
Erzincan Üniversitesi Eğitim Fakültesi Dergisi

Erzincan University Journal of Education Faculty

2024 Cilt 26 Sayı 4 (554-564) https://doi.org/10.17556/erziefd.1485760

Araştırma Makalesi / Research Article

554

Coding Analogy

Analojiyi Kodlamak

Aykan Koç 1 Elif Taşlıbeyaz2

1 Asst. Prof. Dr. Erzincan Binali Yıldırım University, Faculty of Education, Erzincan, Türkiye
2 Assoc. Prof. Dr. Erzincan Binali Yıldırım University, Faculty of Education, Erzincan, Türkiye

Makale Bilgileri

Geliş Tarihi (Received Date)

17.05.2024

Kabul Tarihi (Accepted Date)

30.09.2024

*Sorumlu Yazar

Ayhan Koç

Erzincan Binali Yıldırım

University, Faculty of

Education, Erzincan, Türkiye

ayhankoc@Erzincan.Edu.Tr

Abstract: This study aimed to examine the pre-service teachers’ experiences in preparing and using analogies within

a programming course to better understand and evaluate the concepts. The research design of this study was identified as
a case study. The 21 participants of the study took an elective introductory programming (Python) course at a state

university over 14 weeks. They prepared analogies during the course, and 11 of them attended a focus group interview at

the end of the course. The data collection tools used in the study included a questionnaire in which learners indicated the
topics they found challenging within the programming course, the analogies they created based on programming

education, and interview questions that explored their views at the end of the course. These data were analyzed

descriptively. The results indicated that although learners experienced difficulties in understanding algorithms,

programming logic, and learning loops, the use of analogies in programming education offered positive contributions.

Keywords: Analogy, programming, programming education, Python, pre-service teachers

Öz: Bu çalışmanın amacı, programlama dersinde kavramları daha iyi anlamak ve değerlendirmek için analoji hazırlama

ve kullanma konusunda öğretmen adaylarının deneyimlerini incelemektir. Bu çalışmanın araştırma tasarımı bir durum

çalışması olarak belirlenmiştir. Çalışmanın 21 katılımcısı, 14 hafta boyunca bir devlet üniversitesinde seçmeli bir

Programlamaya Giriş (Python) dersi almıştır. Ders sırasında analojiler hazırlamışlar ve 11'i dersin sonunda odak grup
görüşmesine katılmıştır. Araştırmada kullanılan veri toplama araçları arasında; öğrencilerin programlama dersi içerisinde

zorlandıklarını belirttikleri bir anket, programlama öğretimine dayalı olarak oluşturdukları analojiler ve ders sonunda

onların görüşlerini ortaya çıkaran görüşme soruları yer almaktadır. Bu veriler betimsel olarak analiz edilmiştir. Sonuçlar,
öğrencilerin algoritmaları, programlama mantığını ve öğrenme döngülerini anlamada zorluklar yaşamalarına rağmen,

programlama eğitiminde analoji kullanımının olumlu katkılar sağladığını göstermiştir.

Anahtar Kelimeler: Analoji, programlama, programlama öğretimi, Python, öğretmen adayları

Koç, A & Taşlıbeyaz, E. (2024). Coding analogy, 26(4), 542-564. Erzincan University Journal of Education Faculty

https://doi.org/10.17556/erziefd.1485760

Introduction

21st century skills encompass a wide array of abilities aimed

at preparing individuals for social and occupational demands.

Key skills include critical thinking, problem-solving,

technological literacy, effective communication,

collaboration, programming, and computational thinking

(Altbach et al., 2009; Ambrosio, 2014; Dede, 2013; Türel et

al., 2023). These skills are crucial for keeping pace with

contemporary developments and contributing to society. One

of the most significant areas focused on this contribution is

undoubtedly education. Therefore, educational institutions are

increasingly emphasizing the development of these skills to

adapt to the rapidly evolving and changing conditions

(Longjun, 2023).

Programming skill is frequently emphasized in educational

environments (Raman, 2020). It is a fundamental skill for

securing success and employment opportunities in the future

society (Yang et al., 2018). Programming is also recognized as

a valuable 21st century skill that prepares individuals for the

digital era and the future job market (Yang et al., 2018).

Particularly, the development of problem-solving and

computational thinking skills, often highlighted as essential for

the 21st century, is associated with programming-related

activities. It is even suggested that programming education

starting at an early age can enhance these skills (Laato et al.,

2020). In Turkey, programming education is increasingly

incorporated into the curricula at primary and secondary

education levels (Atabaş, 2018; Betchie, 2019; Deniz &

Eryılmaz, 2019). This integration of programming skills

development into educational settings emphasizes the

importance of preparing learners for the demands of the

contemporary world.

Numerous academic studies have been published in the

literature with an increasing interest in programming

education. Some of these studies have explored the

relationship between programming education and different

skills. The findings indicate that programming education

positively affects students' computational thinking and

problem-solving skills, as well as their ability to think

algorithmically (Boom, 2022; Hromkovic et al., 2017; Kiss &

Arki, 2017; Kong & Wang, 2020; Rim, 2017; Selby, 2015).

The problem-solving skills present in learners positively

contribute to the ability to learn programming (Yıldız Durak,

2020). On the other hand, there has been a positive correlation

between mathematical skills and programming (Pörn et al.,

2021).

Some of the research in programming education also

focuses on the methods and techniques used to enhance its

effectiveness and success. For example, problem-based

learning approaches are identified as effective in programming

education (Bawamohiddin & Razali, 2017; Chung et al., 2020;

Goletti et al., 2021; Peng, 2010). To overcome the challenges

in teaching and learning programming languages, a problem-

based e-learning model that integrates traditional problem-

based learning with e-learning environments has also been

proposed (Bashir & Hoque, 2016). The positive impact of

online instructional design in programming education has been

emphasized, highlighting the importance of peer-assessment

and the design of online learning environments (Sabarinath &

Quek, 2020). Another method utilized in programming

education is blended learning. Studies suggest that blended

https://doi.org/10.17556/erziefd.1485760
https://doi.org/10.17556/erziefd.1485760
https://orcid.org/0000-0003-0365-3560
https://orcid.org/0000-0001-9770-6824

A. Koç & E. Taşlıbeyaz / Erzincan University Journal of Education Faculty, 26(4)

555

learning models in programming courses can improve

educational outcomes (Shi & Zheng, 2019). Specifically,

programming education conducted using the Flipped

Classroom Model has been found to be more efficient than

traditional methods, with positive effects on student learning,

motivation, and engagement in the courses (Alper & Öztürk,

2019; Herala et al., 2015; Tolano-Gutiérrez et al., 2022).

Lastly, it has been emphasized that game-based learning

methods are increasingly popular techniques to enhance

learning, interest, and comprehension in programming,

particularly among younger students (Kanika & Chakraborty,

2020).

One of the techniques employed in programming education

involves the use of analogies. Analogies are cognitive

mechanisms that facilitate the application of knowledge from

one situation to another by identifying similarities and

differences (Gentner & Hoyos, 2017). They are extensively

used in science and mathematics education to assist students

in understanding complex concepts and reasoning (Jonāne,

2015; Heywood, 2002). Analogies, which support engagement

in the learning process (Heywood, 2002), can simplify the

teaching of challenging scientific concepts, making them more

accessible and comprehensible to learners. This approach can

be particularly effective in programming education, where

abstract concepts and logical structures often parallel patterns

in mathematics and science, allowing analogies to bridge the

gap between familiar knowledge and new programming skills.

The focus is on the use of analogies, metaphors, and

various scenarios in programming education studies in

literature. Although analogies and metaphors have different

properties and roles, they are similar elements used

interchangeably (Yıldırım & Gürsu, 2018). In fact, metaphors

can shape thought, especially in relation to complex concepts.

Sometimes metaphors are used in a situation where words are

insufficient or in a situation where the expression needs to be

strengthened. On the other hand, analogy helps to explain an

unknown, unfamiliar phenomenon with similarities and

differences (Gentner & Hoyos, 2017) and directly compares

two fields (Nakiboğlu & Yıldırım, 2019). One of the studies

on this subject Gökoğlu (2017) investigated computer

programming students' perceptions of the concept of

algorithms through metaphor analysis, aiming to categorize

the emergent metaphors under conceptual categories. Kandin's

(2019) thesis examined the use of metaphors and scenarios in

early programming education while other studies have also

focused on the impact of analogy techniques used in teaching

concepts in Mathematics, Information Technologies, and

Science courses (Kaya, 2011; Ketenci, 2019; Özcan, 2013).

The results of these studies generally highlight the positive

effect of metaphors and analogies used in classrooms on

learning the subjects. These research contributions are

significant in understanding the effects of various methods and

techniques used in education and improving educational

processes. While metaphors are generally used in

programming teaching, which is the subject of our research,

the number of studies using analogies is quite limited.

However, in teaching some courses such as programming,

explaining abstract and difficult concepts by comparing them

with familiar concepts can facilitate learning. Therefore, the

current study focused specifically on analogies.

Moreover, the present research selected pre-service

teachers taking a programming course, and analogies related

to programming education were prepared by these students.

Similarly, Harper et al., (2023) formed groups within a

programming course, asking students to prepare analogies

about key concepts. These analogies were then presented, as it

was believed that analogies prepared by learners could

contribute more to learning and encourage deeper reflection

than those prepared by teachers (Fincher et al., 2020; Harper

et al., 2023). Additionally, as stated in the constructivist

learning approach, better learning outcomes emerge when

learners are active and construct their own learning (Mascolo

& Fischer, 2005). In our study, students individually prepared

analogies and these were presented in a classroom setting to

gather peer and instructor feedback.

In conclusion, our study will provide guidance on the use

of analogies in programming, as the participants are pre-

service teachers, and will be able to offer a different

perspective to overcome the challenges in programming

teaching. In addition, the study is notable in terms of focusing

on the use of analogies in programming teaching and the

preparation of these analogies by pre-service teachers. This

process can enable them to prepare analogies to help their own

learning and to use them in their future teaching to facilitate

the learning of their students. Therefore, this study aims to

examine the pre-service teachers’ experiences in preparing and

using analogies within a programming course to better

understand and evaluate the concepts. The research questions

of the study are as follows:

1. How have the analogies prepared in the programming

course affected the pre-service teachers' understandibility

of the subjects?

2. What are the experiences of pre-service teachers in

preparing and using analogies in the context of

programming education?

3. What are the views of pre-service teachers on preparing

analogies in other subjects?

Method

Research Design

This study is qualitative research. A case study was used in the

study. The case study included an in-depth examination of the

research question (Yıldırım & Şimşek, 2013). Prior to the

analogy generation process, a pre-questionnaire and post-

questionnaire focusing on programming difficulties were

administered. Following this, the experiences of pre-service

teachers regarding the analogy generation process and views

about preparing analogies were deeply examined. Finally, a

focus group interview was conducted with students to examine

their views on the use of analogy in programming education in

depth.

Participants

The participants of the study were 21 pre-service teachers who

took an elective course on introductory programming (Python)

at a state university for 14 weeks. These participants were

students in the 2nd, 3rd, and 4th years of the Mathematics

Department at the Faculty of Education. These participants

were students in the 2nd, 3rd, and 4th years of the Mathematics

Department at the Faculty of Education. They enrolled in the

introductory programming (Python) course. There were 21

people, 13 girls and eight boys. Since they were selected from

among the students taking the programming course, a

purposive sampling method was used. Given the subject

matter focused on teaching programming, this course's

students were included in the study. In our study, before and

after the programming course, volunteers responded to a

questionnaire titled "Topics that participant found most

Coding analogy

556

challenging" (Appendix-1), with 18 participating in the pre-

questionnaire and 16 in the post-questionnaire. Following the

course, a focus group discussion was conducted with 11

participants who were selected from among the participants

voluntarily.

Data Collection Instruments

The data collection instruments used in the study include a

questionnaire where participants indicated the topics, they

struggled with during the programming course, analogies

prepared by them based on programming education, and the

interview questions that examined learners' views on learning

and their views on analogies at the end of the course.

The questionnaire asked learners to mark the topics

covered in the course that they found challenging. It was

created and administered using Google Forms. This

questionnaire was reapplied after the analogies were prepared

and reviewed in class. This questionnaire was prepared by the

course instructor. The questionnaire included topics covered in

the course. Students were asked to choose one of the topics in

this questionnaire that they had difficulty with.

The interview questions (Appendix-2) were designed to

explore learners' attitudes and learning experiences within the

scope of the research questions. These questions were prepared

by the researchers of the study in light of the research

questions. These were then reviewed by field experts and

finalized. These questions were posed to students during a

focus group interview. This format was chosen to facilitate

rich data collection, allowing participants to remind each other

as necessary. In order to ensure consistency in the research,

expert opinions were sought during the preparation of data

collection tools and data analysis stages. Both quantitative and

qualitative data were presented to support the research findings

and for credibility. In addition, while presenting qualitative

data for confirmability, sample answers to the questions were

presented in the findings as direct quotes.

Analogy Preparation Process

The analogies were created by the participants on topics

mentioned in the course selected during the course and were

reviewed in class with peer and instructor evaluations. The

analogies were updated by them in the following week. While

creating the analogies, participants followed the stages below

(Harper et al., 2023):

1. Identifying the target concept and its essential

characteristics: This involves understanding the new or

complex concept that the analogy aims to explain.

Detailed information and example applications are

provided to students during the class on the topics they

would use to create analogies.

2. Brainstorming on potential source domains that share

similarities with the target concept: This encourages

divergent thinking and helps students explore various

familiar concepts that can be used in the analogy. After

selecting the topics for their analogies, students are shown

various examples of analogies and given the opportunity

to develop ideas.

3. Selecting the most suitable source domain: This step

emphasizes the need to carefully choose the source

domain that best fits the target concept. Students are

asked to find an example analogy related to the topic they

chose.

4. Mapping the similarities between the source and target

domains: This step focuses on creating a clear and

accurate correlation between the two domains. Students

are asked to list the similarities between the topic they

chose and the analogy.

5. Identifying and addressing differences or limitations in

the analogy: This step fosters critical thinking by helping

students recognize and address the limitations of the

analogy. In this part, students are asked to list the

differences between the topic they chose and the analogy.

The analogies in this study aim at aiding subsequent

learners and facilitating the acquisition of programming

skills, are presented in the appendix (see Appendix-3).

The Role of Researchers

One of the researchers in the study was the instructor of the

course. This researcher asked the learners to fill out a

questionnaire regarding the topics they struggled with during

the course. In this questionnaire, students individually marked

the topics they found difficult to learn. Subsequently, learners

were assigned to prepare analogies related to the topics

covered. Each student selected a topic within the course and

created an analogy related to it. These analogies were

presented in class a week later and subjected to peer and

instructor evaluations. After the evaluations, the analogies

were finalized in the following week. At the end of the course,

the researcher reapplied the questionnaire and asked the

learners to reflect on whether the analogies helped them

understand the topics they struggled with.

The researchers of this study reviewed and edited the

analogies submitted by the students. They also developed

interview questions as part of the study. In the final week of

the course, they conducted a focus group interview with 11

voluntarily participating students, recorded the interview with

the students' permission, and later analyzed the responses to

the interview questions and other data.

Data Analysis

The data obtained from the questionnaire were descriptively

analyzed, and frequency values were derived. The results were

presented in tables and charts. The data from the focus group

interview were subjected to descriptive content analyses. In the

analysis, the participants' perspectives on the topics they found

challenging in programming education were coded according

to the subjects and objectives of the course. Additionally, the

responses regarding the contributions and suggestions of the

process were subjected to content analysis. In content analysis,

data collected from participants are analyzed, similar data are

grouped under a common theme, and interpreted (Yıldırım &

Şimşek, 2013). During the analysis, the qualitative findings

were coded by the researchers and these codes were subjected

to expert opinion. In order to ensure the transferability of the

research findings, the participants were described in detail and

the codes obtained were presented with their coding numbers.

In addition, the participant names were kept confidential and

coded as Participants 1-11 in the findings section, and direct

quotes from some participants were included in the findings

section.

Findings

The study aims to examine the pre-service teachers’

experiences in preparing and using analogies within a

programming course to better understand and evaluate the

concepts. The findings of these studies are presented below in

light of the research questions.

A. Koç & E. Taşlıbeyaz / Erzincan University Journal of Education Faculty, 26(4)

557

Table 1. Topics that participant found most challenging

Topics Pre-questionnaire Post-questionnaire

f % f %

Loop Structures (for, while) 13 68,4 13 76,5

Nested Control Structures (if, else, elif) 12 63,2 4 23,5

Control Structures (if, else) 11 57,9 3 17,6

String Operations (len, etc.) 10 52,6 4 23,5

Data Type Conversions 5 26,3 3 17,6

Logical Operators (and, or, not) 5 26,3 2 11,8

Array Definition and Usage (list definition) 4 21,1 6 35,3

Comparison Operators (<, >) 3 15,8 0 0,0

Problem Solving Process 2 10,5 1 5,9

Algorithms 2 10,5 0 0,0

Variables and Data Types 2 10,5 1 5,9

Assignment Operators (=, +, -) 2 10,5 1 5,9

Computer and Programming & What is Programming? 1 5,3 0 0,0

Total (Participants) 18 16

Participants' Understanding of the Subjects

In this section, the results of the "Topics that participant found

most challenging" questionnaire, administered as pre- and

post-questionnaire, before and after the analogy preparation

process, were evaluated and presented in Table 1.

It was evident from the pre-questionnaire responses in the

programming education session that participants

predominantly struggled with loop structures (f=13), nested

control structures (f=12), control structures (f=11), and string

operations (f=10) in Table 1. Moderate difficulties were

observed in other topics.

Following the analogy creation process, the post-

questionnaire responses revealed a significant decrease in

difficulties previously identified in the pre-questionnaire,

particularly in nested control structures (f=4), control

structures (f=3), and string operations (f=4). Additionally,

there were notable decreases in other areas such as data type

conversions (f=3), logical operators (f=2), comparison

operators (f=0), problem-solving processes (f=1), algorithms

(f=0), variables and data types (f=1), assignment operators

(f=1), and an introduction to computers and programming

(f=0). According to Table 1, loop structures (for, while)

remained a challenging topic for the students, with no

observed improvement post-analogy process (f=13).

Conversely, an increase in difficulty was noted in the area of

array definition and usage (list definition) in the post-

questionnaire (f=6).

Participants' Experiences on Analogy Preparation and

Usage Process

The process of preparing analogies was examined after which,

based on the guiding research questions, interview questions

were developed. These questions were then administered

through a focus group discussion. The outcomes were

analyzed using content analysis, and the results were presented

in Table 2. organized by categories, codes, frequencies, and

sample quotes.

It was observed that, in accordance with the feedback from

the participants, the most challenging topics in programming

education are syntax rules and loops in Table 2. Participants

expressed that they struggle with writing code due to spelling

errors (such as the need to close a parenthesis, not using

Turkish characters when defining variables, etc.), thus

encountering difficulties during the coding process. Moreover,

both types of loops, whether with an undefined repetition

structure or a defined one, were found to be the subjects

participants struggled with the most in terms of

comprehension. This finding was further supported by Table

1.

Table 2. Perspectives on the most challenging topics in programming education

Category Code f Sample Quotes

Loops Code 1: While Loop 6 Code1 “While loops…” P3

 Code 2: For Loop 6 Code 2 “For loops…” P2

Spelling Rules Code 3: Syntax Rules 3 Code 3 “...Spelling rules and parentheses are a bit of a hassle.” P4

Table 3. Topics of analogy prepared by participants

Code (Node) f Sample Quotes

Code 1: Comparison Operators 3 "Mine was one of the comparison operators." P10

Code 2: Loops 2 "Mine was the While loop..." P2

Code 3: Arrays (Lists) 1 "I had done an array, it was a list." P9

Code 4: Nested Controls 1 "It was nested controls..." P8

Code 5: Logical Operators 1 "... logical operators." P1

Code 6: String Operations 1 "Mine was also string operations." P6

Code 7: Problem-Solving Process 1 "Mine was the problem-solving process." P5

Code 8: Programming Logic 1 "Computer programming and what programming is about, that was

the topic." P11

Coding analogy

558

Table 4. The views on difficulties encountered when creating analogies

Category Code f Sample Quotes

Thinking Process Code 1: Defining and Selecting

Characteristics

2 "... I struggled a bit there, wondering which features to

add..." P7

 Code 2: Setting Boundaries 2 "... when you determine a very large area, you can't just

make it up, you have to find boundaries. It's a bit

difficult to set those boundaries." P3

 Code 3: Identifying Differences 1 "... at first, we focus on their similarities and start

writing. Then, when it comes to their differences, well,

now you have to think a little about what those

differences are." P10

Table 5. The views of analogy creation process

Category Code f Sample Quotes

Peer Support Code 1: Idea Exchange

3 "When preparing with P5, we looked at each other's

work. We had a for loop in P5 too. We looked

together." (P 4)

 Code 2: Comparison 2 "So, I did mine, then they did theirs. Finally, we

compared each other's work. We supported each other

to make it look a bit more professional, for example."

(P3)

 Code 3: Peer Review 1 "I write and send it. I wonder if it's okay? P7 sends it

back, asking where I can fix it." (P6)

It was noted that, according to the feedback from the

participants, the topics most frequently analogized were

comparison operators and loops in Table 3. Additionally,

analogies were formed in topics such as arrays, nested

controls, logical operators, string operations, problem-solving

processes, and programming logic. This finding suggested that

the analogies created by participants in these topics facilitated

the understanding when interpreted alongside the pre-

questionnaire and post-questionnaire data from Table 1.

Interestingly, the lack of sufficient analogies in topics such as

loops and array declaration might indicate that difficulties

persist in these areas.

Participants primarily struggled with the process of

thinking about how to create analogies. They mentioned

experiencing difficulty in translating abstract concepts in

programming education into analogies. In the analogies they

created, participants found it most challenging to identify the

characteristics, set boundaries or in other words, determine

similarities and differences in programming concepts when

making comparisons.

Table 5 presents the participants' views on the process of

preparing analogies. Although assignments were given

individually, participants were found to collaborate during the

process of selecting a topic from programming subjects and

creating analogies related to that topic. These collaborating

individuals expressed engaging in idea exchange, comparing,

and verifying the analogies they prepared during the analogy

creation process. This finding, while not imposing any

limitations on our research, actually encouraged collaboration,

demonstrating that mutual exchanges of ideas not only led to

the formation of better examples but also contributed more to

the participants' learning process through mutual idea

exchanges.

According to Table 6, participants not only expressed a

positive view (f=5) regarding the contribution of the analogy

preparation process to their understanding of programming

topics but also noted its beneficial aspects in making

programming topics more meaningful (f=2), facilitating the

understanding of both the chosen topic in the analogy and the

programming subjects (f=1), and reinforcing the subjects

(f=1). Additionally, participants expressed the opinion that the

experience gained from the process was enjoyable (f=1).

Table 6. The views in contributions of analogy creation process

Category Code f Sample Quotes

Learning Code 1:Contribution 5 "... I think it contributes." (P7)

 Code 2: Making Information

Meaningful

2 "At first, these loops, operators, and so on seem

meaningless. Then, when you relate them, they become

a bit more meaningful." (P6)

 Code 3: Mutual Understandability 1 "At first, to think of an analogy, you need to understand

its definitions first. When creating an analogy, we also

understand its definition at the same time, it happens

simultaneously. So, both make it easier for each other

to understand." (P3)

 Code 4: Reinforcement 1 "... helped with reinforcement." (P8)

Experience Code 5: Experience 1 "Moreover, it is a good experience, in my opinion."

(P6)

A. Koç & E. Taşlıbeyaz / Erzincan University Journal of Education Faculty, 26(4)

559

Table 7. The views about usage of analogies in different courses
Category Code f Sample Quotes

Positive Mathematics Code 1: Analytical

Geometry

2 "... in analytical geometry, most of the class, even the teacher

sometimes gets stuck. If they were connected to an analogy, and

then discussed in a narrative process, there would likely be

easier learning, especially with newly added topics." (P3)

 Code 2: Analysis

1 "... can be used in subjects like analysis, which are a bit more

concrete, manual, and suitable for calculation." (P4)

 Code 3: Algebra

1 "... example topics can be very abstract in algebra for children.

What are these x's and y's? How am I going to find this? It's like

going from basic arithmetic to algebra. Analogies can be very

useful in these topics..." (P7)

 Code 4: Probability

1 "Probability also comes to mind. In probability, for example, an

event occurs, then when another example is given, it presents

another event. ... probabilities can be built upon a single

analogy." (P3)

 Computer

Science

Code 5: Algorithm and

Programming

1 "... used in classes involving programming or algorithms.

Especially Python, Java..." (P4)

Partially

Code 6: Algebra

1 "... can be used to some extent in algebra, I think..." (P3)

Negative Code 7: Abstract contents

and subjects

2 "So, the very abstract ones are very difficult. Because they

inherently have very abstract expressions." (P4)

The Views of Participants on Preparing Analogies in

Other Subjects

According to Table 7, participants expressed their views

regarding the use of analogies, particularly in mathematics

classes. It was noteworthy that these pre-service teachers, who

are students of mathematics education, emphasized the use of

analogies, especially in teaching abstract concepts in

mathematics (f=5). There was also emphasis on the

importance of using analogies in computer science classes

(f=1). Additionally, participants highlighted the challenge of

structuring highly abstract subjects (f=2) using analogies as a

negative comment.

Discussion

The remarkable responses given to the interview questions

prepared under the research questions were discussed in light

of previous studies in this section.

Students mentioned that they had difficulty in creating

analogies due to the abstract structure of programming. This

first major finding has also been emphasized in previous

studies and the difficulty in teaching has been expressed as the

difficulty of teaching programming (Gomes & Mendes, 2007).

The topic of algorithms, the problem-solving process, and

establishing programming logic were also the difficulties

encountered in programming, mentioned by the participants

(Günbaş & İlgün, 2023; Özmen & Altun, 2014; Saygıner &

Tüzün, 2017). Other challenging topics in programming were

syntax rules, loops, and decision structures. Participants

expressed struggling with spelling errors (such as the need to

close parentheses, not using Turkish characters when defining

variables, etc.) while coding, leading to difficulties in the

coding process. The finding was interpreted as consistent with

previous research by Baltalı (2016) and Jancheski (2017)

indicating that students faced difficulties in syntax in

programming education. Furthermore, participants’ struggles

with topics such as loops, decision structures, and operators

align with other challenges encountered in text-based

programming languages (Kadin, 2019).

Another finding was related to the participants' processes

of creating analogies. The process of creating analogies

contributed to making topics more meaningful and reinforced

the subjects. This finding aligned with the findings of studies

conducted by Dinçer (2005), Erümit et al. (2019), Harper et al.

(2024) and Kaya & Durmuş (2011) in the field of Computer

Science. Similarly, there were studies suggesting that creating

analogies in different subjects supports learning (Bayazit,

2011; Bozkurt, 2019; Şahin et al., 2001; Yılmaz et al., 2002).

Participants encountered difficulty in determining the

characteristics and differences when selecting source and

target concepts during the analogy preparation process. This

finding was supported by studies suggesting that students may

face challenges in establishing connections between source

and target concepts during the analogy preparation process

(Harper et al., 2023; Uçar, 2021). According to Kobal et al.

(2014), it was also believed that this difficulty experienced

during the process may stem from students' insufficient prior

knowledge about the source concept. Based on the research

findings, collaborative work with peers during the analogy

preparation process, involving mutual idea exchanges and

comparisons, proved effective in overcoming this difficulty at

various stages of the process. In addition to peer support during

the analogy preparation process, instructor was contributed to

completing participants' prior knowledge about the source and

target concepts in the analogy and reinforcing the

understanding of unfamiliar topics.

Finally, the participants had positive views mentioned in

Table 7 regarding the use of analogies in their field

(mathematics education) for teaching abstract concepts. This

finding was supported by research on the use of analogies in

mathematics education (Bayazit, 2011; Özcan, 2013; Saygılı,

2008). Analogies were commonly used in science and

mathematics education to assist learners in understanding

complex concepts, reasoning, and forming correct

interpretations (Jonāne, 2015; Heywood, 2002). Additionally,

analogies facilitated the learning of abstract concepts and

helped overcome misconceptions (Zorluoğlu & Sözbilir,

2016).

Conclusion and Suggestions

The research findings demonstrated that the use of analogies

in programming courses yielded positive contributions to

programming education. It was observed that the process of

preparing analogies by pre-service teachers contributed to

Coding analogy

560

making programming topics more understandable for learning.

The utilization of analogies in programming courses emerged

as a facilitator for students' comprehension of abstract

concepts and supported the learning process. These findings

underscore the significance of employing analogies in

programming education and indicate their potential to

contribute to students' learning more effectively.

In the research, participants were involved in creating

analogies. Although they encountered certain difficulties

during the process of analogy formation, it enhanced their

ability to establish connections between source and target

concepts. Collaborative work among them and teacher support

during the analogy preparation process played a significant

role in helping them overcome challenging topics.

Additionally, the fact that the target audience of this study was

pre-service teachers may contribute to both assisting their own

learning through analogy preparation and facilitating their

future professional practices.

Based on the research findings, specialized training

programs can be provided to teacher candidates to enhance

their skills in preparing analogies for programming courses.

These programs could assist them in understanding the

analogy formation process and effectively implementing it.

Additionally, receiving regular feedback is crucial for

evaluating the impact of using analogies in programming

courses. To achieve this, new research could be planned by

employing various analogy techniques in different groups to

assess their effectiveness.

Author Contributions

All authors took an equal part in all processes of the article.

All authors have read and approved the final version of the

study.

Ethical Declaration

This study was conducted with the approval of the Erzincan

Binali Yıldırım University Applied Research Ethics Center,

Human Research Ethics Committee (Protocol No. 06/17),

obtained at the meeting held on 29.03.2024.

Conflict of Interest

The authors declare that there is no conflict of interest with any

institution or individual related to this study.

References

Alhazbi, S. (2016, December). Using flipped classroom

approach to teach computer programming. In 2016 IEEE

International Conference on Teaching, Assessment, and

Learning for Engineering (TALE) (pp. 441-444). IEEE.

Alper, A., & Öztürk, S. (2019). Programlama Öğretimindeki

Ters-Yüz Öğretim Yönteminin Öğrencilerin Başarılarına,

Bilgisayara Yönelik Tutumuna ve Kendi Kendine Öğrenme

Düzeylerine Etkisi. Bilim Eğitim Sanat Ve Teknoloji

Dergisi, 3(1), 13-26.

Altbach, P. G., Reisberg, L. & Rumbley, L. E. (2009). Trends

in global higher education: Tracking an academic

revolution. The United Nations Educational, Scientific and

Cultural Organization.

http://atepie.cep.edu.rs/public/Altbach,_Reisberg,_Rumbl

ey_Tracking_an_Academic_Revolution,_UNESCO_2009

.pdf

Ambrosio, A. P., Almeida, L. S., Macedo, J., & Franco, A. H.

R. (2014). Exploring core cognitive skills of computational

thinking. Psychology of Programming Interest Group

Annual Conference 2014, Brighton.

https://hdl.handle.net/1822/30076

Anne, Jantos., Lisa-Marie, Langesee. (2023). 21st century

skills in higher education - an empirical analysis of current

challenges and potentials at a university of excellence.

INTED proceedings,

https://doi.org/10.21125/inted.2023.0438

Atabaş, S. (2018). Programlama başarısını etkileyen bazı

faktörlerin incelenmesi. [Investigation of some factors

affecting programming success] [Unpublished Master's

thesis]. Ondokuz Mayıs Üniversitesi Eğitim Bilimleri

Enstitüsü, Samsun.

Baltalı, S. (2016). Programlama öğretiminde kullanılabilecek

yazılımlara ilişkin öğretmen görüşleri. [Teachers' views on

software that can be used in teaching

programming][Unpublished Master’s Thesis]. Uludağ

Üniversitesi Eğitim Bilimleri Enstitüsü, Bursa.

Bashir, G.M., & Hoque, A.S. (2016). An effective learning and

teaching model for programming languages. Journal of

Computers in Education, 3, 413 - 437.

https://doi.org/10.1007/s40692-016-0073-2

Bawamohiddin, A. B., & Razali, R. (2017). Problem-based

learning for programming education. İnternational Journal

on Advanced Science Engineering Information

Technology, 7 (6).2035-2050

https://www.doi.org/10.18517/ijaseit.7.6.2232

Bayazit, İ. (2011). Öğretmen adaylarının matematik

öğretiminde analoji kullanımları konusundaki görüş ve

yeterlilikleri. Selçuk Üniversitesi Ahmet Keleşoğlu Eğitim

Fakültesi Dergisi, 31, 139-158.

Betchie, E., Aguinaldo. (2019). 21st Century Learning Skills

Predictive Model Using PART Algorithm.

https://doi.org/10.1145/3310986.3310992

Boom, K. D., Bower, M., Siemon, J., & Arguel, A. (2022).

Relationships between computational thinking and the

quality of computer programs. Education and Information

Technologies, 27(6), 8289-8310.

Bozkurt, Ü. (2019). Öğretmenlerin analojiye yönelik

görüşlerinin değerlendirilmesi. [Evaluation of teachers'

views on analogy] [Unpublished Master's thesis]. Erzincan

Binali Yıldırım Üniversitesi Fen Bilimleri Enstitüsü,

Erzincan.

Chang, C. S., Chung, C. H., & Chang, J. A. (2020). Influence

of problem-based learning games on effective computer

programming learning in higher education. Educational

technology research and development, 68, 2615-2634.

Chen, H. R., & Hsu, W. C. (2022). Do flipped learning and

adaptive instruction improve student learning outcome? a

case study of a computer programming course in Taiwan.

Frontiers in Psychology, 12, 768183.

https://doi.org/10.1007/s11423-020-09784-3

Dede, C., Mishra, P., & Voogt, J. (2013, October). Working

group 6: Advancing computational thinking in 21st century

learning. In EDUsummIT 2013, International summit on ict

in education.

http://www.edusummit.nl/fileadmin/contentelementen/ke

nnisnet/EDUSummIT/Documenten/2013/Advancing_com

putational_thinking_in_21st_century_learning.pdf

Deniz, G., & Eryılmaz, S. (2019). Türkiye’de Programlama

Eğitimi ile İlgili Yapılan Çalışmaların İncelenmesi: Bir

Betimsel Analiz Çalışması. Eğitimde Kuram Ve

Uygulama, 15(4), 319-338.

https://doi.org/10.17244/eku.645387

http://atepie.cep.edu.rs/public/Altbach,_Reisberg,_Rumbley_Tracking_an_Academic_Revolution,_UNESCO_2009.pdf
http://atepie.cep.edu.rs/public/Altbach,_Reisberg,_Rumbley_Tracking_an_Academic_Revolution,_UNESCO_2009.pdf
http://atepie.cep.edu.rs/public/Altbach,_Reisberg,_Rumbley_Tracking_an_Academic_Revolution,_UNESCO_2009.pdf
https://hdl.handle.net/1822/30076
https://doi.org/10.21125/inted.2023.0438
https://doi.org/10.1007/s40692-016-0073-2
https://www.doi.org/10.18517/ijaseit.7.6.2232
https://doi.org/10.1145/3310986.3310992
https://doi.org/10.1007/s11423-020-09784-3
http://www.edusummit.nl/fileadmin/contentelementen/kennisnet/EDUSummIT/Documenten/2013/Advancing_computational_thinking_in_21st_century_learning.pdf
http://www.edusummit.nl/fileadmin/contentelementen/kennisnet/EDUSummIT/Documenten/2013/Advancing_computational_thinking_in_21st_century_learning.pdf
http://www.edusummit.nl/fileadmin/contentelementen/kennisnet/EDUSummIT/Documenten/2013/Advancing_computational_thinking_in_21st_century_learning.pdf
https://doi.org/10.17244/eku.645387

A. Koç & E. Taşlıbeyaz / Erzincan University Journal of Education Faculty, 26(4)

561

Dinçer, S. (2005). Bilgisayar ve teknolojileri öğreniminde

analoji (benzetme) yönteminin yararları ve yöntemleri.

Akademik Bilişim Konferansı, Gaziantep.

Erümit, K. A., Karal, H., Şahin, G., Aksoy, D. A., Gencan, A.

A., & Benzer, A. İ. (2019). A model suggested for

programming teaching: Programming in seven steps.

Egitim ve Bilim, 44(197), 155–183.

https://doi.org/10.15390/EB.2018.7678

Fincher, S., Jeuring, J., Miller, C. S., Donaldson, P., Du

Boulay, B., Hauswirth, M., ... & Petersen, A. (2020).

Notional machines in computing education: The education

of attention. In Proceedings of the working group reports

on innovation and technology in computer science

education (pp. 21-50).

https://doi.org/10.1145/3437800.3439202

Gentner, D., & Hoyos, C. (2017). Analogy and abstraction.

Topics in cognitive science, 9(3), 672-

693.https://doi.org/10.1111/tops.12278

Gökoğlu, S. (2017). Programlama eğitiminde algoritma algısı:

Bir metafor analizi. Cumhuriyet International Journal of

Education, 6(1), 1-14.

https://doi.org/10.30703/cije.321430

Goletti, O., Mens, K., & Hermans, F. (2021, June). Tutors'

Experiences in Using Explicit Strategies in a Problem-

Based Learning Introductory Programming Course. In

Proceedings of the 26th ACM Conference on Innovation

and Technology in Computer Science Education V. 1 (pp.

157-163). https://doi.org/10.1145/3430665.3456348

Gomes, A., & Mendes, A. J. (2007). Learning to program -

difficulties and solutions | Academic Conference Paper. In

International Conference on Engineering Education–

ICEE, 7(May), 3–7.

https://www.researchgate.net/publication/228328491_Lea

rning_to_program_-_difficulties_and_solutions

Günbaş, N., & İlgün, Ş. (2023). Algoritma ve Programlama

Dersinin Matematik Öğretmen Adayları Perspektifinden

Değerlendirilmesi. In Ondokuz Mayis University Journal

of Education Faculty (Vol. 42, Issue December).

https://doi.org/10.7822/omuefd.1298139

Gutierrez, H. T., Valdez, L. A., Peñuñuri, L. T. P., & Brindis,

J. C. V. (2022). Methodology for teaching programming:

Integrating best practices in the teaching and learning

process with undergraduate students. Revista de Docencia

e Investigación Educativa: Journal of Teaching and

Educational Research, 8(22), 1-7.

https://www.doi.org/10.35429/JTER.2022.22.8.1.7

Harper, C., Bockmon, R., & Cooper, S. (2023). Investigating

Themes of Student-Generated Analogies. CompEd 2023 -

Proceedings of the ACM Conference on Global Computing

Education, 1, 64–70.

https://doi.org/10.1145/3576882.3617914

Harper, C., Rance, J., Owens, P., & Cooper, S. (2024). Tool-

Driven Scaffolding of Student-Generated Analogies in

CS1. ACM International Conference Proceeding Series, 5–

8. https://doi.org/10.1145/3633053.3633061

Herala, A., Vanhala, E., Knutas, A., & Ikonen, J. (2015,

November). Teaching programming with flipped

classroom method: a study from two programming

courses. In Proceedings of the 15th Koli Calling

Conference on Computing Education Research (pp. 165-

166). https://doi.org/10.1145/2828959.2828983

Heywood, D. (2002). The place of analogies in science

education. Cambridge Journal of Education, 32(2), 233-

247. https://doi.org/10.1080/03057640220147577

Hromkovič, J., Kohn, T., Komm, D., & Serafini, G. (2016).

Examples of algorithmic thinking in programming

education. Olympiads in Informatics, 10(1-2), 111-124.

https://doi.org/10.15388/ioi.2016.08

Jancheski, M. (2017). Improving teaching and learning

computer programming in schools through educational

software. Olympiads in Informatics, 11, 55–75.

https://doi.org/10.15388/ioi.2017.05

Jonāne, L. (2015). Analogies in science education.

Pedagogika/Pedagogy, 119(3), 116-125.

https://doi.org/10.15823/p.2015.027

Kandin, E. (2019). 5. sınıf öğrencilerine programlama

öğretiminde hedefe dayalı senaryo kullanımının etkisi ve

öğrenci görüşleri. [The effect of goal-based scenario used

for programming education of 5th graders and students'

opinions] [Unpublished Master's thesis], Ondokuz Mayıs

Üniversitesi Eğitim Bilimleri Enstitüsü, Samsun.

Kanika, Chakraverty, S., & Chakraborty, P. (2020). Tools and

techniques for teaching computer programming: A review.

Journal of Educational Technology Systems, 49(2), 170-

198. https://doi.org/10.1177/0047239520926971

Kaya, S., & Durmuş, A. (2011). Bilişim Teknolojileri

Öğretimi İçin Geliştirilen Örnek Analojilerin İncelenmesi.

Ahi Evran Üniversitesi Eğitim Fakültesi Dergisi, 12(2),

235–254.

Ketenci, Ö. (2019). Madde ve Isı Konusunda Uygulanan

Analoji (Benzeşim) Üzerine Bir Araştırma. [A research on

analogy applied in matter and heat] [Unpublished Master’s

Thesis] Necmettin Erbakan Üniversitesi Eğitim Bilimleri

Enstitüsü, Konya.

Kiss, G., & Arki, Z. (2017). The influence of game-based

programming education on the algorithmic thinking.

Procedia-Social and Behavioral Sciences, 237, 613-617.

https://www.doi.org/10.1016/j.sbspro.2017.02.020

Kobal, S., Şahin, A., & Kara, İ. (2014). Fen ve teknoloji

dersinde analojilere dayalı öğretimin öğrencilerin

başarıları ve hatırda tutma düzeyi üzerindeki etkisi.

Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 36(36),

151-162.

Kong, S. C., & Wang, Y. Q. (2020). Formation of

computational identity through computational thinking

perspectives development in programming learning: A

mediation analysis among primary school students.

Computers in Human Behavior, 106, 106230.

https://doi.org/10.1016/j.chb.2019.106230

Laato, S. Rauti and E. Sutinen, (2020). The Role of Music in

21st Century Education-Comparing Programming and

Music Composing.

http://dx.doi.org/10.1109/ICALT49669.2020.00088

Mascolo, M. F., & Fischer, K. W. (2005). Constructivist

theories. Cambridge Encyclopedia of Child Development

(pp. 49-63). Cambridge, England: Cambridge University

Press.

Mithun, S., & Evans, N. (2018, June). Impact of the flipped

classroom on students' learning and retention in teaching

programming. In 2018 ASEE Annual Conference &

Exposition. http://dx.doi.org/10.18260/1-2--30608

Mozelius, P., Tomos, F., Shabalina, O., Miller, C., Malliarakis,

C., C Balan, O., & Chickerur, S. (2016). Game-based

technologies in teaching programming in higher education:

Theory and practices. Recent Patents on Computer

Science, 9(2), 105-113.

http://dx.doi.org/10.2174/2213275908666151030212745

Nakiboğlu, C., & Yıldırım, Ş. (2019). 10. Sınıf Öğrencilerinin

https://doi.org/10.15390/EB.2018.7678
https://doi.org/10.1145/3437800.3439202
https://doi.org/10.1111/tops.12278
https://doi.org/10.30703/cije.321430
https://doi.org/10.1145/3430665.3456348
https://doi.org/10.7822/omuefd.1298139
https://www.doi.org/10.35429/JTER.2022.22.8.1.7
https://doi.org/10.1145/3576882.3617914
https://doi.org/10.1145/3633053.3633061
https://doi.org/10.1145/2828959.2828983
https://doi.org/10.1080/03057640220147577
https://doi.org/10.15388/ioi.2016.08
https://doi.org/10.15388/ioi.2017.05
https://doi.org/10.15823/p.2015.027
https://doi.org/10.1177/0047239520926971
https://www.doi.org/10.1016/j.sbspro.2017.02.020
https://doi.org/10.1016/j.chb.2019.106230
http://dx.doi.org/10.1109/ICALT49669.2020.00088
http://dx.doi.org/10.18260/1-2--30608
http://dx.doi.org/10.2174/2213275908666151030212745

Coding analogy

562

Kimyasal Bağ ile ilgili Algıları, Kimyasal Bağı

Tanımlamada Kullandıkları Metaforları ve Yaptıkları

Benzeşimler. Turkiye Kimya Dernegi Dergisi Kısım C:

Kimya Egitimi, 4(2), 61-80.

Özcan, F. Z. (2013). Analoji tekniğinin öğrencilerin akademik

başarılarına etkisinin incelenmesi ve bu sürece ilişkin

öğrenci görüşlerinin belirlenmesi: 5.sınıf matematik dersi

örneği. [The analysis of effects of analogy method on

students academic success and the determination of

students opinions about the process: A sample of 5th grade

maths class] [Unpublished Master’s Thesis]. Gazi

Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.

Özmen, B., & Altun, A. (2014). Undergraduate Students’

Experiences in Programming: Difficulties and Obstacles

Üniversite Öğrencilerinin Programlama Deneyimleri:

Güçlükler ve Engeller. Turkish Online Journal of

Qualitative Inquiry, 5(3), 9–27.

https://doi.org/10.17569/tojqi.20328

Pawelczak, D. (2017, June). Comparison of traditional lecture

and flipped classroom for teaching programming. In

Proceedings of the 3rd International Conference on

Higher Education Advances (pp. 391-398). Editorial

Universitat Politècnica de València.

http://dx.doi.org/10.4995/HEAd17.2017.5226

Peng, W. (2010, September). Practice and experience in the

application of problem-based learning in computer

programming course. In 2010 International Conference on

Educational and Information Technology (Vol. 1, pp. V1-

170). IEEE. https://doi.org/10.1109/ICEIT.2010.5607778

Pörn, R., Hemmi, K., & Kallio-Kujala, P. (2021). Inspiring or

Confusing--A Study of Finnish 1-6 Teachers' Relation to

Teaching Programming. LUMAT: International Journal

on Math, Science and Technology Education, 9(1), 366-

396. http://dx.doi.org/10.31129/LUMAT.9.1.1355

Raman, Nambiar. (2020). Coding as an Essential Skill in the

Twenty-First Century. https://www.doi.org/10.1007/978-

981-15-7018-6_29

Rim, H. (2017). A Study on Teaching using Website'Code.

org'in Programming Education based on Computational

Thinking. Journal of Korea Multimedia Society, 20(2),

382-395.http://dx.doi.org/10.9717/kmms.2017.20.2.382

Sabarinath, R., & Quek, C. L. G. (2020). A case study

investigating programming students’ peer review of codes

and their perceptions of the online learning environment.

Education and Information Technologies, 25(5), 3553-

3575. https://doi.org/10.1007/s10639-020-10111-9

Şahin, F., Mertoğlu, H., & Çömek, A. (2001). Öğrencilerin

oluşturdukları analojilerin öğrenmeye etkisi. Yeni Bin Yılın

Başında Türkiye’de Fen Bilimleri Eğitimi Sempozyumu,

İstanbul.

Saygılı, S. (2008). Analoji ile öğretim yönteminin 9. sınıf

öğrencilerinin matematik başarılarına ve yaratıcı

düşünmelerine etkisi. [The effect of analogy-enhanced

teaching on mathematical success and creative thinking

ability of 9th high school students] [Unpublished Master's

thesis]. Çanakkale Onsekiz Mart Üniversitesi Eğitim

Bilimleri Enstitüsü, Çanakkale.

Saygıner, Ş., & Tüzün, H. (2017). Programlama Eğitiminde

Yaşanan Zorluklar ve Çözüm Önerileri. 11th International

Computer Education and Instructional Technologies

Symposium.

Selby, C. C. (2015, November). Relationships: computational

thinking, pedagogy of programming, and Bloom's

Taxonomy. In Proceedings of the workshop in primary and

secondary computing education (pp. 80-87).

https://doi.org/10.1145/2818314.2818315

Shi, Y., Huang, S., & Zheng, C. (2019, June). Research on

programming courses teaching based on blended learning.

In Proceedings of the 5th International Conference on

Frontiers of Educational Technologies (pp. 30-34).

http://dx.doi.org/10.1145/3338188.3338198

Taşpolat, A., Özdamli, F., & Soykan, E. (2021). Programming

language training with the flipped classroom model. Sage

Open, 11(2), https://doi.org/10.1177/21582440211021403

Tolano-Gutierrez, K., Amavizca-Valdez, O., Tadeo

Portelapeñuñuri, L., & Vazquez-Brindis, C. (2022).

Methodology for teaching programming: Integrating best

practices in the teaching and learning process with

undergraduate students. Journal of Teaching &

Educational Research/Revista de Docencia &

Investigación Educativa, 8(22).

http://dx.doi.org/10.35429/JTER.2022.22.8.1.7

Türel, Y. K., Şimşek, A., Şengül Vautier, C. G., Şimşek, E., &

Kızıltepe, F. (2023). 21. Yüzyıl Becerileri ve Değerlere

Yönelik Araştırma Raporu.

https://ttkb.meb.gov.tr/meb_iys_dosyalar/2023_05/11153

521_21.yy_becerileri_ve_degerlere_yonelik_arastirma_ra

poru.pdf

Uçar, E. Ü. (2021). Fen bilgisi öğretmen adaylarının bireysel

analoji oluşturmalarına ve uygulamalarına yönelik bir

araştırma. [A study on the making and applications of

individual analogy of science teacher candidates]

[Unpublished Master’s Thesis]. Kastamonu Üniversitesi

Fen Bilimleri Enstitüsü, Kastamonu.

Yang, J., Wong, G.K.W., Dawes, C. (2018). An Exploratory

Study on Learning Attitude in Computer Programming for

the Twenty-First Century. In: Deng, L., Ma, W., Fong, C.

(eds) New Media for Educational Change. Educational

Communications and Technology Yearbook. Springer,

Singapore. https://doi.org/10.1007/978-981-10-8896-4_5.

Yıldız Durak, H. (2020). The effects of using different tools in

programming teaching of secondary school students on

engagement, computational thinking and reflective

thinking skills for problem solving. Technology,

Knowledge and Learning, 25(1), 179-195.

https://doi.org/10.1007/s10758-018-9391-y

Yıldırım, A., & Şimşek, H. (2013). Sosyal bilimlerde nitel

araştırma yöntemleri. Ankara: Seçkin Yayınevi

Yılmaz, S., Eryılmaz, A., & Geban, Ö. (2002). Birleştirici

benzetme yönteminin lise öğrencilerinin mekanik

konularındaki kavram yanılgıları üzerindeki etkisi. V.

Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi Tam

Metin Kitabı, Ankara.

Zhao, D., Muntean, C. H., Chis, A. E., Rozinaj, G., &

Muntean, G. M. (2022). Game-based learning: enhancing

student experience, knowledge gain, and usability in higher

education programming courses. IEEE Transactions on

Education, 65(4), 502-513.

http://dx.doi.org/10.1109/TE.2021.3136914

Zhou, L. (2023). How to Develop 21st Century Skills in

Students: The Role of LEGO Education. Science insights

education frontiers,15(2), 2281–2283.

https://www.doi.org/10.15354/sief.23.co066

Zorluoğlu, S. L., & Sözbilir, M. (2016). İyonik ve kovalent

bağlar konusunda uygulanan analoji tekniğinin öğrenci

başarısına etkisi. Bayburt Eğitim Fakültesi Dergisi, 11(1),

84-99.

https://doi.org/10.17569/tojqi.20328
http://dx.doi.org/10.4995/HEAd17.2017.5226
https://doi.org/10.1109/ICEIT.2010.5607778
http://dx.doi.org/10.31129/LUMAT.9.1.1355
https://www.doi.org/10.1007/978-981-15-7018-6_29
https://www.doi.org/10.1007/978-981-15-7018-6_29
http://dx.doi.org/10.9717/kmms.2017.20.2.382
https://doi.org/10.1007/s10639-020-10111-9
https://doi.org/10.1145/2818314.2818315
http://dx.doi.org/10.1145/3338188.3338198
https://doi.org/10.1177/21582440211021403
http://dx.doi.org/10.35429/JTER.2022.22.8.1.7
https://doi.org/10.1007/s10758-018-9391-y
http://dx.doi.org/10.1109/TE.2021.3136914
https://www.doi.org/10.15354/sief.23.co066

A. Koç & E. Taşlıbeyaz / Erzincan University Journal of Education Faculty, 26(4)

563

Appendix-1

Topics that participants found most challenging

Loop Structures (for, while)

Nested Control Structures (if, else, elif)

Control Structures (if, else)

String Operations (len, etc.)

Data Type Conversions

Logical Operators (and, or, not)

Array Definition and Usage (list definition)

Comparison Operators (<, >)

Problem Solving Process

Algorithms

Variables and Data Types

Assignment Operators (=, +, -)

Computer and Programming & What is Programming?

Appendix-2

Interview Questions

• What are the most challenging topics in programming

education?

• Which topic did you create an analogy on?

• Can you tell us about your experience creating an

analogy?

• What were the difficulties you encountered during the

process?

• Were there any parts you liked during the process?

• Do you think the analogy creation process

contributed to your learning?

• What do you think about its use in other courses?

Appendix-3

Analoji-1: Canlı yaşamı ve Su ilişkisi

1-) Koşul İfadeleri (if-else):

Analoji: Koşul ifadeleri, gezegenlerdeki canlı yaşamıyla

benzetilebilir. Örnek; "Eğer gezegende su varsa, canlı yaşamı

vardır. Aksi halde canlı yaşamı yoktur." şeklinde bir düşünce,

koşul ifadeleriyle benzerlik taşır.

2-) Koşul İfadeleri (if):

 Analoji: "Gezegende su varsa" ifadesi,

Gezegenlerdeki canlı yaşamında bir koşul ifadesini temsil

eder. Bu durumda, belirli bir şart gerçekleşirse (Gezegende su

varsa) belirli bir duruma varılır (canlı yaşamı vardır).

3-) Else (aksi halde):

 Analoji: "Aksi halde, canlı yaşamı yoktur" ifadesi,

koşul ifadesinde sağlanan şartın karşılanmaması durumunda

yapılacak çıkarımı belirtir. Yani, eğer su yoksa canlı yaşamı

yoktur.

Bu analoji, Canlı yaşamı ve su ilişkisi üzerinden koşul

ifadelerini açıklar. Her iki durumda da belirli şartlar altında

farklı durumlar gerçekleştirilmesi gerekliliği, koşul

ifadelerinin temel mantığıyla benzerlik gösterir.

Benzerlikler

• Canlı yaşamı ve su ilişkisiyle kontrol yapılarının

benzer olmasının sebebi işlem aşamasında

gerçekleştirilen eylemlerin bir koşula bağlı olacak

şekilde yapılmasıdır.

• Sıralama yönünden benzerdirler. Mesela canlı

yaşamını su ile ilişkilendirdiğimiz zaman suyun

olmadığı bir durumda (bu bir koşul ifadesidir) belirli

bir sonuca varılabilir. Aynı şey kontrol yapıları içinde

geçerlidir. Çözüm belli bir koşulu baz alarak

yapıldığı için bu kısımda aşamalar benzerlik gösterir.

Farklılıklar

• Doğal yaşamda, suyun akışı ve etkileşimi doğal

olarak gelişirken, programlama kontrol yapıları

insanlar tarafından bilinçli bir şekilde tasarlanır ve

uygulanır.

• Doğal yaşamdaki kontrol yapıları genellikle doğal

seçilim ve evrimsel süreçler tarafından şekillenirken,

programlama kontrol yapıları insanlar tarafından

bilinçli olarak uygulanır.

Analoji-2: Sayıların karşılaştırılması

Karşılaştırma operatörlerini, iki sayı arasındaki ilişkiyi

karşılaştırmak için kullanılan birer terazi olarak düşünebiliriz.

Terazinin bir kefesine bir sayıyı, diğer kefesine ise diğer sayıyı

koyarsak, terazinin hangi kefenin ağır bastığını görebiliriz. Bu

bize iki sayının birbirine göre büyüklük, küçüklük veya eşitlik

ilişkisini verir. Örneğin, 5 ve 3 sayılarını karşılaştırmak için 5'i

bir kefeye, 3'ü ise diğer kefeye koyarsak, terazinin 5'in

bulunduğu kefeye doğru ağır bastığını görebiliriz. Bu bize 5'in

3'ten büyük olduğunu gösterir.

Benzerlikler

• Her ikisi de iki değeri karşılaştırır.

• Her ikisinin de sonucu bir değerdir.

• Her ikisinin de sonucu, karşılaştırılan değerler

arasındaki ilişkiyi gösterir.

Farklılıklar

• Karşılaştırma operatörleri, sayılar, karakterler,

dizeler, listeler ve diğer veri türleri gibi farklı

değerleri karşılaştırabilir. Terazi ise sadece ağırlıklar

karşılaştırabilir.

• Karşılaştırma operatörlerinin sonuçları, sayısal

değerler olabilir. Terazinin sonuçları ise ağırlık

değerleridir.

Analoji 3- Buluşma Planı

Döngüleri, öğrencilerin her haftasonunda bir kafede

buluşmalarına benzetebiliriz. Her hafta belirli bir koşul, yani

hafta sonu, sağlandığında buluşma tekrarlanır. Ancak, bir hafta

sonu herkesin uygun olmadığı durumda veya başka bir etkinlik

planlandığında, bu döngü dışındaki bir durumu temsil eder.

Yani, belirli bir düzeni olan ancak esneklik sağlayan bir yapı

söz konusudur.

Benzerlikler

• Her hafta belirli bir düzene göre tekrarlanır.

• Belirli bir koşul, hafta sonu, sağlandığında

tekrarlanır.

• Belirli bir işlemi tekrarlamak için kullanılır.

• Döngü içindeki işlemler belirli bir düzene göre

yapılır.

Farklılıklar

• For döngüleri, belirli bir iterable (liste, demet vb.)

üzerinde dolaşır.

• Sona erme koşulu, otomatik olarak iterable'ın sona

ermesidir. Buluşma düzeni, hafta sonu veya uygunluk

durumu gibi kullanıcı tarafından belirlenen bir şarta

bağlıdır.

Coding analogy

564

• For Döngüsü; sayaç veya iterable'ın içindeki

elemanları kontrol eder. Diğer taraftan kişiler

belirlenen bir şartın sağlanıp sağlanmadığını kontrol

eder.

• For Döngüsü; sabit bir düzeni tekrarlar, değişkenlik

sağlamaz. Buluşma planı, belirli bir düzen içinde

olmasına rağmen, esneklik ve adaptasyon sağlar.

