y1, diger kefesine ise diger say1y1
koyarsak, terazinin hangi kefenin agir bastigini gorebiliriz. Bu
bize iki sayinin birbirine gore biiylikliik, kiiciiklik veya esitlik
iliskisini verir. Ornegin, 5 ve 3 sayilarini karsilastirmak igin 5'i
bir kefeye, 3'i ise diger kefeye koyarsak, terazinin 5'in
bulundugu kefeye dogru agir bastigini gorebiliriz. Bu bize 5'in
3'ten biiyiik oldugunu gosterir.

Benzerlikler

e Her ikisi de iki degeri karsilagtirir.

e Her ikisinin de sonucu bir degerdir.

e Her ikisinin de sonucu, karsilagtirilan degerler
arasindaki iliskiyi gosterir.

Farkhhklar

e Kargilastirma operatorleri, sayilar, karakterler,
dizeler, listeler ve diger veri tiirleri gibi farkli
degerleri karsilastirabilir. Terazi ise sadece agirliklar
karsilastirabilir.

e Kargilastirma operatorlerinin - sonuglari, sayisal
degerler olabilir. Terazinin sonuglari ise agirlik
degerleridir.

Analoji 3- Bulusma Plani
Dongiileri, 06grencilerin her haftasonunda bir kafede

bulugmalarina benzetebiliriz. Her hafta belirli bir kosul, yani
hafta sonu, saglandiginda bulugma tekrarlanir. Ancak, bir hafta
sonu herkesin uygun olmadigi1 durumda veya bagka bir etkinlik
planlandiginda, bu déngii disindaki bir durumu temsil eder.
Yani, belirli bir diizeni olan ancak esneklik saglayan bir yap1
s6z konusudur.

Benzerlikler

e Her hafta belirli bir diizene gore tekrarlanir.

e Belirli bir kosul, hafta sonu, saglandiginda
tekrarlanir.

e Belirli bir islemi tekrarlamak i¢in kullanilir.

e Dongii igindeki islemler belirli bir diizene gore
yapilir.

Farkhhklar

e For dongiileri, belirli bir iterable (liste, demet vb.)
iizerinde dolagir.

e Sona erme kosulu, otomatik olarak iterable'ln sona
ermesidir. Bulugsma diizeni, hafta sonu veya uygunluk
durumu gibi kullanici tarafindan belirlenen bir sarta
baghdir.

563

Coding analogy

For Dongiisii; saya¢ veya iterable'm i¢indeki
elemanlart kontrol eder. Diger taraftan kisiler
belirlenen bir sartin saglanip saglanmadigini kontrol
eder.

For Dongiisii; sabit bir diizeni tekrarlar, degiskenlik
saglamaz. Bulusma plani, belirli bir diizen iginde
olmasina ragmen, esneklik ve adaptasyon saglar.

564

