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Abstract  Keywords 

In this paper, two different meshfree method with radial basis functions (RBFs) is 

proposed to solve Boussinesq-type (Bq) equations. The basic conservative properties 

of the equation are investigated by computing the numerical values of the motion’s 

invariants. The accuracy of the method is tested using computational tests to simulate 

solitary waves in terms of 𝐿_∞ error norm. The outcomes are contrasted with 

analytical solution and a few other earlier studies in the literature. The results show 

that meshless methods are very effective and accurate.  
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1. INTRODUCTION 
 

The Boussinesq equation is a well-known partial differential equation used in fluid mechanics to model 

the behavior of shallow water waves. It was first introduced by the French mathematician Joseph 

Boussinesq in the late 19th century [1]. The equation is a simplified version of the Navier-Stokes 

equations, and it is often used as an approximation for modeling wave propagation in a wide range of 

applications. The Boussinesq equation:  

 𝑢𝑡𝑡 = 𝑢𝑥𝑥 + (𝑢2)𝑥𝑥 + 𝑞𝑢𝑥𝑥𝑥𝑥 (1.1) 

where 𝑢 = 𝑢(𝑥, 𝑡) is a sufficiently differentiable function and 𝑞 is a real constant. When 𝑞 = −1 

Boussinesq equation (Bq) is called "good" or "well-posed" (GBq) and when 𝑞 = 1 is called "bad" or 

"ill-posed" (BBq). An improved version of Boussinesq equation (Bq) is Improved Boussinesq (IBq) 

equation given as follows:  

 𝑢𝑡𝑡 = 𝑢𝑥𝑥 + (𝑢2)𝑥𝑥 + 𝑢𝑥𝑥𝑡𝑡 (1.2) 

The Boussinesq type equatios has been solved by using a variety of numerical methods. In [2], 

Manoranjan et al. used Petrov-Galerkin method to get numerical solution of (GBqE). Then, Manoranjan 

et al. [3] examined the interaction of solitary waves and underlined three essential characteristics of 
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solitary waves. Bratsos [4] used method of lines approach to get solution of Bq equation. Pani and 

Saranga [5] employed the finite element Galerkin method, while Ortega and Serna [6] developed the 

finite difference method to solve the (GBqE). The Boussinesq equation was solved numerically by El-

Zoheiry [7] using an implicit finite difference scheme, and Wazwaz [8] suggested the Adomian 

decomposition method. Ismail and Bratsos [9] predictor-corrector scheme to obtain numerical solutions 

to the (GBq) and (BBq) equations. Additionally, the third order implicit finite difference method has 

been used to solve the (GBqE) by Bratsos [10, 11]. He used modified Predictor-Corrector and Predictor-

Corrector techniques to solve the equation. For the numerical solution of the Boussinesq equation, 

Dehghan and Salehi [12] combined the boundary knot method and meshless analog equation approach. 

In addition, Ucar et al. [13] applied Galerkin FEM to the (BqE) using cubic B-spline basis, and Ismail 

and Mosally [14] created a fourth-order FDM for approximating solutions to the (GBqE). Kırlı and Irk 

[15] gave numerical solutions of (GBqE) by using the quartic B-spline Galerkin method. Zhijian [16] 

investigated the existence and uniqueness of solutions, and non-existence of global solutions to the 

initial-boundary value problem of a generalized IBq equation both locally and globally in time. In order 

to discretize the nonlinear partial differential equation in space, Lin et al. [17] used the finite element 

method with linear B-spline basis functions. They then developed a second-order system using only 

ordinary derivatives to solve a class of initial-boundary value problems for the improved Boussinesq 

equation. Iskandar and Jain [18] used numerical analysis to examine the dynamical behavior of the IBq 

equation. Irk and Dag [19] used two finite difference schemes and two finite element approaches, based 

on the second- and third-order temporal discretization, to achieve numerical simulations of the improved 

Boussinesq equation. 

The objective of the current work is to use meshless radial basis functions collocation method and 

meshless kernel based method of lines to obtain the numerical solution of Boussinesq type equations. 

Thus, to obtain the numerical solution of the Boussinesq type equations, radial basis functions in the 

mesh free approach will be employed. Different types of radial basis functions can be found in literature. 

We’ll employ the widely used radial basis functions. 

 

2. THE MESHLESS RBF COLLOCATION METHOD 

 

First, let us introduce the Meshless RBF Collocation Method that we will use in this section. This method 

is a meshless method (MRBFCM) and was first used by Kansa [20, 21]. To apply the method, let us 

approximate the function 𝑢(𝑥, 𝑡) in equations (1.1) and (1.2) by a linear combination of radial basis 

functions: 

 

 𝑢(𝑥) = ∑𝑁
𝑗=1 𝜆𝑗𝜙𝑖(𝑟𝑗),    𝑖 = 1,2, … , 𝑁 (2.1) 

 

In equation (2.1) {𝜆𝑗}
𝑗

𝑁
 are the unknown coefficients to be determined and the 𝜙𝑖(𝑟𝑗) are radial basis 

functions. The formulas of the used basis functions are defined as follows:  

 Multiquadric 

(MQ)  
 𝜙(𝑟𝑗) = √(𝜀𝑟𝑗)2 + 1  

Gaussian (GA)   𝜙(𝑟𝑗) = 𝑒𝑥𝑝(−𝑟𝑗
2/𝜀2)  
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 where 𝜀 is a shape parameter that the method automatically calculates for each kernel matrix 

that is used and 𝑟𝑗 = |𝑥 − 𝑥𝑗| represents the Euclidean norm between 𝑥 and 𝑥𝑗. Wendland’s functions 

[22] are a class of compactly supported radial basis function and have the following general form:  

 𝜙𝑙,𝑘(𝑟) = (1 − 𝑟)+
𝑛 𝑝𝑙,𝑘(𝑟) 

with following conditions:  

 (1 − 𝑟)+
𝑛 = {

(1 − 𝑟)𝑛, if0 ≤ 𝑟 < 1
0, if𝑟 ≥ 1

 

where 𝑝 is a prescribed polynomial for 𝑘 ≥ 1 and 𝑙 is the dimension number. In our calculations, 

following form of Wendland’s function is used:  

 𝜙7,5(𝑟) = (1 − 𝑟)+
12(9 + 108𝑟 + 566𝑟2 + 1644𝑟3 + 2697𝑟4 + 2048𝑟5) 

For ease of notation in tables 𝜙𝑙,𝑘(𝑟) will be used as 𝑊. 

We write meshless methods the following form equation (1.1) by using 𝑢𝑡 = 𝑣 then we get 

 

 
𝑢𝑡 = 𝑣,

𝑣𝑡 = 𝑢𝑥𝑥 + 2((𝑢𝑥)2 + 𝑢𝑥𝑥𝑢) + 𝑞𝑢𝑥𝑥𝑥𝑥.
 (2.2) 

 System (2.2) is discretized by using a forward difference rule for 𝑢𝑡 and a Crank–Nicolson scheme for 

𝑢 between successive time levels as follows 

 

 
𝑢𝑛+1−𝑢𝑛

Δ𝑡
=

𝑣𝑛+1+𝑣𝑛

2
, 

 
𝑣𝑛+1−𝑣𝑛

Δ𝑡
=

𝑢𝑥𝑥
𝑛+1+𝑢𝑥𝑥

𝑛

2
+ 2

[(𝑢𝑥
2)

𝑛+1
+(𝑢𝑥

2)
𝑛

]

2
+ 2

[(𝑢𝑢𝑥𝑥)𝑛+1+(𝑢𝑢𝑥𝑥)𝑛]

2
+ 𝑞

𝑢𝑥𝑥𝑥𝑥
𝑛+1 +𝑢𝑥𝑥𝑥𝑥

𝑛

2
 

 where 𝑢𝑥
2 and 𝑢𝑢𝑥𝑥 are nonlinear terms and by using Taylor’s formula we obtain their linear forms [23],  

 (𝑢𝑥𝑢𝑥)𝑛+1 = 𝑢𝑥
𝑛𝑢𝑥

𝑛+1 + 𝑢𝑥
𝑛𝑢𝑥

𝑛+1 − 𝑢𝑥
𝑛𝑢𝑥

𝑛 

and  

 (𝑢𝑢𝑥𝑥)𝑛+1 = 𝑢𝑥𝑥
𝑛 𝑢𝑛+1 + 𝑢𝑛𝑢𝑥𝑥

𝑛+1 − 𝑢𝑛𝑢𝑥𝑥
𝑛 . 

Thus, we get following linearized difference equation by substituting these linear forms: 

 

 𝑢𝑛+1 −
Δ𝑡

2
𝑣𝑛+1 = 𝑢𝑛 +

Δ𝑡

2
𝑣𝑛, 

 𝑣𝑛+1 −
Δ𝑡

2
𝑢𝑥𝑥

𝑛+1 − 2Δ𝑡𝑢𝑥
𝑛+1𝑢𝑥

𝑛 − Δ𝑡𝑢𝑛𝑢𝑥𝑥
𝑛+1 − Δ𝑡𝑢𝑛+1𝑢𝑥𝑥

𝑛 −
𝑞Δ𝑡

2
𝑢𝑥𝑥𝑥𝑥

𝑛+1 = 𝑣𝑛 +
Δ𝑡

2
𝑢𝑥𝑥

𝑛 +
𝑞Δ𝑡

2
𝑢𝑥𝑥𝑥𝑥

𝑛  
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For each time iteration, by substituting 

 

 𝑢(𝑥) = ∑𝑁
𝑗=1 𝜆𝑗𝜙𝑖(𝑟𝑗),    𝑖 = 1,2, … , 𝑁 (2.3) 

 and  

 𝑣(𝑥) = ∑𝑁
𝑗=1 𝛾𝑗𝜙𝑖(𝑟𝑗),    𝑖 = 1,2, … , 𝑁 (2.4) 

 following form of linear equations system is obtained: 

 

∑𝑁
𝑗=1 𝜆𝑗

𝑛+1𝜙𝑖(𝑟𝑗) −
Δ𝑡

2
∑𝑁

𝑗=1 𝛾𝑗
𝑛+1𝜙𝑖(𝑟𝑗) = ∑𝑁

𝑗=1 𝜆𝑗
𝑛𝜙𝑖(𝑟𝑗) +

Δ𝑡

2
∑𝑁

𝑗=1 𝛾𝑗
𝑛𝜙𝑖(𝑟𝑗),

∑𝑁
𝑗=1 𝛾𝑗

𝑛+1𝜙𝑖(𝑟𝑗) −
Δ𝑡

2
∑𝑁

𝑗=1 𝜆𝑗
𝑛+1𝜙𝑖

′′(𝑟𝑗) − 2Δ𝑡 ∑𝑁
𝑗=1 𝜆𝑗

𝑛+1𝜙𝑖
′(𝑟𝑗) ∑𝑁

𝑗=1 𝜆𝑗
𝑛𝜙𝑖

′(𝑟𝑗)

−Δ𝑡 ∑𝑁
𝑗=1 𝜆𝑗

𝑛+1𝜙𝑖
′′(𝑟𝑗) ∑𝑁

𝑗=1 𝜆𝑗
𝑛𝜙𝑖(𝑟𝑗) − Δ𝑡 ∑𝑁

𝑗=1 𝜆𝑗
𝑛𝜙𝑖

′′(𝑟𝑗) ∑𝑁
𝑗=1 𝜆𝑗

𝑛+1𝜙𝑖(𝑟𝑗) −
𝑞Δ𝑡

2
∑𝑁

𝑗=1 𝜆𝑗
𝑛+1𝜙𝑖

′′′′(𝑟𝑗)

= ∑𝑁
𝑗=1 𝛾𝑗

𝑛𝜙𝑖(𝑟𝑗) +
Δ𝑡

2
∑𝑁

𝑗=1 𝜆𝑗
𝑛𝜙𝑖

′′(𝑟𝑗) +
𝑞Δ𝑡

2
∑𝑁

𝑗=1 𝜆𝑗
𝑛𝜙𝑖

′′′′(𝑟𝑗)

 (2.5) 

 When similar steps are applied for equation (1.2) we get 

 

∑𝑁
𝑗=1 𝜆𝑗

𝑛+1𝜙𝑖(𝑟𝑗) −
Δ𝑡

2
∑𝑁

𝑗=1 𝛾𝑗
𝑛+1𝜙𝑖(𝑟𝑗) = ∑𝑁

𝑗=1 𝜆𝑗
𝑛𝜙𝑖(𝑟𝑗) +

Δ𝑡

2
∑𝑁

𝑗=1 𝛾𝑗
𝑛𝜙𝑖(𝑟𝑗),

∑𝑁
𝑗=1 𝛾𝑗

𝑛+1𝜙𝑖(𝑟𝑗) −
Δ𝑡

2
∑𝑁

𝑗=1 𝜆𝑗
𝑛+1𝜙𝑖

′′(𝑟𝑗) − 2Δ𝑡 ∑𝑁
𝑗=1 𝜆𝑗

𝑛+1𝜙𝑖
′(𝑟𝑗) ∑𝑁

𝑗=1 𝜆𝑗
𝑛𝜙𝑖

′(𝑟𝑗)

−Δ𝑡 ∑𝑁
𝑗=1 𝜆𝑗

𝑛+1𝜙𝑖
′′(𝑟𝑗) ∑𝑁

𝑗=1 𝜆𝑗
𝑛𝜙𝑖(𝑟𝑗) − Δ𝑡 ∑𝑁

𝑗=1 𝜆𝑗
𝑛𝜙𝑖

′′(𝑟𝑗) ∑𝑁
𝑗=1 𝜆𝑗

𝑛+1𝜙𝑖(𝑟𝑗) + ∑𝑁
𝑗=1 𝛾𝑗

𝑛+1𝜙𝑖
′′(𝑟𝑗)

= ∑𝑁
𝑗=1 𝛾𝑗

𝑛𝜙𝑖(𝑟𝑗) +
Δ𝑡

2
∑𝑁

𝑗=1 𝜆𝑗
𝑛𝜙𝑖

′′(𝑟𝑗) + ∑𝑁
𝑗=1 𝛾𝑗

𝑛𝜙𝑖
′′(𝑟𝑗).

(2.6) 

 By solving these systems at each time step values of 𝜆 and 𝛾 are obtained. Substituting computed values 

of 𝜆𝑗 and 𝛾𝑗 in (2.3) and (2.4) numerical values of 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) are evaluated. 

3. THE MESHLESS KERNEL BASED METHOD OF LINES  

 

The meshless kernel based method of lines (MKBMOL), a second numerical method, will be 

utilized to find the numerical solution to the Boussinesq type equations. Since this meshles approach 

generates ordinary differential equations, temporal discretization is not required, and the nonlinear 

partial differential equation will not be artificially linearized as in the first method. where the kernel 

function is a radial basis function. 

 𝑢(𝑥, 𝑡) = ∑𝑁
𝑗=1 𝛼𝑗(𝑡)𝜙𝑖(𝑥), 𝑣(𝑥, 𝑡) = ∑𝑁

𝑗=1 𝛽𝑗(𝑡)𝜙𝑖(𝑥) 

where 𝛼𝑗(𝑡), 𝛽𝑗(𝑡) are unknown time-dependent functions to be determined each time level as column 

vectors and 𝜙𝑖(𝑥) are defined by any well-known radial basis functions. Derivatives in Equation (1.1) 

with respect to time and space variables can be described as:  

 

𝑢𝑡(𝑥, 𝑡) = ∑𝑁
𝑗=1 𝛼𝑗

′(𝑡)𝜙𝑖(𝑥),    𝑣𝑡(𝑥, 𝑡) = ∑𝑁
𝑗=1 𝛽𝑗

′(𝑡)𝜙𝑖(𝑥)

𝑢𝑥(𝑥, 𝑡) = ∑𝑁
𝑗=1 𝛼𝑗(𝑡)𝜙𝑖

′(𝑥),    𝑢𝑥𝑥(𝑥, 𝑡) = ∑𝑁
𝑗=1 𝛼𝑗(𝑡)𝜙𝑖

′′(𝑥)

𝑢𝑥𝑥𝑥𝑥(𝑥, 𝑡) = ∑𝑁
𝑗=1 𝛼𝑗(𝑡)𝜙𝑖

′′′′(𝑥)

 (3.1) 
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By substituting (3.1) and its derivatives in the main (1.1) we get: 

 

∑𝑁
𝑗=1 𝛼𝑗

′(𝑡)𝜙𝑖(𝑥) = ∑𝑁
𝑗=1 𝛽𝑗(𝑡)𝜙𝑖(𝑥),

∑𝑁
𝑗=1 𝛽𝑗

′(𝑡)𝜙𝑖(𝑥) = ∑𝑁
𝑗=1 𝛼𝑗(𝑡)𝜙𝑖

′′(𝑥) + 2(∑𝑁
𝑗=1 𝛼𝑗(𝑡)𝜙𝑖

′(𝑥))
2

+ 2 ∑𝑁
𝑗=1 𝛼𝑗(𝑡)𝜙𝑖

′′(𝑥) ∑𝑁
𝑗=1 𝛼𝑗(𝑡)𝜙𝑖(𝑥)

+𝑞 ∑𝑁
𝑗=1 𝛼𝑗(𝑡)𝜙𝑖

′′′′(𝑥)

 (3.2) 

 The system (3.2) can be written with matlab notations  

 
𝑉 ∗ 𝛼′(𝑡) = 𝑉 ∗ 𝛽(𝑡),

𝑉 ∗ 𝛽′(𝑡) = 𝑉′′ ∗ 𝛼(𝑡) + 2(𝑉′ ∗ 𝛼(𝑡))2 + 2(𝑉′′ ∗ 𝛼(𝑡))(𝑉 ∗ 𝛼(𝑡)) + 𝑞𝑉′′′′ ∗ 𝛼(𝑡)
 (3.3) 

 where the ∗ is the pointwise product. Since matrice 𝑉 is invertible we get:  

 
𝛼′(𝑡) = 𝑉−1 ∗ (𝑉 ∗ 𝛽(𝑡)),

𝛽′(𝑡) = 𝑉−1 ∗ (𝑉′′ ∗ 𝛼(𝑡) + 2(𝑉′ ∗ 𝛼(𝑡))2 + 2(𝑉′′ ∗ 𝛼(𝑡))(𝑉 ∗ 𝛼(𝑡)) + 𝑞𝑉′′′′ ∗ 𝛼(𝑡))

 (3.4) 

 When similar steps are applied for equation (1.2) we get  

 
𝛼′(𝑡) = 𝑉−1 ∗ (𝑉 ∗ 𝛽(𝑡)),

𝛽′(𝑡) = (𝑉 − 𝑉′′)−1 ∗ (𝑉′′ ∗ 𝛼(𝑡) + 2(𝑉′ ∗ 𝛼(𝑡))2 + 2(𝑉′′ ∗ 𝛼(𝑡))(𝑉 ∗ 𝛼(𝑡)))
 (3.5) 

 

where 𝑉 is defined as follows:  

 𝑉 = 𝜙𝑖(𝑥𝑗). 

The MATLAB ode solver can be used to solve system 3.4 and 3.5 which are first-order differential 

equations. We utilized the Adams-Bashforth-Moulton approach i.e ode113 for our computations. 

4. NUMERICAL EXAMPLES  

 

In this section, we give solutions of Boussinesq type equations for proposed methods. The 

accuracy of the solutions are tested by maximum error 𝐿∞ 

 

 𝐿∞ = ‖𝑢 − 𝑈𝑁‖∞ = max
𝑗

|𝑢𝑗 − 𝑈𝑗| 

 The order of convergence is calculated by following formula:  

 order =
log|

(𝐿∞)Δ𝑡𝑖
(𝐿∞)Δ𝑡𝑖+1

|

log|
Δ𝑡𝑖

Δ𝑡𝑖+1
|

 

Here (𝐿∞)Δ𝑡𝑖
 is the error norm 𝐿∞ for the time step Δ𝑡𝑖. 
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Since the difference between the figures for both methods is indistinguishable, we have given a 

single graph for each method. 

 

4.1. Numerical Results For GBqE  

 

     We consider the GBqE which is Eq. (1.1) with 𝑞 = −1. 

4.1.1. The Single Soliton Wave  

 

The initial conditions from the analytic solution for GBqE is as given: 

 

𝑢(𝑥, 0) = −𝐴𝑠𝑒𝑐ℎ2 (√
𝐴

6
(𝑥 − �̅�0))

𝑢𝑡(𝑥, 0) = −2𝐴𝑐√
𝐴

6
𝑠𝑒𝑐ℎ2 (√

𝐴

6
(𝑥 − �̅�0)) tanh (√

𝐴

6
(𝑥 − �̅�0)) .

 

The exact solution of this test problem is given by  

 𝑢(𝑥, 𝑡) = −𝐴𝑠𝑒𝑐ℎ2 (√
𝐴

6
(𝑥 − 𝑐𝑡 − �̅�0)) − (𝑏 + 1/2) 

and boundary conditions can be found with the help of exact solutions. In the exact solution, 𝑐 =

√1 − 2𝐴/3 is the speed of the soliton wave and 𝐴 is the amplitude of the soliton wave. 

We worked over the solution domain −80 ≤ 𝑥 ≤ 100 and the time interval 0 ≤ 𝑡 ≤ 30 for 𝐴 =

0.369, 𝑏 =
−1

2
, ℎ = 0.5 and 0.3, �̅�0 = 0 and Δ𝑡 = 0.002. Table 1. lists the results of meshless 

approaches employing Multiquadric, Gaussian and Wendland functions. Meshless approaches are 

thought to offer superior precision. The calculated numerical results are excellent. Figure 1. shows the 

trajectory of a single solitary wave for GBqE. The error norm 𝐿∞ and rate of convergence for both 

proposed methods are listed in Table 2. for [−40,40]  space interval and  𝐴 = 0.5, �̅�0 = 0, space step 

ℎ = 0.1, and various time steps Δ𝑡 = 5,2,1,0.5,0.2,0.1 at time 𝑡 = 10. The results in Tables 1 and 2, 

shows proposed methods are considerable good in comparison with other methods. It is observed from 

Table 2 that the orders of the proposed methods converge to 2 for MRBFCM and 0.52 for MKBMOL. 

  

Table 1. The error norm 𝐿∞ of numerical solutions of GBqE. 

  ℎ   RBF-MQ   RBF-G   RBF-W   MOL-MQ   MOL-G   MOL-W   [15]  

 0.5   4.2136e-04   9.0293e-08   2.1516e-04   8.0420e-04   7.4523e-10   7.5896e-05   8.4650e-08  

 0.3   4.3005e-04   9.0397e-08   2.5410e-04   5.3194e-04   1.6384e-09   5.6709e-04   3.6130e-09  
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     Figure 1.  Motion of the single solitary wave for GBqE. 

  

 Table 2. The error norm and order of convergence. 

    MRBFCM   MKBMOL  

 Δ𝑡   𝐿∞   Order   𝐿∞   Order  

 5   1.36 × 10−1   1.21   2.46 × 10−7   0.40  

 2   4.49 × 10−2   1.76   2.46 × 10−7   0.52  

 1   1.32 × 10−2   2.06   2.46 × 10−7   0.52  

 0.5   3.17 × 10−3   2.01   2.46 × 10−7   0.52  

 0.2   5.01 × 10−4   2.00   2.46 × 10−7   0.52  

 0.1   1.25 × 10−4     2.46 × 10−7    

  

4.1.2. Interaction of Two Soliton Waves  

 

The following initial conditions are used to study the problem of two soliton waves interaction 

for GBqE  

 

 
𝑢(𝑥, 0) = 𝑢1(𝑥, 0) + 𝑢2(𝑥, 0),
𝑣(𝑥, 0) = 𝑣1(𝑥, 0) + 𝑣2(𝑥, 0),

 

where  
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𝑢𝑖(𝑥, 0) = −𝐴𝑖𝑠𝑒𝑐ℎ2 [√
𝐴𝑖

6
(𝑥 − 𝑥𝑖

0)] ,

𝑣𝑖(𝑥, 0) = −2𝐴𝑖𝑐𝑖√
𝐴𝑖

6
𝑠𝑒𝑐ℎ2 [√

𝐴𝑖

6
(𝑥 − 𝑥𝑖

0)] tanh [√
𝐴𝑖

6
(𝑥 − 𝑥𝑖

0)] ,

𝑐𝑖 = ± (1 −
2𝐴𝑖

3
)

1

2
,    𝑖 = 1,2.

 

By selecting the parameters 𝑥1
0 = −𝑥2

0 = −50, 𝐴1 = 𝐴2 = 0.369, 𝑐1 = −𝑐2 = √1 − 2𝐴/3, ℎ = 0.1, 

and Δ𝑡 = 0.01 the computations are performed. These parameters produce two separate soliton waves 

located at 𝑥1
0 = −50 and 𝑥2

0 = 50, respectively. The program runs over the range 𝑥 ∈ [−100,100] up 

until time 𝑡 = 120. Figure 1 shows the interaction of two soliton waves. The figure illustrates how the 

waves collide and appear as a single wave around 𝑡 = 60. 

 

   

Figure 2. Interaction of two solitons for GBqE. 

4.2. Numerical Results For BBqE  

 

      We consider the BBqE which is Eq. (1.1) with 𝑞 = 1. 

4.2.1. The Single Soliton Wave  

 

     The initial conditions from the analytic solution for BBqE is as given: 

 

𝑢(𝑥, 0) = 𝐴𝑠𝑒𝑐ℎ2 (√
𝐴

6
(𝑥 − �̅�0))

𝑢𝑡(𝑥, 0) = 2𝐴𝑐√
𝐴

6
𝑠𝑒𝑐ℎ2 (√

𝐴

6
(𝑥 − �̅�0)) tanh (√

𝐴

6
(𝑥 − �̅�0))

 

For various space and time steps, numerical solutions of the single wave with amplitude 𝐴 = 0.369 are 

obtained. The error norms 𝐿∞ is computed for 𝐴 = 0.369, ℎ = 4 and 𝑥 ∈ [−80,100]. The obtained 

results with the MQ, G, and Wendland’s functions are compared with the Ref. [13] and presented in 

Table 2. We run the program till 𝑡 = 72 to demonstrate the motion of a single wave. As can be observed 
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from the Figure 2, there are secondary waves whose amplitudes increase and fluctuating with each time 

step. 

 

Table 3. The error norm 𝐿∞ of numerical solutions of BBqE.  

  Δ𝑡   𝑡   RBF-MQ   RBF-G   RBF-W   MOL-MQ   MOL-G   MOL-W   [13]  

 0.1   36   0.041749   0.038566   0.044717   0.041761   0.038649   0.045754   0.0118  

   72   0.059383   0.061030   0.065906   0.064723   0.062128   0.066795   0.0207  

 0.01   36   0.041454   0.038890   0.045719   0.042825   0.038649   0.045684   0.0118  

   72   0.058355   0.061452   0.066536   0.060705   0.071248   0.066795   0.0207  

  

   

Figure 3.  Motion of the single solitary wave for BBqE. 

  

4.2.2. Interaction of Two Soliton Waves  

 

The following initial conditions are used to study the problem of two soliton waves interaction 

for BBqE 

 

 
𝑢(𝑥, 0) = 𝑢1(𝑥, 0) + 𝑢2(𝑥, 0),
𝑣(𝑥, 0) = 𝑣1(𝑥, 0) + 𝑣2(𝑥, 0),

 

where  
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𝑢𝑖(𝑥, 0) = 𝐴𝑖𝑠𝑒𝑐ℎ2 [√
𝐴𝑖

6
(𝑥 − 𝑥𝑖

0)] ,

𝑣𝑖(𝑥, 0) = 2𝐴𝑖𝑐𝑖√
𝐴𝑖

6
𝑠𝑒𝑐ℎ2 [√

𝐴𝑖

6
(𝑥 − 𝑥𝑖

0)] tanh [√
𝐴𝑖

6
(𝑥 − 𝑥𝑖

0)] ,

𝑐𝑖 = ± (1 −
2𝐴𝑖

3
)

1

2
,    𝑖 = 1,2.

 

We examine the interaction of two waves travelling toward each other by using 𝐴𝑖 as the wave 

amplitudes, 𝑥𝑖
0 as the beginning locations, and 𝑐𝑖(𝑐1 = 𝑐2) as the wave speeds. The waves are situated 

at 𝑥1
0 = −40 and 𝑥2

0 = 40, with the interval being taken as 𝑥 ∈ [−150,150]. Figure 9 shows the results 

for waves with same amplitudes 𝐴1 = 𝐴2 = 0.369 and ℎ = 4, Δ𝑡 = 0.1, 𝑡 = 72. We can infer that the 

waves interact and combine to generate a single wave whose amplitude is greater than the sum of its 

components. 

 

  

Figure 4. Motion of the two solitary wave interaction for BBqE. 

4.3. Numerical Results For IBqE  

 

     We consider the IBqE which is Eq. (1.2). 

4.3.1. The Single Soliton Wave  

The initial conditions for IBqE is as given: 

 

𝑢(𝑥, 0) = 𝐴𝑠𝑒𝑐ℎ2 (
1

𝑐
√

𝐴

6
(𝑥 − �̅�0))

𝑢𝑡(𝑥, 0) = 2𝐴𝑐√
𝐴

6
𝑠𝑒𝑐ℎ2 (

1

𝑐
√

𝐴

6
(𝑥 − �̅�0)) tanh (

1

𝑐
√

𝐴

6
(𝑥 − �̅�0))

 

The exact solution of this test problem is given by 

 𝑢(𝑥, 𝑡) = 𝐴𝑠𝑒𝑐ℎ2 (
1

𝑐
√

𝐴

6
(𝑥 − 𝑐𝑡 − �̅�0)) ;     𝑐 = ± (1 +

2𝐴

3
)

1

2
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and boundary conditions can be found from the exact solutions. In the exact solution, 𝑐 is the speed and 

𝐴 is the amplitude of the soliton wave. Table 3 shows error norm 𝐿∞ with mesh size ℎ = 0.25 for 

amplitudes 𝐴 = 0.25 and 𝐴 = 0.5. Table 4 shows comparition of error norm 𝐿∞ with [24] for mesh size 

ℎ = 0.5 and amplitudes 𝐴 = 0.25 and 𝐴 = 0.5. Figure 4 demonstrates the solutions of the solitary wave 

for ℎ = 0.5, Δ𝑡 = 0.01 and 𝐴 = 0.5 at different time levels. The graphic makes it clear that, as time 

goes on, the single wave advances steadily to the right while maintaining a nearly constant amplitude. 

 Table 4. The error norm 𝐿∞ of numerical solutions of IBqE with ℎ = 0.25. 

  A   Δ𝑡   RBF-MQ   RBF-G   RBF-W   MOL-MQ   MOL-G   MOL-W   [24]  

 0.25   0.025   2.0333e-05   4.1073e-05   2.0896e-05   1.7517e-04   3.7115e-05   5.1494e-04   5.5570e-06  

   0.05   8.3072e-05   8.7266e-05   8.8111e-05   1.7517e-04   3.7115e-05   5.1494e-04   2.2962e-05  

 0.5   0.025   8.5668e-05   1.5781e-04   9.6307e-05   4.0970e-04   8.9967e-06   2.3852e-05   4.1959e-05  

   0.05   3.6089e-04   3.6788e-04   3.6753e-04   4.0970e-04   8.9967e-06   2.3852e-05   1.6799e-04  

 

 

Table 5. The error norm 𝐿∞ of numerical solutions of IBqE with ℎ = 0.5.  

A Δ𝑡 RBF-MQ RBF-G RBF-W MOL-MQ MOL-G MOL-W [24] 

0.25 0.025 6.7022e-05 2.1038e-05 5.1600e-05 9.2647e-06 2.1765e-05 6.5628e-06 4.1670e-06 

 0.05 9.0387e-05 8.4104e-05 8.6177e-05 9.2647e-06 2.1765e-05 6.5628e-06 2.1512e-05 

0.5 0.025 1.0382e-04 9.1404e-05 1.0049e-04 2.9753e-05 5.1133e-06 9.2057e-08 3.4386e-04 

 0.05 3.2376e-04 3.6552e-04 3.7008e-04 2.9753e-05 5.1133e-06 9.2057e-08 1.6019e-04 

 

   

Figure 5. Motion of the single solitary wave for IBqE. 
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4.3.2. Interaction of Two Soliton Waves  

 

The following initial conditions are used to study the problem of two soliton waves interaction 

for IBqE 

 

 
𝑢(𝑥, 0) = 𝑢1(𝑥, 0) + 𝑢2(𝑥, 0),
𝑣(𝑥, 0) = 𝑣1(𝑥, 0) + 𝑣2(𝑥, 0),

 

where  

 

𝑢𝑖(𝑥, 0) = 𝐴𝑖𝑠𝑒𝑐ℎ2 [
1

𝑐𝑖
√

𝐴𝑖

6
(𝑥 − 𝑥𝑖

0)] ,

𝑣𝑖(𝑥, 0) = 2𝐴𝑖√
𝐴𝑖

6
𝑠𝑒𝑐ℎ2 [

1

𝑐𝑖
√

𝐴𝑖

6
(𝑥 − 𝑥𝑖

0)] tanh [
1

𝑐𝑖
√

𝐴𝑖

6
(𝑥 − 𝑥𝑖

0)] ,

𝑐𝑖 = ± (1 +
2𝐴𝑖

3
)

1

2
,    𝑖 = 1,2.

 

In this example we study the interaction of two waves travelling toward each other by using 𝐴𝑖 as the 

wave amplitudes, 𝑥𝑖
0 as the beginning locations, and 𝑐𝑖(𝑐1 = 𝑐2) as the wave speeds. The waves are 

situated at 𝑥1
0 = −20 and 𝑥2

0 = 30, with the interval being taken as 𝑥 ∈ [−80,150]. Figure 9 shows the 

results for waves with same amplitudes 𝐴1 = 𝐴2 = 2 and ℎ = 0.25, Δ𝑡 = 0.001, 𝑡 = 72. We can infer 

that the waves interact and combine to generate a single wave whose amplitude is greater than the sum 

of its components. 

 

        Figure 6. Motion of the two solitary wave interaction for IBqE. 

  

5. ACKNOWLEDGEMENTS 

The authors are grateful to Eskişehir Technical University Scientific Research Council (BAP 

No: 23ADP113). 

 

 



Arı and Dereli / Estuscience – Se , 25 [3] – 2024 

 

483 

CONFLICT OF INTEREST 

 

The author(s) stated that there are no conflicts of interest regarding the publication of this article. 

 

CRediT AUTHOR STATEMENT 

 

Murat Arı: Formal analysis, Writing - original draft, Visualization, Software.     

Yılmaz Dereli: Supervision, Visualization, Conceptualization, Project administration. 

 

 

REFERENCES 

 

[1] Boussinesq J. Theorie des ondes et des remous qui se propagent le long d’un canal rectangulaire 

horizontal, en communiquant au liquide contenu dans un canal des vitesses sensiblement pareilles 

de la surface au fond. J. Math. Pures Appl.  1872; 7: 55–108. 

 

[2] Manoranjan VS, Mitchell AR, Morris JL. Numerical solutions of the good Boussinesq equation. 

SIAM Journal on Scientific and Statistical Computing 1984; 5(4): 946-957.  

 

[3] Manoranjan VS, Ortega T, Sanz-Serna JM. Soliton and antisoliton interactions in the “good” 

Boussinesq equation. J. Math. Phys. 1988; 29: 1964–1968. 

 

[4] Bratsos AG. The solution of the Boussinesq equation using the method of lines. Comput. Methods 

Appl. Mech. Engrg. 1998; 157: 33–44. 

 

[5] Pani AK, Saranga H. Finite element Galerkin method for the “good” Boussinesq equation. 

Nonlinear Analysis: Theory, Methods and Applications, 1997; 29: 937-956. 

 

[6] Ortega T, Sanz-Serna  JM. Nonlinear stability and convergence of finite difference methods for 

the “good” Boussinesq equation. Numerische Mathematik, 1990; 58: 215-229. doi: 

10.1007/BF01385620 

 

[7] El-Zoheiry  H. Numerical investigation for the solitary waves interaction of the “good” 

Boussinesq equation. Applied Numerical Mathematics, 2003; 45: 161-173. 

 

[8] Wazwaz  AM. Construction of soliton solutions and periodic solutions of the Boussinesq equation 

by the modified decomposition method. Chaos, Solitons and Fractals, 2001; 12: 549-1556. 

 

[9] Ismail MS, Bratsos  AG. A predictor-corrector scheme for the numerical solutions of the 

Boussinesq equation. Journal of Applied Mathematics and Computing, 2003; 13: 11-27.  

 

[10] Bratsos AG, A second-order numerical scheme for the solution of the one-dimensional 

Boussinesq equation. Numer. Algorithms 46, 2007; 45–58. 

 

[11] Bratsos AG. Solitary-wave propagation and interactions for the ‘good’ Boussinesq equation. Int. 

J. Comput. Math. 85, 2008; 1431–1440. 

 

[12] Dehghan  M, Salehi  RA. Meshless based numerical technique for traveling solitary wave solution 

of Boussinesq equation. Applied Mathematical Modelling, 2012; 36(5): 1939-1956. 

 

[13] Ucar Y, Esen A, Karaagac B. Numerical solutions of Boussinesq equation using Galerkin finite 

element method. Numerical Methods for Partial Differential Equations, 2020; 3782: 1612-1630.  



Arı and Dereli / Estuscience – Se , 25 [3] – 2024 

 

484 

 

[14] Ismail MS, Mosally F. A fourth order finite difference method for the good Boussinesq equation. 

Abstract and Applied Analysis, 2014; 323260: 10 pages. 

 

[15] Kirli E, Irk D. A Fourth Order One Step Method for Numerical Solution of Good Boussinesq 

Equation. Turkish Journal of Mathematics, 2021; 45(5):  2693-2703. 

 

[16] Zhijian Y. Existence and non-existence of global solutions to a generalized modification of the 

improved Boussinesq equation. Math. Methods Appl. Sci. 1998; 21: 1467. 

 

[17] Lin  Q, Wu  YH, Loxton R.  Linear B-Spline Finite Element Method for the Improved Boussinesq 

Equation. J. Comput. Appl. Math. 2009; 224: 658. 

 

[18] Iskandar  L, Jain  PC, Proc. Indian Acad. Sci. Math. Sci. 89, 1980, 171. 

 

[19] Irk D, Dağ  I, Numer. Methods Partial Differential Equations, 2009, doi:10.1002/num.20492. 

 

[20] Kansa EJ. Multiquadrics–A scattered data approximation scheme with applications to 

computational fluid dynamics. I., Comput. Math. Appl.  1990; 19: 127–145. 

 

[21] Kansa EJ. Multiquadrics– A scattered data approximation scheme with applications to 

computational fluid dynamics. II., Comput. Math. Appl. 1990; 19: 147–161. 

 

[22] Wendland H. Scattered Data Approximation. Cambridge Monographs on Applied and 

Computational Mathematics, Cambridge: Cambridge University Press, 17, 2005.  

 

[23] Rubin SG, Graves RA. A Cubic Spline Approximation for Problems in Fluid Mechanics (NASA 

TR R-436, Washington, DC, 1975). 

 

[24] Karaagac B, Ucar Y, Esen A. Numerical Solutions of the Improved Boussinesq Equation by the 

Galerkin Quadratic B-Spline Finite Element Method. Filomat 2018; 32:16: 5573–5583. 


