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Abstract 

This paper investigates the use of Deep Learning (DL) in multiple input multiple output (MIMO) radar target 
detection, focusing on azimuth and elevation estimation. Traditional methods face challenges like 
interference and reflections, especially in multi-target scenarios. Feature extraction conventionally relies on 
range correlation, Doppler filtering, and angle beamforming, followed by detection after constant false alarm 
rate (CFAR) processing. However, early data sparsification by bin selection often leads to information loss, 
particularly with large data cubes required for practical implementation. DL techniques offer an alternative, 
specifically in azimuth and elevation detection at earlier stages of radar data processing. We developed a 
convolutional neural network (CNN) model that achieved Mean Square Errors (MSE) of 0.149 for azimuth 
and 0.168 for elevation on single-target data from 5,000 samples. The model's performance in dual-target 
scenarios showed MSEs ranging from 0.838 to 1.845, tested on 8,000 samples from a dataset of 72,000. 
This paper details the model development process, its impact on radar target detection, and potential future 
research directions involving the substitution of multi-bin DL blocks with traditional methods. 

Keywords: Radar processing pipeline, MIMO radar, Multi-target detection, Machine learning, 
Convolutional neural network. 

Radarla Çoklu Hedef Tespiti için Nesne Tanıma Modellerinin Uyarlanması 

Özet 

Bu makale, çoklu giriş çoklu çıkış (MIMO) radar hedef tespitinde için Derin Öğrenme tekniğinin 
uygulamasını, özellikle azimut ve yükseklik tahminine odaklanarak ele almaktadır. Geleneksel yöntemler, 
özellikle çoklu hedef senaryolarında parazit ve yansıma gibi zorluklarla karşı karşıya kalmaktadır. Özellik 
çıkarımı, genellikle menzil korelasyonu, Doppler filtreleme, açı demetleme ve sabit yanlış alarm oranı 
(CFAR) işleminden sonra tespit adımlarını içeren klasik radar sinyal işleme hattına dayanmaktadır. Ancak, 
erken aşamada veri seyreltilmesi, pratik uygulamalar için gereken büyük veri küplerinde bilgi kaybına yol 
açabilmektedir. Derin Öğrenme teknikleri, azimut ve yükseklik tespiti için alternatif bir yaklaşım 
sunmaktadır. Geliştirdiğimiz evrişimsel sinir ağı (CNN) modeli, 5000 örnekten oluşan tek hedefli veri 
üzerinde azimut için 0.149 ve yükseklik için 0.168 Ortalama Kare Hata (MSE) değerleri ile yüksek 
performans göstermiştir. İki hedefli senaryolarda ise model, 72.000 örneklik veri setinden 8000 test örneği 
üzerinde 0.838 ile 1.845 arasında MSE değerleri elde etmiştir. Bu makale, model geliştirme sürecini, radar 
hedef tespitindeki etkisini ve Derin Öğrenme ile geleneksel yöntemlerin entegrasyonuna yönelik potansiyel 
gelecek araştırma yönlerini detaylı bir şekilde ele almaktadır. 

Anahtar Kelimeler: Radar işleme hattı, MIMO radar, Çoklu hedef tespiti, Makine öğrenimi, Evrişimsel sinir 
ağı. 
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1. INTRODUCTION 

Radar stands for Radio Detection and Ranging. The history of radar technology is lengthy and fascinating. 

The concept of using radio waves to detect objects was first proposed during the late 1880s by German 

physicist Heinrich Hertz, but it wasn't until the 1930s that serious developmental work on radar began. 

Radar technology was essential to military operations during World War II because it allowed for the 

identification and tracking of adversarial ships and aircraft. The advancement of radar technology after the 

war led to its widespread usage in civil applications including weather forecasting and air traffic control. 

The radar data was processed using traditional signal processing techniques to extract environmental data. 

However, the limits of traditional signal processing techniques utilized in radar systems have come to limit 

more recently. These constraints make it difficult to detect things in congested situations and make it 

difficult to discern between weak and strong signals. Additionally, traditional methods require significant 

expertise and manual tuning of parameters, which can be time-consuming and error-prone. 

In object detection, deep learning algorithms are typically divided into two main categories: two-stage 

models that provide higher accuracy, and one-stage models that offer faster processing [1]. However, the 

application of these advanced algorithms, such as Mask R-CNN [2] and YOLO [3], to radar target detection 

is challenging due to the fundamental differences in the type of data collected. Radar sensors gather 

complex numbers that lack spatial locality, which is different from the pixel-based information these 

algorithms are built to process. In this study, we focus on using CNNs and machine learning to identify 

radar targets, specifically aiming to predict their azimuth and elevation. Our objective is to develop a target 

detection system using CNNs that overcomes the limitations of traditional signal processing techniques and 

improves radar performance. 

Radar transmits radio waves and detects their reflection on objects to determine their properties. MIMO 

(Multiple Input Multiple Output) radar uses multiple transmit and receive antennas to improve radar 

performance. Normally, complex formulas are used to extract features from radar data which is called 

traditional signal processing. The captured radar data is often called the radar-data-cube since it is formed 

in a 3D matrix of (time-signal samples, pulses, and virtual receivers). Here we are interested in the third 

step which is finding a target's azimuth, elevation, magnitude, and phase with Deep Learning Techniques 

as a "proof of concept".  

Traditional signal processing methods are outdated and have problems that formulas cannot overcome. 

These are interference which is detecting a weak target next to a strong target and reflection which is when 

signals scatter and create blind spots in detection. While reviewing the literature we noticed that this is 

typically done in 3 blocks using pre-compiled models to detect targets from the radar data. However, they 

are just detecting the targets and classifying them. We have elected to focus on predicting the azimuth and 

elevation of a target to integrate with traditional methods. 

We started to build a model for one-target samples. After deciding on the structure of the model, which is 

a convolutional neural network (CNN), and fine-tuning hyperparameters, we achieved Mean Square Errors 

(MSE) of 0.149 for azimuth and 0.168 for elevation on 5000 test samples. We then built and trained a CNN 

using a dataset of 72,000 samples, each with two targets, achieving MSEs ranging from 0.838 to 1.845 on 

8000 test samples. Our study explains why target detection cannot be performed using only the last phase 

of MIMO radar data and presents models that can be used instead, along with their hyperparameters. This 

will also shed light on future studies. Finally, cross-checking the calculations made using the data obtained 

here with traditional methods will open the way for studies that will obtain more accurate results. 

Artificial intelligence and machine learning have been effective techniques in recent years for enhancing 

radar performance. In particular, Convolutional Neural Networks (CNNs) have demonstrated promise in 

the detection and classification of objects in radar data.  

The process of radar target detection can be broken down into three fundamental stages: detection, 

classification, and tracking. This method utilizes a radar data cube dataset to effectively train a machine 
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learning (ML) model. Each radar data cube contains a 3D matrix of (time-signal samples, pulses, and virtual 

receivers) for extracting the target features such as size, velocity, range, elevation, and azimuth. Target 

detection entails finding prospective targets in the radar data, target classification entails categorizing each 

target (e.g., an airplane, a bird, etc.), and target tracking entails monitoring each target's movement over 

time. The common approach when using AI make use of all this information and forgo traditional signal 

processing methods to learn entirely from scratch. Instead, we have opted to combine AI with traditional 

approaches with the context-free part of the whole data cube, even though there has been a lot of study on 

utilizing AI for target detection and classification. 

In our method, we use the part of the radar data cube that consists of virtual receivers to train a CNN model 

with deep learning. The reason for this is that conventional methods are more efficient at other steps. 

Azimuth and elevation of the target are output by the model. To achieve high accuracy in predicting the 

azimuth and elevation of the target, we fine-tuned the hyperparameters in our model. We tested the 

performance of our CNN model on data sets of different sizes and complexity. 

The incorporation of machine learning and artificial intelligence is the latest chapter in the long history of 

continuous innovation in radar technology. Our goal is to improve the accuracy and robustness of radar 

systems by focusing on the prediction of azimuth and elevation of the target, paving the way for further 

research in this field. We believe that our approach could be useful for various applications such as 

autonomous vehicles, air traffic management, and military surveillance. 

To summarize, this work presents a novel method for radar target detection using CNNs, especially for 

determining the azimuth and elevation of a target as an example. Our work demonstrates the potential of 

CNN models to improve radar performance and helps in the development of more reliable and accurate 

radar systems, especially for cases where target power is distributed over multiple bins. 

2. LITERATURE REVIEW 

Radar target detection is an important task in a variety of applications, including FMCW radar systems for 

motor vehicles [4], maritime traffic surveillance, and air traffic control. It is a system that uses radio waves 

to detect objects, their distance, direction, and speed. In recent years, machine learning techniques such as 

artificial neural networks and deep learning have been applied to improve the accuracy and efficiency of 

radar target detection. 

A comprehensive review of machine learning techniques used in radar signal processing was provided by 

Lang et al. (2020), covering a wide range of topics such as target detection, classification, and tracking [5]. 

Similarly, Jiang et al. (2022) provided a review of the various artificial neural networks and deep learning 

techniques used in radar target detection [6]. These studies highlight the potential of machine learning 

techniques to improve the accuracy and efficiency of radar target detection. 

Several studies have proposed adapting the YOLO (You Only Look Once) model for radar target detection. 

Kim et al. (2020) proposed a YOLO-based approach for simultaneous target detection and classification in 

FMCW radar systems for vehicles [4] and achieved high accuracy and real-time performance. Zhou et al 

(2019) proposed YOLO-RD, a lightweight object detection network for range-Doppler radar imaging [7]. 

Lira-YOLO, a lightweight model for ship detection in radar images [8], was proposed by Long et al. (2020), 

which achieves high accuracy while maintaining real-time performance. 

Pica et al. (2021) proposed a new SAR target detection approach based on YOLO and very deep 

multicanonical correlation analysis [9], which achieves high accuracy and robustness to variations in target 

orientation and aspect angle. 

In addition, Baird et al. (2020) proposed a CNN-LSTM network for improving target detection in real 

maritime long-range surveillance radar data [10], which achieves high accuracy and robustness to variations 

in target orientation and aspect angle. Kumar and Kumar (2021) proposed a deep convolutional neural 
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network-driven neuro-fuzzy system for moving target detection from radar signals [11], which achieves 

high accuracy and robustness to variations in target motion. 

Zhang (2022) provided a survey of the various convolutional neural network-based approaches that have 

been applied to target detection in SAR images [12]. The study covers a range of topics, including target 

detection, classification, and tracking, and provides an overview of the state of the art in this field. These 

studies demonstrate the potential of machine learning techniques, especially YOLO-based approaches, to 

improve the accuracy and efficiency of radar target detection. 

In summary, machine learning techniques, especially those based on YOLO, utilize the entirety of the data 

to generate localized outcomes, showing considerable promise in enhancing the accuracy and efficiency of 

radar target detection across various applications. However, it is important to note that these methods are 

not directly comparable to our approach, which integrates machine learning CNN models with traditional 

techniques to accurately pinpoint the target's position. Additionally, the specific data used in our project 

does not support target localization in the manner typical of such images. 

This study includes many carefully planned and conducted empirical experiments. Rather than detailing the 

findings of each experiment, summaries of the results are provided in their respective sections. This allows 

readers to easily follow and understand the specific details of each experiment. In the conclusion, the most 

important findings are discussed in depth, according to the main goals of the study. This approach clearly 

presents the overall framework and key findings of the study, while also giving readers access to detailed 

analyses of the experiments. 

3. DATA SYNTHESIS 

Training and test data are synthesized using a monostatic MIMO radar with 16 receivers and 16 transmitter 

elements without loss of generality. The received signal pattern for the antenna array at the direction (𝑢, 𝑣)  

can be calculated by  

𝑔(𝑢, 𝑣) = 𝒃𝒓 (1) 

where the received signal at the virtual receivers (VRXs) form the received signal (column) vector r of 

length 𝑃, and 𝒃 is the steering (column) vector evaluated at(𝑢, 𝑣). One can oversample (𝑢, 𝑣) uniformly 

for the received signal pattern 

𝑢𝑚 =
2𝑚′

𝑀𝑞
− 1, for    0 ≤ 𝑚′ < 𝑀𝑞, (2) 

𝑣𝑛 =
2𝑛′

𝑁𝑞
− 1, for    0 ≤ 𝑛′ < 𝑁𝑞. (3) 

and where the received signal is the superposition due to each target 

𝑟𝑟𝑥,𝑠(𝑝) = ∑  𝑐,𝑡  e𝑗𝜋(𝑚𝑢𝑡+𝑛𝑣𝑡)

𝑇

𝑡=1

 (4) 

where T is the total number of targets in the far-field, and 𝑝 = 1, 2, … 𝑃𝑠 < 𝑀𝑁 are the VRXs created by 

available M TX and N RXs located on the grid points (𝑚, 𝑛). Equation (4) provides the received signal at 

the VRX elements and (1) provides the synthesized received pattern to measure the radar performance 

metrics, namely, the peak-to-side-lobe ratio (PSLR) and the beam width (BW) calculated in the usable field 

of view (uFOV) of the antenna. The SNR of signals is calculated using normally distributed noise at the 

antenna elements. 
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4. DATASET 

We have utilized two distinct types of datasets, each comprising sensor data, target azimuth, elevation, 

absolute amplitude, and SNR. Sensor data consists of 192 complex numbers representing raw radar data 

values. Azimuth and elevation denote the polar coordinates of the target. Absolute amplitude measures the 

target's reflectivity, and SNR indicates the noise level in the data.  

One approach to handling radar signal data in deep learning involves using neural networks specifically 

designed to process complex-valued inputs, weights, and activations. This method does not require 

additional preprocessing and is straightforward but remains underexplored. In our exploration of using deep 

learning techniques for traditional radar signal processing in object detection, our primary goal is to 

leverage state-of-the-art object detection models, such as YOLO, which are typically applied to 2D or 3D 

image inputs. Consequently, we have chosen to propose baseline CNN models for this purpose. 

Accordingly, we have implemented basic preprocessing of the complex numbers. This preprocessing 

involves treating the real and imaginary parts of each number as separate features and exploring additional 

properties that can be derived from complex numbers, such as their angles. 

The general structure of the datasets remains consistent, differing primarily in the number of targets and 

noise levels. Specifically, the single-target dataset contains 180,000 samples with mixed noise values, while 

the two-target dataset includes 90,000 samples, each with a 20dB noise level. We have partitioned each 

dataset into training, validation, and test sets, with ratios of 64%, 16%, and 20%, respectively.  

5. EXPERIMENTS AND RESULTS 

This section describes the experiments performed with two different data sets and the results obtained. First, 

we focused on training CNN models and optimizing hyperparameters to improve their performance. 

Building on the findings from these initial experiments, we further developed our CNN models to improve 

their effectiveness in dual-target scenarios. The following subsections describe the methodology applied, 

the experimental setups, and the results of these efforts, highlighting how the iterative refinements have 

incrementally improved the accuracy and effectiveness of our target detection models. 

5.1 Experiments on Single-Target 

We began our experiments using a simple CNN architecture to determine if deep learning could effectively 

learn azimuth and elevation values, compared to traditional signal processing methods. Our initial model, 

shown in Figure 1, used one-dimensional convolutional layers and dense layers. We experimented with the 

model by adding more convolutional and dense layers and placing max pooling layers between them for 

enhanced performance. We also included dropout layers to help prevent overfitting. 

 
Figure 1. Initial CNN model with 1D convolutions 

As we refined our model, several critical questions emerged regarding the optimal setup for our specific 

problem. Key considerations included:  

1. Choosing additional input features beyond the real and imaginary parts, with options ranging 

from 192x2 to 192xN. 

2. Deciding on the input shape, with possibilities such as 192x3, 3x192, or 571x1 to manage three 

features from 192 sensors. 
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3. Selecting between one-dimensional and two-dimensional convolution types.  

4. Investigating the impact of various layer types such as pooling and dropout layers on model 

performance. 

Instead of conducting extensive experiments to finalize these parameters, we used an intuitive approach to 

determine the most effective settings for our dataset of single-target samples. In our investigations into the 

optimal configuration for our CNN model tailored for a single-target dataset, we arrived at several key 

conclusions from the considerations outlined above. The decisions that yielded the best results are 

summarized as follows: 

• Input Shape: The input shape of 192 x 3 (real part, imaginary part, and angle) proved to be the most 

effective. 

• Convolution Layers: Using two convolutional layers provided the best performance. Two-dimensional 

(2D) convolution was found to be slightly more effective than one-dimensional (1D) convolution.  

• Pooling Layers: Contrary to expectations, max-pooling layers negatively impacted our model's 

performance. While these layers generally reduce overfitting and computational load by compressing 

feature maps, they also lead to the loss of critical information, which is especially detrimental in precise 

tasks such as single-target detection. 

• Dropout Layers: The inclusion of dropout layers was beneficial. These layers helped prevent 

overfitting by randomly dropping units during the training process. 

According to these settings, the results of the best-performing model with 2D convolution layers are shown 

in Table 1. In addition to Mean Square Error (MSE), we used an additional metric called 'Angle Error' for 

our evaluations. This metric is calculated by taking the square root of the sum of the squares of the azimuth 

and elevation errors for each prediction. 

Table 1. Results for single-target dataset 
 Azimuth Elevation Angle 

MSE 0.149 0.168 0.253 

Std 0.132 0.159 0.171 

50% 0.112 0.128 0.219 

Max Error 1.082 2.457 2.458 

 
5.2 Experiments on Two Targets with Equal Rcss 

Moving to a two-target dataset, we adapted our best model from the single-target experiments to handle 

multiple targets without changing the hyperparameters. This required reworking the output layer to perform 

regression on multiple azimuth and elevation values simultaneously. To better understand the input 

structure, Figure 2 provides an overview of the sensor and target data and illustrates a single example from 

the dataset. 

Table 2. Sample values from the two-target dataset 

  Sensor Data 
Num. of 

Targets 

Target-1 

Azimuth 

Target-1 

Elevation 

Target-2 

Azimuth 

Target-2 

Elevation 

Data-1 

1 -0.393112, 0.254718 2 -10.424340 -4.574590 79.002089 -8.630493 

2 0.656807, 0.418274 … … … … … 

… … … … … … … 

191 -1.289922, -0.102665 … … … … … 

192 -0.504360, 0.784353 … … … … … 

In our investigation of the two-target dataset, we evaluated various modifications to our CNN model. In 

this section, we summarize the results, focusing on which modifications improved accuracy and which did 

not. We explain the successful techniques that improved the performance of our model, as well as the 
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modifications that fell short of expectations. These findings are important for refining our approach to CNN 

architectures for complex radar signal processing tasks with multiple targets. In the following, we divide 

the results into two categories to provide a clear analysis of our experimental results. 

Improvements in Accuracy: 

• Changing Input Shape and Parameters: Adding the magnitude of real and imaginary values and 

Cartesian x and y values to the input parameters, along with changing the filter size and adding an 

extra dense layer, improved the model's accuracy. 

• Increased Output in Dense Layer: Modifying the output layer to include Angle1 and Angle2 

improved accuracy, though results were still not optimal. 

• Optimization Adjustments: Switching to the relu activation method, adam optimizer, and mae for 

the loss function were determined as the best parameters. 

• Training Duration: Extending training to 200 and 300 epochs showed slight improvements. 

That Did Not Help: 

• Max Pooling Layer: Adding max pooling layers negatively affected the model. 

• Additional Convolutional and Dense Layers: Initially adding more layers increased the error rate 

without reaching desired levels. 

• Change in Activation Methods: Switching to elu and selu activation methods, and later mixed 

methods (tanh and sigmoid), did not yield positive effects. 

• L1 and L2 Kernel Regularizers: Both L1 and L2 regularizers did not improve the model 

significantly. 

• Extended Training Beyond 300 Epochs: Further extending training led to overfitting, without 

significantly lowering the maximum error rate. 

• Swapping Target Data in Problematic Subsets: Attempting to address issues in a subset of the data 

by swapping azimuth and elevation of targets did not resolve the high error rates. 

Table 3. Results for two-target dataset 
 Azimuth1 Elevation1 Angle1 Azimuth2 Elevation2 Angle2 

MSE 0.838 1.845 2.211 0.934 0.968 1.875 

Std 1.324 1.619 1.895 1.229 1.463 1.637 

50% 0.504 1.412 1.682 0.611 0.560 1.447 

Max Error 14.730 14.372 14.965 14.954 14.573 13.482 

 
Transitioning to a two-target dataset, we adapted our best model from the single-target experiments to 

handle multiple targets. 

6. CONCLUSION AND FUTURE WORK 

In this study, we proposed and evaluated CNN models for azimuth and elevation estimation in radar target 

detection, focusing on both single and dual-target scenarios. Our experiments demonstrated that using two-

dimensional convolution layers, a specific input shape (including the angle, magnitude of real and 

imaginary values, and Cartesian x and y values), and dropout layers significantly improved model 

performance. While we aimed to apply deep learning object detection architectures like YOLO for multiple 

target detection, the nature of our data—consisting only of complex signal numbers—prevented us from 

converting it into spatial information suitable for region proposal and object localization. Our approach 
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shows promise compared to traditional radar processing methods and offers a potential direction for future 

research in radar signal processing. 

In future work, we plan to extend our research to the following areas: 

• In-Cabin Detection: Identifying the presence of children or pets inadvertently left inside a vehicle. 

• Fall Detection: Monitoring for fall incidents to enhance the safety of the elderly. 

• Posture Detection: Analyzing posture for health and safety applications, and others. 

Additionally, we will explore multi-target scenarios, integration with traditional methods, and the 

potential of incorporating an autoencoder model into our input layer to better represent radar signals. 
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