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Evrisimsel Sinir Aglar1 Tabanh MR Goriintiilerinden Beyin Tiimorii Tespiti

Kiibra BOZOGLAN'®', Burakhan CUBUKCU?"

Oz

Bu c¢alismanin amaci Manyetik Rezonans (MR) goriintiilerini kullanarak derin 6grenme yontemleri ile beyin tiimdrlerini
tespit etmek ve derin 6grenme ydntemlerinin basarimlarini kiyaslamaktir. Beyin tiimdrleri, giinlimiizde artis gdsteren
oliimciil bir hastalik tehdidi haline gelmistir. Hizli biiyiime egilimleri géz 6niine alindiginda, erken teshis ve dogru tedavi,
hastalarin hayatta kalma sansini artirmak i¢in olduk¢a 6nem arz etmektedir. MR goriintiilerinin incelenmesi, bu teshis
stirecinin temelini olugturmaktadir. Bu ¢aligmada, beyin MR goriintiilerinden tiimdrleri otomatik olarak tespit eden ve
smiflandiran, uzmanlara yardimci olabilecek yeni bir bilgisayar destekli sistem sunulmaktadir. Gelistirilen sistem,
Evrisimsel Sinir Aglart (CNN) ad1 verilen derin 6grenme mimarisine dayanmaktadir. Calismada, farkli 6grenme aktarim
mimarilerinden VGG16, ResNet50 ve DenseNetl121 kullanilmistir. Bu modeller Figshare, SARTAJ ve Br35H veri
setlerinin birlesiminden olusturulan bir veri seti lizerinde test edilerek kiyaslanmigtir. Elde edilen bulgular, VGG16
mimarisinin %99,05'lik dogruluk oraniyla en yiiksek basarryr yakaladigimi gostermistir. ResNet50 mimarisi ise
9%73,40’l1ik basar1 oraniyla modeller arasinda en diisiik basar1 gosteren model olmustur. Bu bulgular 15181nda, evrigimsel
sinir aglar1 tabanli otomatik timor tespit sisteminin, beyin timorlerinin erken teshisinde ve tedavisinde 6nemli bir rol
oynayabilecegi 6ngoriilmektedir. Sistemin, uzman radyologlarm ig yiikiinii hafifletmesi ve teshis siirecinin daha hizli ve
dogru bir sekilde gergeklesmesine katkida bulunmasi beklenmektedir.

Anahtar Kelimeler: Beyin Tiimori, Derin Ogrenme, CNN, VGG16, ResNet50, DenseNet121.

Brain Tumor Detection from MR Images Based on Convolutional Neural
Networks

Abstract

The purpose of this study is to detect brain tumors using deep learning methods on Magnetic Resonance (MR) images
and to compare the performances of various deep learning models. Brain tumors are increasingly becoming a serious
threat as a fatal disease. Given their rapid growth, early diagnosis and accurate treatment are essential for improving
patient survival rates. Examining MR images is fundamental to this diagnostic process. This study introduces a novel
computer-aided system that automatically detects and classifies tumors in brain MR images, assisting medical experts.
The developed system is based on a deep learning architecture known as Convolutional Neural Networks (CNN). The
study employed different transfer learning architectures, including VGG16, ResNet50, and DenseNet121. These models
were tested and compared using a dataset created from the combination of the Figshare, SARTAJ, and Br35H datasets.
The results showed that the VGG16 architecture achieved the highest accuracy rate at 99.05%. In contrast, the ResNet50
architecture had the lowest performance among the models with an accuracy rate of 73.40%. Based on these findings, it
is anticipated that the CNN-based automatic tumor detection system can play a significant role in the early diagnosis and
treatment of brain tumors. The system is expected to alleviate the workload of expert radiologists and contribute to a
faster and more accurate diagnostic process.

Keywords: Brain Tumor, Deep Learning, CNN, VGG16, ResNet50, DenseNet121.
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1. Giris

Insan beyni, tip dilinde “cerebrum” olarak adlandirilan ve kafatasinin icerisinde bulunan, bir
dizi karmasik islevi olan 6nemli bir organdir (Ersoy & Karal, 2012). Beyin tiimdrleri, normal dis1 bir
sekilde ¢ogalan beyin hiicrelerinin olusturdugu bir kiitleyi temsil eder ve bu hiicrelerin biiytikligii,
merkezi sinir sistemi {lizerinde olumsuz etkilere neden olarak normal beyin fonksiyonlarinin
sapmasina ve bireyin sagliginin olumsuz etkilenmesine yol agabilir (Logeswari & Karnan, 2010).
Beyin tiimorleri birincil ve ikincil olmak iizere iki tiirde kasimiza ¢ikmaktadir. Genellikle 1yi huylu
olan birincil beyin tiimérleri, beyinde dogrudan baslayan timérlerdir. Ikincil beyin timérleri ise
kanser hiicrelerinin akciger veya meme gibi viicudun baska bolgelerinden, beyine yayilmasi
sonucunda olusur (Tamilselvi vd., 2020). Bu tiir tiimdrler genellikle zor teshis edilir ve hayatta kalma
sans1 en diisiik olan tiimdrlerden biridir (Tasci, 2022). Beyin tiimoriiniin nedenini tam olarak
sOylemek oldukc¢a zordur. Belirtiler timoriin tiirline, konumuna ve biiyiikliigiine baglh olarak degisir
ve bas agrisi, bulanti, epileptik nobetler gibi durumlar1 igerebilir. Tedavi segenekleri cerrahi
miidahale, radyoterapi, kemoterapi ve ilag tedavisini igerir ve tedavi plant hastanin durumuna baglh
olarak belirlenir (Hazra vd., 2017).

Tiimor tespiti i¢in ultrason, bilgisayarli tomografi (BT) ve manyetik rezonans goriintiileme
(MR) gibi goriintiileme yontemleri kullanilmaktadir. MR goriintiisii, diger tibbi goriintiilleme
yontemlerine kiyasla daha fazla ayrinti sagladigi icin tiimor tespiti i¢in sik¢a tercih edilen bir
yontemdir. Ozellikle beyin MR gériintiisii, timdr tespiti ve tiimor ilerleme modelleme siireclerinde
kullanilir. Bu bilgiler, timor tespiti ve tedavi siireglerinde kritik 6neme sahiptir. Beyin MR goriintiisii,
beyin yapisindaki anormallikleri ve dokular arasindaki farkliliklar: inceleyerek detayli bilgiler sunar.
Bu nedenle, beyin MR goriintiisii, timorlerin tespiti ve tedavisi i¢in dnemli bir aragtir (Seetha & Raja,
2018a). Tiimor, cesitli biyolojik dokulardan olustugu icin sadece tek bir goriintiilleme sekansi
kullanilarak yapilan beyin MR goriintiileri, timor dokulariyla ilgili tiim bilgileri saglayamayabilir.
Bu nedenle, ayn1 bolgeye ait {i¢ farkli sekansin goriintiilenmesi i¢in bir MRG kullanilir. Bu sekanslar
T1 agirlikli, T2 agirlikli ve proton agirlikli goriintiilerdir. Aksiyal diizleme ait bu ii¢ farkli sekans
goriintlisii, Sekil 1'de gosterilmistir (Herek & Karabulut, 2010).
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Sekil 1. Her bir sekansa ait MR goriintiileri a) T1 agirlikli b) T2 agirlikli ¢) Proton agirhikh

Beyin timorleri hizli bir sekilde biiyiiyebilir, normal boyutlarini iki katina ¢ikarabilir. Bu
nedenle uzmanlar, Manyetik Rezonans (MR) goriintiilerini dikkatlice ve hizli bir sekilde inceleme
stirecini gergeklestirmelidir. Erken teshis, kanser tanisi, tedavi planlamasi ve tedavi sonuglarinin
degerlendirilmesi agisindan kritik 6neme sahiptir. Eger bir hasta, beyin tiimoriine dogru ve erken
tedavi alamazsa, hayatta kalma sansi azalabilir ve durum oliimciil olabilir. Bu sebeple beyin
tiimoriintin hizl1 ve dogru bir sekilde tespiti i¢in bilgisayar destekli tespit yontemleri uygulanmaya
baslanmugtir. Literatiirde, MR goriintiilerinin kullani1ldig1 beyin tiimorii tespiti ile ilgili bir¢ok ¢alisma

bulunmaktadir. Tablo 1°’de MR goriintiilerinden tiimor tespiti yapilan ¢alismalar verilmistir.

Tablo 1. Literatirde MR goriintiilerinden timor tespiti yapilan ¢aligmalar.

Yazar (Y1l) Veri Seti Veri Onisleme Yontem Avantajlar ~ Dezavantaj  Kullanilan Sonuglar
Artirma Model lar Metrikler
Wu ve ark. BRATS 2012 Siiper piksel CRF Hizli, Diisiik Segmentas  Dice skoru
(2014) renk/doku (Kosullu verimli, dereceli yon diisiik
ayrigtirmasi Rasgele diistik timorlerde basarimi derecelilerd
Alanlar) bellek, yetersiz, e diigiiktiir
giiriiltiiye karmasik
dayanikl modelleme
Karuppathal & MR FIS i¢in tiyelik Fuzzy Hizli, umut Diisiik Dogruluk %88
Palanisamy Goriintiileri fonksiyonu Inference verici dogruluk, dogruluk
(2014) tanimi System simiflandir karmagik
(FIS) ma aract modelleme
Yaqub ve ark. BRATS - Weighted Yiiksek - Dogruluk %90
(2014) Fast Local dogruluk, (WFLRF),
Random farkl %88
Forest varyantlarl (LRF),
a test %87 (WL-
RF)
Soltaninejad ve 19 MRI Stiper piksel ERT SVM’den - Dogruluk Dice: 0.85
ark. (2017) FLAIR, teknigi (Extremely daha iyi (timor),
BRATS 2012 Randomize performans 0.79
d Trees) (¢ekirdek),
0.75
(enhancing
)
Huda ve ark. BRATS Hibrid 6zellik GANNIG Yiiksek - Dogruluk, %88
(2016) se¢imi MAC, dogruluk, Calisma dogruluk
Decision daha hizli stiresi
Tree, siire

Bagging C
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Gupta ve ark. MR PCA ile boyut PCA + Basit, Diisiik Dogruluk %98
(2020) Gorlintiileri indirgeme SVM uygulanabil dogruluk dogruluk
ir
Citak-Er ve ark. MR - SVM, Yiiksek - Dogruluk %93.33
(2018) Gorintiileri MLP, dogruluk dogruluk,
Lojistik %93.33
Regresyon duyarlilik,
%96.6
ozgiillik
Charfi ve ark. MR Histogram Feedforwar %90 - Dogruluk %90
(2014) Goriintiileri esitleme, PCA d ANN dogruluk, dogruluk
basitlik
Pan ve ark. Cok agamali - CNN vs. CNN daha - Hassasiyet, CNN, %18
(2015) MR geleneksel hassas belirginlik daha iyi
Goriintiileri NN performans
Seetha & Raja BRATS - CNN + Cok - Dogruluk %97.5
(2018b) Fuzzy C- yiiksek dogruluk
Means dogruluk
Afshar ve ark. Figshare - Onerilen Giivenilirli - Dogruluk %86.56
(2019) CNN k dogruluk
modeli
Shahzadi ve BRATS 2015 - AlexNet- Zaman AlexNet Dogruluk AlexNet:
ark. (2019) LSTM, serisi diisiik %71,
VGGNet- bilgisi dogruluk VGG-
LSTM LSTM:
%84
Saxena ve ark. BRATS Transfer 6grenme VGG16, Yiiksek - Dogruluk VGG16:
(2021) InceptionV  dogruluk, %90,
3, giiclii InceptionV
ResNet50 modeller 3: %55,
ResNet50:
%395
Kaur & Gandhi MR Transfer 6grenme VGG16 %100 Idealize Duyarlik, %94
(2019) Goriintiileri dogruluk, sonuglar Ozgiilliik, dogruluk
duyarlik, Dogruluk (optimum)
ozgiillik
Zebari ve ark. BRATS 2020 - DenseNetl Yiiksek - Dogruluk, %93.82
(2023) 21 dogruluk Hassasiyet  hassasiyet,
ve %94.83
hassasiyet dogruluk

Beyin tiimdrlerini tespit etmek i¢in Wu ve ark. (2014), MR goriintiilerindeki tiimorleri tespit

etmek icin siiper piksellerin renk ve doku bilgilerini kullanan bir yontem gelistirmistir. Bu yontem,

CRF (kosullu rasgele alanlar) cergevesinde calisir ve hizli, verimli, diisiik bellek gereksinimi ve

giiriiltiye kars1 saglamlik gibi avantajlara sahip oldugu ancak, diisik dereceli tlimorlerin

segmentasyonu i¢in yeterince dogru olmadigi ve karmasik bir modelleme siirecine sahip oldugu

gozlemlenmistir.

2014 yilinda beyin tlimoérlerini segmentlemek ve siniflandirmak i¢in bulanik tabanli kontrol

teorisi kullanan bir calisma yapilmistir. Bu yontemde, beyin tiimorii segmentasyonu i¢in 6zel bir
teknik olan Fuzzy Interference System (FIS) kullanilmistir. Denetimli siniflandirma, FIS'in iiyelik

fonksiyonunu olusturmak icin kullanildi. Yontem yiiksek performansli ve hizli olmasina ragmen,
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dogruluk orani diisiiktii ve karmasik bir modelleme siirecine sahipti. Bulanik tabanli kontrol teorisinin
beyin tiimorlerini siniflandirmak i¢in umut verici bir yaklasim sundugu, ancak dogrulugunu
tyilestirmek i¢in daha fazla arastirmaya ihtiya¢ duyuldugu sonucuna varilmistir (Karuppathal &
Palanisamy, 2014).

Yaqub ve ark. (2014), 2014 yilinda yaptig1 ¢alismada, MR goriintiilerini timorli ve timorsiiz
olarak siniflandirmak i¢in farkli Rastgele Orman modelleri kullanilmistir. En yiiksek dogruluk,
Agirlikli Hizl Yerel Rasgele Ormanlar modeli ile %90 olarak elde edilmistir. Agirliklt Lokal Rasgele
Ormanlar modeli %87, Yerel Rasgele Ormanlar modeli ise %88 basar1 elde etmistir. Bu calisma,
Rastgele Orman smiflandiricistnin MR goriintiilerinde beyin tiimdrlerini yiiksek dogrulukla
simiflandirabilecegini gostermistir.

Soltaninejad ve ark. (2017), MRI goriintiilerini otomatik olarak tanilamak ve smiflandirmak
icin Siiper Piksel Teknigi ve ERT simiflandiricisini kullanan bir yontem gelistirmistir. 19 MRI FLAIR
ve BRATS 2012 veri seti lizerinde yapilan testler, ERT siniflandiricisinin SVM'ye kiyasla daha
yuksek dogruluk saglayarak iyi bir performans gosterdigini ortaya koymustur. Bu ¢alisma, Siiper
Piksel Teknigi ve ERT siniflandiricisinin beyin tiimorlerini otomatik olarak tanimada ve
siniflandirmada kullanilabilecek potansiyele sahip oldugunu gostermektedir.

Huda ve ark. (2016), beyin tiimorii teshisinde daha yiiksek dogruluk ve hizli calisma stiresi
saglamak icin hibrid 6zellik secimi ve kolektif smiflandirma igeren bir yontem gelistirmistir.
GANNIGMAC, Decision Tree ve Bagging C algoritmalarini kullanan bu yontem, beyin tiimorlerini
teshis etmek icin optimal bir 6zellik seti olusturur ve farkli siniflandiricilarin sonuglarini birlestirerek
daha yiiksek dogruluk elde eder. Calismada elde edilen sonuglar, hibrid yontemin Decision Tree'den
daha yiiksek dogruluk ve GANNIGMAC'tan daha hizli ¢aligsma siiresi saglayarak beyin timorii
teshisinde etkili bir arag olabilecegini gostermistir. Bu ¢alismalar disinda, Gupta ve ark. (2020), PCA
ve SVM kullanarak timor tespitinde %80 dogruluk oranina, Citak-Er ve ark. (2018), SVM, Cok
Katmanli Algilayicilar ve Lojistik Regresyon kullanarak %93 dogruluk oranina ulastig1 ¢aligmalar
bulunmaktadir. Bu calismalar disinda yapay sinir aglar1 kullanmilarak yapilan calismalarda
bulunmaktadir.

Charfi ve ark. (2014), beyin tiimoérlerini MR goriintiilerinden teshis etmek igin histogram
esitleme ve PCA (Principal Component Analysis) ile goriintii segmentasyonu ve boyut azaltma,
ardindan beslemeli ileri yayilim sinir ag1 ile siniflandirma igeren bir yontem gelistirmistir. Ydntemin
normal ve anormal beyin MR goriintiilerini %90 dogrulukla ayirt edebildigi belirtilmistir. Derin
O0grenmenin goriintiiler tizerinde kullaniminin artmasiyla bu alanda evrisimsel sinir aglart (CNN)
kullanilarak yapilan ¢aligmalarda popiiler hale gelmistir.

Pan ve ark. (2015), beyin tiimdrlerini MR goriintiilerinden tespit etmek amaciyla derin 6grenme

ve temel sinir aglarini karsilastirmali olarak incelemistir. Cok asamali MR goriintiileri kullanilarak
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yapilan ¢alismada, CNN'lerin hassasiyet ve belirginlik acisindan %18 daha 1yi performans gosterdigi
ortaya ¢cikmistir. Bu da CNN'lerin beyin tiimdrlerini daha dogru ve net bir sekilde tespit edebildigini
gostermektedir. Sonug olarak, ¢alisma CNN'lerin beyin tiimdrlerinin teshisinde onemli bir rol
oynayabilecegini ve temel sinir aglarindan daha etkili bir ara¢ oldugunu gostermistir. Seetha ve Raja,
CNN ve Fuzzy C-Means algoritmalarini kullandiklari bir ¢galismada %97,5 oraninda dogruluk elde
ederken (Seetha & Raja, 2018b), Afshar ve ark. (2019), 6nerdikleri CNN modeliyle %86,56 dogruluk
oranina ulagmistir. Bunlarin disinda literatiirde 6grenme aktarimi yontemlerini kullanilarak da beyin
timori tespiti yapan ¢aligmalar bulunmaktadir.

Shahzadi ve ark. (2019), AlexNet ve VGGNet CNN modellerini LSTM ile entegre ederek beyin
tiimorlerini tespit etmek icin bir model gelistirmistir. AlexNet-LSTM modeli %71 dogruluk,
VGGNet-LSTM modeli ise %84 dogruluk elde etmistir. Saxena ve ark. (2021), beyin tiimdrii
verilerini smiflandirmak i¢in Vggl6, InceptionV3 ve Resnet50 modellerini kullandilar. Transfer
O0grenme yoOntemleriyle yaptiklar1 bu calismada, Resnet50 modelinde %95'lik en yiiksek dogruluk
oranini elde etmislerdir. Kaur ve Gandhi. (2019), transfer 6grenmeli 6nceden egitilmis Vggl6 modeli
kullanarak gergeklestirdikleri ¢alismada beyin tiimorii tespiti i¢in duyarlik, 6zgiillik ve dogruluk
degerlerinin %100 oldugu sonucuna varmistir. (Asaad Zebari ve ark. (2023), yaptiklar1 calismada
beyin tiimorii gorilintiileri normal beyin goriintiilerinden ayiran bir beyin tiimorii siniflandirma modeli
gelistirmiglerdir. Densenet]12]1 modelini kullanarak gergeklestirdikleri bu ¢alismada hassasiyet ve
dogruluk degerlerini sirastyla %93,82 ve %94,83 olarak 6lgmiislerdir

Bu c¢aligma, literatiirde var olan derin Ogrenme temelli beyin timori smiflandirma
yaklagimlarina katki sunmayi hedeflemektedir. Daha Once farkli arastirmalarda dort smifl
siniflandirma ve ¢esitli performans metrikleri kullanilmis olsa da (Kaur & Gandhi, 2020; Gupta et
al., 2023), bu caligmada Figshare, SARTAJ ve Br35H gibi ii¢ ayr1 kaynaktan elde edilen goriintiilerle
olusturulan Masoudnickparvar veri seti kullanilarak genis, dengeli ve cesitli bir veri kiimesi iizerinde
kapsamli bir analiz gerceklestirilmistir (Masoudnickparvar , 2023). Ayn veri kiimesi iizerinde hem
klasik CNN hem de yaygin transfer 6grenme mimarileri (VGG16, ResNet50, DenseNet121) birlikte
karsilastirilmis ve bu modellerin dogruluk, precision, recall, F1 skoru gibi metrikler tizerinden detayl
analizleri yapilmistir (Gupta et al., 2023). Bu baglamda ¢alismanin 6zgiin katkist; ¢esitli kaynaklardan
elde edilen verilerin biitlinlestirilmesiyle olusturulan veri kiimesinin kullanimi, dort sinifli yapiya
sahip tiimor tiplerinin birlikte degerlendirilmesi ve farkli mimarilerin performanslarinin ¢ok yonlii
karsilastirilmasidir. Ayrica, elde edilen bulgular klinik agidan uygulanabilir diisitk maliyetli
modellerin de yiliksek dogruluklar verebilecegini gostermesi bakimindan literatiirdeki c¢alismalara

tamamlayici bir bakis agis1 sunmaktadir (Kaur & Gandhi, 2020).
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2. Materyal ve Metot

Calismada Figshare, SARTAJ ve Br35H isimli {i¢ farkli veri setinin birlestirilmesiyle elde
edilen 7023 beyin MR goriintlisi iizerinde {i¢ evrisim katmanli CNN, VGG16, ResNet50,
DenseNet121 modelleri ile glioma, meningioma, tiimorsiiz ve hipofiz olmak iizere 4 siniflandirma
yapilmustir. Smiflandirma, beyin tiimdrlerinin tiirlerini belirlemek i¢in yapilmistir.

Onerilen beyin tiimérii tespit yontemlerin her birinde, veri yiikleme, veri arttirma, model
olusturma, model egitimi ve model degerlendirmesi olmak {izere bes temel adimdan olugsmaktadir.
Egitim ve test veri setlerindeki goriintiilerin boyutlar1 224x224 olarak ayarlanmistir. Var olan
gorlintiilere siif dagilimini  dengelemek ve modelin genelleme kabiliyetini artirmak
amaciyla ImageDataGenerator kullanilarak veri artirma yontemleri (kaydirma, yakinlastirma,
¢evirme, dondiirme) uygulanmistir. ImageDataGenerator sinifi, dogrudan belirli sayida yeni goriintii
tiretmekten ziyade, egitim siireci boyunca ger¢cek zamanl (on-the-fly) olarak veri artirrmi uygular.
Bu yontemle, her epoch sirasinda model, egitim kiimesindeki her goriintiiyii bir kez goriir; ancak bu
goriintiilere her seferinde rastgele dontisiimler uygulanir. Dolayisiyla, her epoch’ta model ayni sayida
goriintii ile egitilse de, bu goriintiilerin varyasyonlar1 birbirinden farklidir. Ornegin, 100 gériintii
iceren bir veri kiimesinde her epoch’ta yine 100 goriintii islenir; ancak uygulanan rastgele doniisiimler
sayesinde model her epoch’ta farkli bigimlerdeki verilerle karsilagir. Epoch sayisi arttik¢a, ayni
goriintiiler lizerinden siirekli yeni varyasyonlar iiretilerek modelin genelleme kabiliyeti artirilir. Yani
veri artirma ile veri setindeki fiziksel goriintii sayis1 artirllmamas, disk tizerindeki goriintii sayisi sabit

kalmistir. Veri setinin sinif bazli sayilar1 Tablo 2’de verilmistir.

Tablo 2. Veri setinin sinif bazli sayilari.

Suf Egitim Gorilintiisii Test Goriintiisii Toplam Goriintii
Glioma 1.321 300 1.621
Meningioma 1.339 306 1.645
Hipofiz Timori 1.457 300 1.757
Saglikli 1.595 405 2.000
Toplam 5.712 1.311 7.023

Bu arttirma islemi sadece egitim sirasinda, bellekte gecici olarak gerceklestirilen doniigiimleri
ifade etmektedir. Yani veri artirma ile veri setindeki fiziksel goriintii sayis1 artirilmamis, disk
tizerindeki goriintli sayis1 sabit kalmistir. Arttirllmis veriler li¢ evrisim katmanli CNN, VGG16,
ResNet50, DenseNet121 modelleri kullanilarak egitilmistir. Literatiirde siniflandirma gorevleri i¢in
pek cok derin 6grenme modeli bulunmasmna ragmen, VGG16, ResNet50 ve DenseNetl21
modellerinin tercih edilmesinin temel nedeni, her birinin kendine 6zgii gii¢lii yonlere sahip olmasidir.

VGG16, basit ve derin yapisi sayesinde giiclii 6zellik ¢ikarimi saglar ve transfer 6grenme i¢in yaygin
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olarak kullanilir. ResNet50, residual baglantilar1 ile derin aglarda gradyan kaybolma problemini
cozerek daha verimli bir 6grenme siireci sunar, bu da modelin daha derin aglarda bile yliksek
dogrulukla calismasini saglar. DenseNet121 ise, her katmanin 6nceki katmanlarla dogrudan baglanti
kurarak, parametrelerin daha verimli kullanilmasini saglar ve daha iyi 6zellik temsilleri elde etmesine
olanak tanir. Bu modellerin karsilagtirilmasi, farkli mimarilerin ve 6grenme stratejilerinin
smiflandirma gorevindeki performans farklarini incelememize olanak tanimaktadir. Calisma
kapsaminda model bazli 6zgiinlik, bu ii¢ farkli mimarinin sundugu giiglii yonlerin bir arada
degerlendirilmesinde ve hangi modelin belirli veri setlerinde daha iyi sonuglar verdiginin analiz
edilmesinde yatmaktadir.

Elde edilen sonuclar dogruluk, hassasiyet, geri ¢agirma, F1 puani AUC, Cohen’s Kappa ve
MCC metrikleri ile kiyaslanmistir.

Modellerin uygulanmasi i¢in 256 GB disk, macOS Monterey 12.0.1 isletim sistemi, 8 GB
bellege ve Apple M1 islemciye sahip bir bilgisayar kullanilmistir. Yazilim gelistirme siireci Python
programlama dili ile gergeklestirilmistir. Derin 6§renme modelinin olusturulmasi i¢in TensorFlow
framework’ii kullanilmistir. Model mimarileri, Keras API araciligiyla tasarlanmis ve egitilmistir.
Calismada, transfer 6grenme yontemine dayali olarak ResNet50, DenseNet121, VGG16 gibi farkhi
onceden egitilmis modeller kullanilmistir. Bu modellerin her biri, tensorflow.keras.applications
modiiliinden yiiklenmis ve siniflandirma problemine uyarlanmastir.

Veri on isleme ve veri arttirma islemleri igin
tensorflow.keras.preprocessing.image.ImageDataGenerator sinifi kullanilmigtir. Egitim sirasinda veri
artirma teknikleri, modelin genelleme yetenegini artirmak amaciyla yatay ¢evirme, yakinlagtirma ve
kirpma gibi yOntemleri igermektedir. Gorilintiilerin  normalizasyonu (rescale) islemi de
ImageDataGenerator i¢inde gerceklestirilmistir.

Model degerlendirmelerinde kullanilan metrikler i¢in scikit-learn kiitliphanesi kullanilmistir.
classification_report, confusion matrix ve ConfusionMatrixDisplay gibi fonksiyonlarla, dogruluk,
precision, recall ve fl-score gibi metrikler hesaplanmistir. Ayrica modelin performansini
gorsellestirmek i¢in Matplotlib kiitliphanesinden faydalanilmistir. NumPy ise sayisal hesaplamalar ve
matris islemleri i¢in kullanilmgtir.

Calismada kullanilan modeller, goriintii siniflandirma problemlerinde yaygin olarak kullanilan
derin 6grenme mimarileridir ve her biri farkli yapisal 6zelliklere sahip olsa da transfer 6grenme
yaklasimiyla gii¢lii sonuglar iiretmektedir. Bu modeller, ImageNet veri seti iizerinde 6nceden
egitilmis agirliklar kullanarak, belirli bir goérevde sifirdan egitim yapmaya kiyasla daha hizli ve daha
verimli sonuglar elde edilmesine olanak tanimaktadir.

Bu acik kaynakli yazilim kiitliphaneleri ve araclar, derin 6grenme tabanli goriintii siniflandirma

problemlerinde yaygin olarak kullanilan, dogrulugu ve giivenilirligi literatiirle kanitlanmis araglardir.
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Caligmada kullanilan veri seti, orijinal haliyle %80 egitim ve %20 test olarak dnceden ayrilmis
sekilde sunulmustur. Bu ayrim, veri setinin kaynak calismasinda tanimlanmis olup, ¢aligmamizda da
bu yap1 korunarak degerlendirme yapilmistir. Boylece benzer ¢alismalarla dogrudan karsilastirma
yapilmas1 ve metodolojik tutarliligin saglanmasi hedeflenmistir. Test veri seti model performansini
degerlendirirken de kullanilmstir.

Calisgmada kullanilan tim derin 6grenme modellerinin  egitimi sirasinda  ¢esitli
hiperparametreler dikkatle segilmis ve deneysel olarak belirlenmistir. Ogrenme orani olarak 0.0001
degeri tercih edilmistir. Bu diisiik deger, transfer 6grenmede onceden egitilmis agirliklarm asir
giincellenmesini 6nlemek ve 6grenme siirecini daha stabil hale getirmek amaciyla se¢ilmistir (Tan et
al., 2018). Optimizasyon algoritmasi olarak ise Adam kullanilmistir. Adaptif 6grenme orani saglayan
Adam algoritmasi, literatiirde derin 6grenme modellerinde basarili sonuglar vermesi ve hesaplama
agisindan verimli olmasi nedeniyle yaygin sekilde tercih edilmektedir (Kingma & Ba, 2015).

Modelin egitim siiresi 100 epoch olarak belirlenmistir. Yapilan farkli denemeler sonucunda,
egitim basarimi ve siire dikkate alindiginda bu degerin ideal oldugu gézlemlenmistir (Yamashita et
al., 2018). Egitim sirasinda overfitting (asir1 6grenme) riski géz oniinde bulundurularak dogrulama
kaybr1 izlenmis, ancak erken durdurma mekanizmasi uygulanmamistir. Egitim siirecinde batch size
degeri 32 olarak secilmistir. Bu deger, GPU bellek kapasitesi ve egitim siiresi gibi sinirlayici faktorler
dikkate alinarak optimize edilmistir (Li et al., 2020). Asir1 6grenmeyi 6nlemek adina, tam baglantili
katmanda %50 oraninda dropout uygulanmistir. Bu oran, kii¢iik ve orta 6l¢gekli veri setlerinde modelin
genelleme yetenegini artirmak amaciyla siklikla tercih edilmektedir (Srivastava et al., 2014).

Aktivasyon fonksiyonlar1 olarak, ara katmanlarda dogrusal olmayanligi saglayan ReLU
kullanilms, ¢ikis katmaninda ise ¢ok sinifli siniflandirma problemine uygun olarak softmax tercih
edilmigstir. Kay1p fonksiyonu olarak categorical crossentropy kullanilmistir; ¢iinkii bu fonksiyon, ¢ok
smifli siniflandirma problemlerinde modelin tahmin ettigi olasilik dagilimlar ile gergek etiketler
arasindaki farki etkili bigimde yansitmaktadir (Goodfellow et al., 2016). Hiperparametre degerlerinin
tamamu, literatiirdeki benzer calismalar temel alinarak ve kiigiik 6lgekli on testlerle elde edilen
sonuclara gore belirlenmistir.

Bu boéliimiin devaminda kullanilan derin 6grenme modellerinin detaylar, kullanilan veri seti ve

modellerin kiyaslamasinda kullanilan metriklere yer verilmektedir.

2.1. U¢ Evrisim Katmanh Evrisimsel Sinir Ag1 (3KCNN)

Makine 6grenmesi, bir bilgisayarin belirli bir gérevi yapabilmesi veya bir problemi ¢6zebilmesi
icin, deneyim ve veri kullanarak kendiliginden 6grenme yetenegine sahip oldugu bir yapay zeka alt

dahdir. Geleneksel programlamadan farkli olarak, makine 6grenmesi algoritmalari, belirli bir gorevi
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dogrudan programlamak yerine veri iizerinden 6grenirler. Derin 6grenme (Deep Learning), yapay
sinir aglar1 kullanarak karmagik gorevleri gergeklestirmek i¢in tasarlanmis bir makine 6grenmesi alt
dalidir. Derin 6grenme, ¢ok katmanli yapay sinir aglarimmi kullanarak biiylik miktarda veriyi
O0grenmeyi ve genellestirmeyi amaglar. Temelde, derin 6grenme modelleri, birbirine bagh ¢ok sayida
sinir hiicresinden olusan katmanlardan olusur. Bu modeller, 6grenme yeteneklerini gelistirmek ve
daha karmagik gorevleri basarabilmek i¢in genellikle bircok katmana sahiptir. Derin 6grenme,
ozellikle biiytik veri setleri tizerinde yliksek basar1 elde etme potansiyeline sahiptir (Cengil vd., 2017;
Zhang vd., 1990). Ayni zamanda ses tanima, dogal dil isleme ve diger alanlarda da basariyla
uygulanabilir. Egitim siirecinin uzun olmasi ve egitim asamasinda yerel bir minimuma sikigma riski
tagimasi bu modelin dezavantajlar1 arasinda sayilabilir (Habibi Aghdam vd., 2016).

Bu c¢alismada derin 6grenme modellerinden evrisimsel sinir aglart kullanilmistir. Sekil 2°de
gosterilen model 3 evrisim katmani, 3 havuzlama katmani, bir diizlestirme ve bir tam bagli katmandan
olugsmaktadir. Kullanilan model girdi olarak beyin MR goriintiilerini kullanirken, ¢ikt1 olarak beyin

tumori tirini vermektedir.
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Sekil 2. 3kCNN modelinin katman mimarisi

Calismada sunulan 3kCNN modelinin her bir katmani i¢in kullanilan parametreler Tablo 3’de

verilmistir.

Tablo 3. 3kCNN modelinin detaylari.

Katman Katman Tiirti Filtre/Noron Kernel Stride Padding Aktivasyon
Sayisi Boyutu Fonksiyonu
1 Evrigsim 32 3x3 1 Same ReLU
(Conv2D)
2 Havuzlama - 2x2 2 Valid -

(MaxPooling2D)
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3 Evrigsim 64 3x3 1 Same RelLU
(Conv2D)
4 Havuzlama - 2x2 2 Valid -
(MaxPooling2D)
5 Evrisim 128 3x3 1 Same ReLU
(Conv2D)
6 Havuzlama - 2x2 2 Valid -
(MaxPooling2D)
7 Diizlestirme - - - - -
(Flatten)
8 Tam Baglantili 256 - - - ReLU
(Dense)
9 Dropout Katmani %350 - - - -
10 Cikis Katmani 4 - - - Softmax
(Dense)

Onerilen 3kCNN modelinde, her bir evrisim katmani i¢in 3x3 kernel boyutu, stride=1 ve
padding="same" tercih edilmistir. 3x3 boyutundaki ¢ekirdekler, kiiciik ve yerel 6zelliklerin (kenar,
kose, doku gibi) daha hassas sekilde yakalanmasini saglar. Daha biiyiik kernel boyutlarina goére daha
az parametre icerir, bu da modelin daha hizli egitilmesini ve asir1 6grenmenin (overfitting)
azaltilmasin destekler. Ayrica, art arda birkag¢ 3x3 evrigim katmani kullanilmasi, daha biiyiik alansal
kapsamalara ulagmay1 miimkiin kilar. Evrisim katmanlarinda stride degerinin 1 olarak secilmesi, giris
gorilintiisiinlin ¢oziiniirliigiinli korurken daha detayli 6zellik haritalar iiretilmesini saglar. Boylece
timor gibi kiiciik yapisal farkliliklarin daha hassas sekilde tespit edilmesine imkan tanimnir. "Same"
padding kullanilmasi, giris ile ¢ikis boyutlarinin ayni kalmasini saglar. Bu yontem, kenar bilgilerini
kaybetmeden goriintii iizerinde tam tarama yapilmasina olanak tanir. Ozellikle kiigiik boyutlu tiimor
gibi 6nemli detaylarin kaybolmamasi i¢in padding uygulanmasi biiylik 6nem tasimaktadir.

Havuzlama katmanlarinda (MaxPooling2D) ise 2x2 kernel boyutu, stride=2 ve padding="valid"
tercih edilmistir. 2x2 boyutundaki havuzlama cekirdekleri, uzamsal boyutlar1 yariya indirerek
modelin parametre sayisint ve hesaplama yiikiinii azaltir. Ayn1 zamanda 6znitelik haritalarinda en
baskin ozelliklerin korunmasina yardimci olur. Stride degerinin 2 olmasi, her adimda 2 piksel
ilerleyerek veri boyutunun hizli ve kontrollii sekilde kiicliltiilmesini saglar. Bu da modelin daha
verimli ¢aligmasina katki sunar. Padding kullanilmamasi ("valid"), sadece tam kapsanan bolgelerde
havuzlama yapilmasini saglar. Bu yontem, evrisim katmanlarindan sonra gereksiz kenar bilgilerini
elimine ederek daha etkili bir 6znitelik ¢ikartimi saglar.

Bu secimler, ¢alismanin amaci dogrultusunda modelin hem egitim siiresini kisaltmak, hafif bir
mimari sunmak hem de yiliksek dogruluk orani yakalamak i¢in yapilmistir. Sonug olarak, onerilen
3kCNN modeli, diisiik hesaplama maliyetine sahip olmasina ragmen beyin tiimorii tespitinde iistiin

bir performans sergilemistir.
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Onerilen 3kCNN modeli, giiniimiizde siklikla kullanilan derin ve parametre sayis1 yiiksek
transfer 6grenme tabanlt modellerin aksine, daha sade ve hafif bir yapida tasarlanmistir. Bu basit
yapisina ragmen beyin MR goriintiilerinde tiimor tespiti probleminde olduke¢a yiiksek dogruluk orani
elde etmistir. Model, diisiik hesaplama maliyeti, kisa egitim siiresi ve donanim ihtiyac1 azligi
sayesinde, sinirli kaynaklara sahip sistemlerde de etkili bir sekilde kullanilabilecek bir alternatif
olusturmaktadir. Bu yoniiyle literatiirdeki biiyiik 6lgekli derin 6grenme mimarilerine kiyasla farkli ve

0zglin bir katk1 sunmaktadir.

2.2. VGGI16

VGG16, 16 katmana sahip bir evrigimli sinir agidir. Bu katmanlar, evrisimli (convolutional)
katmanlar, tam baglantili (fully connected) katmanlar ve softmax siniflandirma katmanini igerir.
VGG16 modeli, 6zellikle 3x3 boyutundaki kiiclik filtrelerin ve ardisik olarak dizilmis evrisimli
katmanlarin kullanilmasiyla dikkat ¢eker. Bu tasarim, diger modellerde kullanilan biiyiik filtrelerin
aksine daha fazla parametre igerir, ancak genellikle daha etkili bir 6grenme saglar. VGG16, genellikle
goriintii siniflandirma gorevlerinde kullanilir ve ImageNet gibi biiyiik veri setlerinde egitilmistir

(Qassim vd., 2018). VGG16’nin yapist Sekil 3’te gosterilmistir.

fc6 fe7 fc8

1x1x4096 1 x1x1000

« 512

nvolution+ReLU
4 max pooling

fully connected+RelLU

Sekil 3. VGG16 modelinin katman mimarisi

2.3. ResNet50

ResNet50, "Residual Network" kisaltmasinin birlesimi olan ve evrisimli sinir aglarinin
gelistirilmis bir versiyonu olarak kabul edilen degerli bir néral ag mimarisidir. Geleneksel ardisik ag

mimarilerinden (6rnegin, AlexNet, VggNet) farkli bir yapiya sahiptir. Temel ozelligi, agin
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derinlestikce ortaya cikan performans disiislinii ele almak i¢in 0zgiin bir baglanti stratejisi
kullanmasidir. ResNet50 mimarisinde, 177 katmandan olugan bir ag bulunmaktadir. Bu ag, katmanlar
arasindaki gecisleri yonetmek ve daha iyi bir 6§renme saglamak i¢in "residual blocks" ad1 verilen
0zel yapilari icerir. Bu bloklar, bir dnceki katmanin ¢ikisini dogrudan bir sonraki katmanin girisine
ekleyerek bilgi akisini kolaylastirir. Bu sayede, agin daha derin olmasi ve daha fazla parametreye
sahip olmas1 miimkiin olur. Giris katmani, ResNet50'de 224x224x3 boyutlarindadir, yani 224 piksel
genisliginde, 224 piksel yiiksekliginde ve 3 renk kanalina sahiptir. Bu giris, agin karmagik 6zellikleri
o0grenmeye baslamak i¢in kullanilir. ResNet50 modeli, derin aglar yakinsamaya basladiginda ortaya
cikan performans diisiisii problemini azaltmay1 hedefleyen bir yapiya sahiptir. Bu, residual bloklar
araciligryla gerceklestirilen katmanlar arasi baglantilar sayesinde saglanir. Bu baglantilar, agin daha
etkili 6grenmesine ve daha derin modellerin basarili bir sekilde egitilmesine olanak tanir (Gokalp &

Aydin, 2021). ResNet50 yapis1 Sekil 4’de gosterilmistir.
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Sekil 4. ResNet50 mimarisi

2.4. DenseNet121

DenseNetl121, bir derin 6grenme modelidir ve goriintii siniflandirma gibi gorevlerde kullanilir.
Yogun baglantilara sahip bloklardan olusan 6zel bir ag mimarisini temsil eder. Her katman, giris
olarak kendi ¢ikisin1 ve dnceki katmanlardan gelen tiim ¢ikislar1 alir, bu da bilgi akisini artirir. 121
katmanli bir versiyonu olan DenseNet121, 6nceden egitilmis olarak kullanilabilir ve transfer 6grenme
uygulamalarinda baslangi¢ noktasi olarak yaygin olarak kullanilir (Dasgin, 2023). DenseNetl121

mimarisi Sekil 5°de gosterilmistir.
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Sekil 5. DenseNet121 mimarisi

2.5. Veri Seti

Bu caligmada Figshare, SARTAJ ve Br35H isimli ii¢ farkli veri setinden olusan
Masoudnickparvar (Masoudnickparvar, 2023) veri seti kullanilmistir. Bu veri setinin tercih
edilmesinin temel nedeni, bu veri setinin sahip oldugu cesitlilik, aciklik ve etiketleme kalitesidir.
Literatiirde bir¢ok farkli beyin timorii veri seti bulunmasina ragmen, bu veri setlerinin ¢ogu sinif
dengesizligi, diisiik 6rnek sayis1 veya yetersiz acgiklayici etiketleme gibi sinirliliklara sahiptir (Al et
al., 2020). Sectigimiz bu veri seti ise glioma, meningioma, hipofiz ve tiimorsiiz olmak iizere dort
farkli sinifi dengeli sekilde igermekte ve yliksek kaliteli MR goriintiiler sunmaktadir. Ayrica bu veri
setinin acik erisimli olmasi, calismanin yeniden {iretilebilirligini kolaylagtirmakta ve literatiirde
siklikla referans gosterilen veri setleri olmalar1 nedeniyle sonuglarin Onceki ¢alismalarla
karsilastirilmasma imkan tanmimaktadir. Ug farkli veri setinin birlestirilmesiyle elde edilen 7023
goriintiiden olusan genis veri kiimesi, derin 6grenme modellerinin daha dogru genelleme yapmasina
olanak saglamistir. Br35H veri setinin uzmanlar tarafindan etiketlenmis olmasi, Figshare ve SARTAJ
veri setlerinin de farkli kaynaklardan alinan goriintiilerle ¢esitlilik saglamasi, ¢alismamizda bu veri
setini tercih etmemizde etkili olmustur. Bu gerekceler dogrultusunda, segilen veri setinin model
performansini artirmak, farkli tiimor tiplerini kapsamak ve ¢alismanin giivenilirligini desteklemek
acisindan en uygun segenek oldugu degerlendirilmistir (Masoudnickparvar, 2023). Siniflandirma,
beyin tlimorlerinin tiirlerini belirlemek i¢in yapilmigtir. Farkli boyutlarda olan goriintiilerin genislik

ve yiikseklikleri 224x224 olarak ayarlanmistir. 4 sinifa ait goriintii 6rnekleri Sekil 6'da gosterilmistir.
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Sekil 6. Veri setindeki siniflara ait 6rnek goriintiiler

Veri setine uygulanan veri arttirma islemi sonrasinda olusan her sinifa ait gorseller Sekil 7°de

verilmistir.

Orijinal Kaydirma Yakinlastirma Cevirme Dondiirme

(a) Veri arttirma sonrasi glioma sinifina ait gorseller

Orijinal Kaydirma Yakinlastirma Cevirme Dondiirme

(b) Veri arttirma sonrasi1 meningioma sinifina ait gorseller
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Orijinal Kaydirma Yakinlastirma Cevirme Dondiirme

(d) Veri arttirma sonrasi hipofiz tiimdrii sinifina ait gorseller

Sekil 7. Veri arttirma sonrasi her bir sinifa ait gorseller

2.6. Performans Degerlendirme Kriterleri

Calismada kullanilan goriintii siniflandirma modelinin degerlendirilmesi i¢in dogruluk,

hassasiyet, geri cagirma, F1 puani metrikleri kullanilmistir. Bu 6l¢iitlerin hesaplanabilmesi icin

DN YP
YN DP

Pozitif (YP), Yanlis Negatif (YN) verilerine ihtiya¢ duyulmaktadir. Bu verilerden DP; gergek pozitif

karmasiklik matrisi olacak sekilde Dogru Pozitif (DP), Dogru Negatif (DN), Yanlis

orneklerin dogru bir sekilde pozitif olarak tahmin edilmesi, DN; ger¢ek negatif 6rneklerin dogru bir
sekilde negatif olarak tahmin edilmesi, YP; ger¢ek negatif 6rneklerin yanlis bir sekilde pozitif olarak
tahmin edilmesi, YN; ger¢ek pozitif 6rneklerin yanlis bir sekilde negatif olarak tahmin edilmesi
olarak tanimlanmaktadir. Elde edilen bu degerler sayesinde dogruluk, hassasiyet, duyarlilik, F1-puan1

Esitlik 1-4’de gosterildigi sekilde hesaplanmaktadir.

DP + DN

Dogruluk (Accuracy) = P DNTYP YN (1
Hassasiyet(Precision) = DPiPYP 2)
Geri Cagirma(Recall) = DPDfYN (3)
F1 puani(F1Score) = 2x hassasiyet x geri sagirma “)

hassasiyet+ geri cagirma

Bu calismada ayrica Smiflandirma modelinin basarimmi daha kapsamli degerlendirmek
amaciyla ROC egrisi altinda kalan alan (AUC), Cohen’s Kappa katsayis1 ve Matthews Korelasyon
Katsayis1 (MCC) gibi metriklerden de yararlanilmistir.

AUC (Area Under the ROC), modelin pozitif ve negatif siniflar1 ayirt etme yetenegini dlger.
AUC degeri 1'e yaklastik¢a siniflandirma basarimi artar. ROC egrisi tizerinden hesaplanir ve formiilii
genellikle integral {izerinden tanimlanir, ancak dogrudan formiil genellikle verilmez ¢linkii kiimiilatif

TPR (dogru pozitif orani) ve FPR (yanlis pozitif oran1) degerlerine gére hesaplanir.
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Cohen’s Kappa (), rastlantisal dogruluk goz oniine alinarak siniflandirma basarimini 6lger

Esitlik 5°de gosterildigi sekilde hesaplanmaktadir.

— Po ™ Pe (5)

K 1_pe

Esitlik 5°de verilen p, gozlenen dogruluk, p. ise beklenen (rastlantisal) dogruluktur.
Matthews Korelasyon Katsayist (MCC), ikili siniflandirmalarda pozitif ve negatif siniflar

arasindaki korelasyonu degerlendirir ve Esitlik 6’da gosterildigi sekilde hesaplanmaktadir.

e - ((DP x DN) — (YP X YN)) (6)
~ J(OP + YP)(DP + YN)(DN + YP)(DN + YN)

Bu metrikler, modelin genel performansini, siniflar aras1 dengeyi ve hata durumlarii daha net sekilde

yansittigi i¢in 6zellikle dengesiz veri setlerinde dnem kazanmaktadir.

2.7. Transfer Ogrenme Stratejileri

Bu calismada, onceden egitilmis derin 6grenme modelleri olan VGG16, ResNet50 ve
DenseNet121 mimarileri lizerinde iki farkli transfer 0grenme stratejisi uygulanmistir: feature
extraction ve fine-tuning. Her iki strateji, modelin egitim siireci ve ¢ikt1 {izerindeki etkilerini
kiyaslayabilmek amaciyla ayr1 ayr1 degerlendirilmistir. Ozellikle fine-tuning stratejisi, modelin {ist
katmanlarinin yeniden egitilmesine olanak taniyarak, hedef probleme daha uyumlu bir 6grenme
gerceklestirmeyi amaglamaktadir. Literatiirde de belirtildigi iizere, transfer 6grenme yaklagimlarinin
uygulanmasi, modelin mevcut bilgilerini yeni gorevler i¢in kullanmasini saglayarak hem egitim
siiresini azaltmakta hem de basariy1 artirabilmektedir (Firildak & Talu, 2019). Bu kapsamda

uygulanan stratejiler ile elde edilen sonugclar, ilgili boliimlerde karsilastirmali olarak sunulmustur.

3. Bulgular ve Tartisma

Caligmanin bu boliimiinde ii¢ farkl1 veri setinden elde edilen beyin MR goriintiilerden 3kCNN,
VGG16, ResNet50, DenseNet121 modelleri ile glioma, meningioma, tiimorsiiz ve hipofiz olmak
lizere yapilan dort smiflandirma islemi sonucunda elde edilen sonuglar karsilastirmali olarak
sunulmaktadir. Sekil 7°de sonuglarin dogruluk-epoch grafigi, Sekil 8’de kayip — epoch grafikleri,
Sekil 9’da karmasiklik matrisleri, Sekil 10'da 3kCNN modeline ait ROC egrisi grafigi, Sekil 11°de
transfer 6grenme modellerinin feature extraction agsamalarina ait ROC egrisi grafikleri, Sekil 12°de

ise transfer 6grenme modellerinin fine tuning agamalaria ait ROC egrisi grafikleri verilmistir.
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Sekil 10. 3kCNN modeline ait ROC
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Sekil 11. Transfer 6grenme modellerinin feature extraction asamalarina ait ROC egrisi grafikleri.
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Sekil 12. Transfer 6grenme modellerinin fine tuning agamalarina ait ROC egrisi grafikleri.

Beklendigi lizere tekrar sayisi arttikca Sekil 7°de dogrulugun arttig1 Sekil 8’de de kayip oraninin

azaldig1 gozlemlenmektedir. Her bir model i¢in 100 epoch sonunda dogruluk artiginin ve kaybin

azaliginin ¢ok diislik seviyelere indigi goriilmektedir. Bu sebepten ve egitim siiresini daha fazla

uzatmamak adina epoch sayisinin arttirilmasina daha fazla gerek duyulmamistir. Sekil 9°da verilen

karmagiklik matrislerinden gozlemlendigi iizere en az dogrulugu ResNet50 ederken diger lic model

daha basarili smiflandirmalar gergeklestirmistir. Daha iyi siniflandirmalar gerceklestiren bu {i¢

modelde en ¢ok glioma olmas1 gereken siniflar meningioma olarak tahmin edilmistir. Bundan sonra

gdze carpan en hatali siniflandirma 3kCNN modelinin 5 meningioma simnifina ait goriintiiyii timor

yok olarak tahmin etmesidir. Yine li¢ basarimi yiiksek modelin de timdr olmayan 405 goriiniin

tamamini dogru tahmin etmesi de ¢alismanin sonug¢lariin umut verici oldugunu gostermektedir.

Kullanilan tiim modellerinin basarimlarinin daha iyi kiyaslanabilmesi i¢in en ¢ok kullanilan metrikler

izerinde kiyaslamasi yapilmis ve Tablo 4’de sunulmaktadir.
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Tablo 4. Kullanilan modellerin performans karsilagtirmalari

Model Dogruluk Kayip Hassasiyet Geri F1 AUC Cohen’s MCC
Cagirma  Skoru Kappa
CNN 0.9900 0.0314 0.9800 0.9794  0.9796 0.9995 0.9795 0.9796

Resnet50 0.7340  0.6563 0.7389 0.7276 ~ 0.7087 0.9370 0.6171  0.6348
Densenet121  0.9806  0.0445 0.9887 0.9885 0.9885 0.9997 09785 0.9786
VGGl6 0.9905  0.0305 0.9798 09794  0.9795 0.9991 09724 0.9726

Tablo 4’de gosterilen elde edilen sonuglara gore en diisiik dogruluk oranini ResNet50 elde
ederken en yliksek dogruluk oranint VGG16 modeli elde etmistir. VGG16 modelini sirasiyla 3kCNN
ve DenseNetl21 takip etmektedir. Modellerin basarimi F1-Skorlarina gore sarilanmasi ise
DenseNet121, 3kCNN, VGG16 ve ResNet50 olarak gergeklesmistir

Tablo 4’de sunulan genel model basarimlarina ek olarak, bu ¢alismada transfer 6§renme
kapsaminda uygulanan feature extraction ve fine-tuning stratejilerinin etkileri de ayr1 ayn
degerlendirilmistir. Bu kapsamda elde edilen model sonuglar1 karsilagtirmali olarak Tablo 5'de
sunulmakta ve her iki stratejinin siniflandirma basarisi iizerindeki etkisi detayli bi¢imde ortaya

konmaktadir.

Tablo 5. Modellerin farkli transfer 6grenme stratejilerine gore elde ettikleri basar1 degerleri.

Model Strateji Dogruluk Kayip AUC  Cohen’s Kappa  MCC
Feature 0,7276 0,6025 0,9370 0,6171 0,6348
Extraction
Resnet50
Fine Tuning 0,9969 0,0107 1,0000 0,9980 0,9980
Feature 0,9805 0,0654 0,9997 0,9785 0,9786
Extraction
Densenetl21
Fine Tuning 0,9935 0,0196 1,0000 0,9908 0,9908
Feature 0,9823 0,0644 0,9991 0,9724 0,9726
Extraction
VGG16
Fine Tuning 0,9896 0,0326 0,9999 0,9877 0,9877

Tablo 5'de yer alan sonuglar incelendiginde, fine-tuning stratejisinin i¢ modelde de feature
extraction yontemine kiyasla daha yiiksek dogruluk ve daha diisiik kayip degerleri sagladigi
goriilmektedir. Ozellikle ResNet50 modelinde fine-tuning sonrast dogruluk oran1 %99,69'a ulasirken,
AUC degeri 1.0000 olarak hesaplanmistir. Bu, fine-tuning stratejisinin modelin genelleme yetenegini
onemli dlciide artirdigini gostermektedir. DenseNet121 ve VGG16 modellerinde ise her iki strateji de

yiiksek basarimlar gostermis; ancak fine-tuning, Cohen’s Kappa ve MCC gibi istatistiksel uyum
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Olciitlerinde kiiciik farklarla da olsa daha iistiin performans sergilemistir. Bu bulgular, transfer
O0grenme uygulamalarinda yalnizca 6nceden egitilmis agirliklarin kullanilmasiyla yetinmenin her
zaman yeterli olmayabilecegini; modelin belirli katmanlarinin yeniden egitilmesinin, hedef veri
setine daha iyi adapte olunmasini sagladigini ortaya koymaktadir.

Elde edilen sonuglara gére beyin MR goriintiilerinden tiimdr tespiti yapmak icin 3kCNN,
DenseNetl21 ve VGGI6 modellerinin  kullanilmasinin  pozitif  sonuglar  doguracagi
degerlendirilmektedir. ResNet50 modelinin ise 0.7340 dogruluk oraniyla bdylesi hassas bir konuda
tahmin i¢in kullanilmasmin uygun olmadigi goriisiine varilmaktadir. Basarimi yiiksek ii¢ model
arasinda ise dogruluk anlaminda ¢ok ufak farklar bulunmaktadir. Bu sebepten egitim siiresi daha kisa
olan basit bir yapiyla kurulan 3kCNN modelinin kullanilmasinin diger modellere gore siire agisindan

daha avantajli olacagi degerlendirilmektedir.

4. Sonuclar ve Oneriler

Beyin tiimorii gibi dnemli bir hastaligin erken ve dogru teshisi hayati bir 6nem tasimaktadir.
Bu sebeple bu calismada, beyin MR goriintiileri kullanilarak beyin tlimoriiniin tespit edilmesi ve
smiflandirilmast i¢in derin d6grenme tabanli yontemler kullanilmistir ve kiyaslanmigtir. Yapilan
calismada geleneksel evrisimsel sinir aglarinin yaninda {i¢ farkli 6grenme aktarim mimarisi test
edilerek elde edilen sonuglar hem gorsel hem de sayisal olarak degerlendirilmistir. Mimarilerin
ortalama dogruluk basarimi {i¢ katmanli evrisimsel sinir ag1 i¢in %99,00 olarak goézlemlenirken
transfer 0grenme modellerinden olan ResNet50 i¢in %73,40, DenseNetl121 i¢in %98,06 ve VGG16
icin %99,05 olarak hesaplanmistir. VGG16 mimarisinin ufak bir farkla kullanilan diger mimarilere
oranla daha basarili sonuclar iirettigini goriilmiistiir. Onerilen DenseNet121, ii¢ katmanli evrisimsel
sinir ag1 ve VGG16 modellerinin erken teshis de faydasi olacagi bununda hastanin tedavi thtimalini
arttiracagl ongoriilmektedir. Bu ¢aligma sonucunda insan hayatini riske atan bir hastalifin erken
teshisinde faydali olabilecek birden ¢ok sistem kiyaslanmis ve sonuglar umut verici olarak
goriilmiistiir.

Yapilan bu ¢alisma, literatiirde beyin MR goriintiilerinden tiimdr tespiti iizerine yapilan giincel
calismalarla kiyaslandiginda hem yontemsel ¢esitlilik hem de elde edilen yiiksek bagarimlar agisindan
onemli katkilar sunmaktadir. Literatiirde Shahzadi ve ark. (2019), VGGNet-LSTM ile %84 dogruluk
elde ederken; Afshar ve ark. (2019) 6nerdikleri CNN modeliyle %86.56 dogruluga ulagmistir. Saxena
ve ark. (2021), ResNet50 modelinde %95 dogruluk orani bildirmistir. Bu calismada ise transfer
ogrenme stratejileri kullanilarak DenseNet121 ile %98.06, VGG16 ile %99.05 dogruluk oranlarina
ulasilmistir. Ayrica, 6nerilen 3 katmanli CNN modeli de %99 dogrulukla dikkat ¢ekici bir performans

gostermistir.
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Bu dogrultuda, yaygin transfer Ogrenme mimarilerinin performanslari dogrudan
karsilastirilarak, hangi modellerin tibbi goriintii siniflandirma gorevlerinde daha uygun olabilecegi
degerlendirilmistir. Bu durum, derin 6§renme temelli otomatik teshis sistemlerinin etkinligini artirma
ve uzmanlara destek olabilecek karar destek sistemlerinin gelistirilmesine katki saglama agisindan
literatiire anlaml1 bir yenilik sunmaktadir

Gelecek ¢aligsmalarimizda farkli siniflara ait beyin tlimorlerini tespit edebilmek amaciyla daha
fazla veri igeren veri kiimeleri tizerinde yeni modeller olusturulmasi hedeflenmektedir. Bunun yani
sira kullanilan 6grenme aktarimi modelleri ¢esitlendirilmesi farkli veri 6n isleme yontemlerinin
denenmesi, farkli egitim yontemleri kullanilarak egitim siiresinin kisaltilmasi, hiperparametre
segimlerinin farkli optimizasyon yontemleri ile elde edillmesi hedeflenmektedir. Ozellikle cok smifls
simiflandirma problemlerinde modelin genellenebilirligini daha giivenilir bicimde degerlendirmek
icin ¢apraz dogrulama (cross-validation) yontemlerinin kullanim1 olduk¢a 6nemlidir. Bu ¢aligmada
sabit bir test seti ile degerlendirme yapilmis olsa da ilerideki ¢alismalarimizda k-fold cross validation
gibi yontemlerin uygulanmasi planlanmaktadir. Ayrica bundan sonraki ¢alismalarda state-of-the-art

derin 6grenme modelleri kullanilmasi da hedeflenmektedir.

Yazarlarin Katkisi

Tiim yazarlar caligsmaya esit katkida bulunmustur.

Cikar Catismasi1 Beyani

Yazarlar arasinda herhangi bir ¢ikar ¢atismasi bulunmamaktadir.

Arastirma ve Yayin Etigi Beyam

Yapilan caligmada arastirma ve yayin etigine uyulmustur.
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