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Abstract 

Habitat quality is crucial for wildlife management that impacts the conservation of sensitive landscapes such as wetlands. 

With advancements in GIS, habitat modelling now effectively predicts species occurrences and habitat suitability. This 

study aims to model and map habitat suitability for case bird species of Kentish plover in Tuzla Lagoon using multiple 

techniques. Kentish plover nesting data were collected from 293 nests, and reproductive success measures such as lay 

date, egg volume, and nest fate were analysed. Spatial habitat modelling techniques, including regression, co-kriging, 

artificial neural networks, and decision trees, were used with IKONOS imagery and ground data. The overall prediction 

accuracies were poor for lay date across all techniques, with the decision tree being the most accurate, while egg volume 

was best predicted by co-kriging, egg success by linear regression, and nest fate by both binomial logistic regression and 

ANN with 75% accuracy. 
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SULAK ALAN PEYZAJLARI ÖRNEĞİNDE DOĞRUSAL VE DOĞRUSAL 

OLMAYAN TEKNİKLER KULLANARAK KUŞ HABİTAT 

UYGUNLUĞUNUN HARİTALANMASI 

Öze 

Habitat kalitesi, sulak alanlar gibi hassas peyzajların korunmasını adına geliştirilecek yaban hayatı yönetim süreçleri 

için kritik öneme sahiptir. CBS'deki gelişmelerle birlikte, habitat modellemesi artık fauna varlığı ve habitat uygunluğunu 

etkili bir şekilde tahmin edebilecek seviyelere ulaşmıştır. Bu kapsamda bu çalışma ile Tuzla Lagünü'nde yaşayan Akça 

cılıbıt kuş türünün habitat uygunluğunu birden fazla teknik kullanarak modellemeyi ve haritalamayı amaçlanmıştır. 

Çalışma kapsamında 293 yuvadan toplanmış ve yumurtlama zamanı, yumurta hacmi ve yuva kaderi gibi üreme başarısı 

ölçütlerini içeren veri seti analiz edilmiştir. Çoklu doğrusal regresyon, co-kriging, yapay sinir ağları ve karar ağaçları 

dahil olmak üzere mekansal habitat modelleme teknikleri kullanılmıştır. Yöntem doğruluklarının karşılaştırılması 

sonucunda yumurtlama zamanı için tüm yöntemler düşük doğrulukta sonuçlar üretmiş olmakla beraber karar ağacı, 

yumurta hacmi için co-kriging, yumurta başarısı içinse doğrusal regresyon en yüksek doğruluğa ulaşmıştır. Yuva kaderi 

için ise hem ikili lojistik regresyon hem de yapay sinir ağları yöntemleri %75 doğrulukla en iyi tahmine ulaşmıştır. 

Anahtar Kelimeler: Habitat Uygunluğu, Habitat Modelleme, Sulak Alan Peyzajları, Kuş Habitatı, Uzaktan Algılama, 

CBS 
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1. INTRODUCTION 

Habitat quality is one of the key concepts in wildlife management and linked with protection of critical habitats 

and conservation of sensitive and endangered species. Determining habitat quality indicators of species 

maintain effective conservation management decisions.  

Habitat modelling gained a significant capability with the development of GIS techniques. Predictive habitat 

models generally explore the relationship between species’ occurrences and set of predictor variables to 

estimate probability of species occurrence at given unrecorded locations or to estimate suitability of an area 

for species (Segurado & Araujo 2004). This has led to the development of numerous statistical techniques for 

predictive habitat models (for detailed review Guisan & Zimmerman 2000). These methods differ into two 

main groups according to quality of occurrence data required. First group of methods such as generalised linear 

models, generalised additive models, classification and regression tree analyses, artificial neural networks etc. 

require high quality presence/absence data of species to rank the habitat suitability (Manel et al., 1999; Manel 

et al., 2001; Guisan & Zimmerman 2000; Brotons et al., 2004). Second group of methods including Ecological 

Niche Factor Analysis, Bioclim, and Domain require presence data only and were developed to enable to use 

data where is unavailable (Hirzel et al., 2002; Brotons et al., 2004; Argáez et al., 2005). 

Conventional predictive habitat modelling studies with just using presence or absence data can estimate 

probability of species occurrence and habitat suitability through spatial locations. In this respect, these studies 

have limitation in providing detailed output such as fitness, micro-habitat preferences, and reproductive 

success of species depends on their habitat selection. Such detailed knowledge is necessary for more effective 

conservation of animals like birds that are under threat of gradual rising effects of human activities including, 

agriculture, industry, transportation, grazing, climate change, pollution etc. 

Numerous environmental factors like reproductive success of species and biological factors in addition to 

presence/absence data can also be involved in determining habitat selection (Partridge, 1978; Burger, 1985; 

Good, 2002). Habitat suitability, closely related to individual fitness since it influences the probability of 

successfully raising offspring, is a very important factor for birds, like all other animals, especially for their 

breeding habitats (Martin, 1988). As a result of this, predictive habitat models can be used in addition to 

determine distribution of species also for predicting biological features of species in relevant locations. 

Reproductive success usually reports the percentage of eggs or nests in a population sample that is successful 

in producing young. “Egg success” is the percentage of eggs that produce young that leave the nest and “nest 

success” is the percentage of nests with eggs that produce young that leave the nest (Murray, 2000). These 

measures are often used to compare species reproductive success among nests, patches, habitats or populations 

(Lack, 1968; Ricklefs, 1969; Skutch, 1985). Also lay date, egg volume and nest fate can be considered to 

represent reproductive success since the strong relationships between them have been reported by several 

studies (Nisbet & Cohen 1975; Nisbet, 1978; Nisbet et al., 1978; Ricklefs, 1969). 

Environmental predictors can exert direct or indirect effects on species (Austin, 2002). The interaction between 

species and physical environment may result various spatial patterns of reproductive success which can be 

observed at different scales. Some of these environmental factors that influence spatial reproductive success 

patterns of birds, are: i) Proximity to feeding places is one of the most important processes under limitation or 

competition for food that influence reproduction (Martin, 1987; Collias & Collias, 1984); ii) nest predation 

often is the primary source of nesting mortality for a wide range of bird species (Ricklefs, 1969); iii) nesting 

substratum influence the variations in breeding success (Li & Martin 1991), the places inaccessible to 

predators, such as cliffs, tall trees, and thick vegetation have high breeding success (Burger & Gochfeld 1987); 

iv) adult behaviour, altered by disturbance, is most detrimental to reproduction during the egg-phase (Cairns, 

1980), especially disturbance resulted from human activities (Gillett et al., 1975); v) Grazing impacts on 

vegetation , possibly through changes in availability of suitable nest sites (Kantrud & Kologiski, 1982; Bock 
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& Webb, 1984; Riley et al., 1992) and also affect nest success by nest trampling (Shrubb, 1990); vi) 

reproductive success is also affected by time of nesting, the earliest nesters of birds lay the largest clutches and 

the largest eggs, and in the absence of predation they are consistently the most successful (Nisbet, 1978).  

This study aimed to model the spatial patterns of habitat suitability using spatial habitat modelling techniques 

including multi-linear and logistic regression, geostatistical interpolation (co-kriging), artificial neural 

networks, and decision tree together with the support of remote sensing and Geographical Information Systems 

(GIS). The estimates of models were derived from the data set of Kentish plover (Charadrius alexandrinus) 

population in Tuzla Lake, Cukurova Delta, located Eastern Mediterranean coast of Turkey. The accuracy of 

the models was derived from correlation coefficient figures. The strengths and weaknesses of these techniques 

were discussed to determine the most accurate approach for mapping habitat suitability.  

2. MATERIAL AND METHOD 

2.1. Study Area and Data Set 

The study area is located on Turkey's Eastern Mediterranean coast, along the Çukurova Plain's coastal edge. 

The region is home to numerous agricultural lands and coastal wetland ecosystems (Figure 1). The Tuz 

Lagoon, the westernmost lagoon on the coast, is situated at the edge of the Tuzla district is primarily an 

agricultural area with peanut, tomato, wheat, watermelon, and honey production as its main industries. The 

lagoon is brackish and encircled by large salt marshes, sand dunes, shallow temporary pools, and mudflats 

around the lake's edges. (Berberoglu, 1994).  

  

Figure 1. Location of the study area 

This area serves as significant breeding grounds or resting points for migrating birds during the winter season. 

The study location is situated along a main migration path connecting Bosphorus (and Eastern and Southern 

Europe) with the Middle East (and Eastern Africa). It is designated as an Important Bird Area (IBA) by 

BirdLife International and is acknowledged by the Turkish Society for the Protection of Nature (DHKD) (refer 

to Magnin & Yarar, 1997). Thus, the total number of birds observed around the lake is 178 species (Székely, 

1999). Kentish Plover is one of the migrant breeders of these that can be observed in the site with approximately 

1000 pairs (Lendvai et al., 2004). Kentish Plovers reared their chicks on the north shore and alkaline grassland 

of Salicornia europaea and Antrochnemum fruticosum in a 50–800 m strip on the north side of Tuzla Lagoon 

(Figure 1). The research area also provides pivotal breeding sites for marine turtles: Loggerheads Caretta 

caretta and Green Turtles Chelonia mydas. 
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However, this complex ecosystem is not robust and is prone to a number of detrimental changes. The impacts 

of the rapid development occurring in this coastal zone include salinization of freshwater resources and soil, 

pesticides, exploitation for tourism and recreation, lagoon management that is not appropriate, erosion of the 

shore, drainage from wastewater and irrigation, wetlands, and sand dunes; these factors also contribute to the 

degradation and loss of beaches caused by accelerated coastal erosion. However, agricultural activities have 

the most detrimental impacts on the wetland ecosystem in Tuzla. The settlement of Tuzla also causes pollution 

and predation from domestic animals. Grazing has a considerable negative effect especially on ground nesting 

birds’ habitats by reducing vegetation density or nest trampling. Additionally intensive fishing poses a large 

pressure on this ecosystem by removing a significant part of fish biomass from the lake (Székely, 1999). 

The current LU/LC pattern was mapped using IKONOS imagery acquired on 14 June, 2002. The IKONOS 

imagery has a spatial resolution of 4 m and four wavebands sensitive in the visible and near-infrared portions 

of the electromagnetic spectrum. In addition, land cover data were recorded on the date of IKONOS imagery 

acquisition by using GPS with an accuracy of 4 m. Other data utilised in the analysis included ground data set 

collected by Szekely (1999).   

2.2. Method 

2.2.1. Ground data 

Kentish plover data were collected by Tamas Szekely and his research team during the breeding season from 

April to July in 1999. This data set based on 293 observed nests and includes information on nest ID, 

observation date, egg number, egg size, egg floating stages, number of chicks and fate. 

Reproductive success measures such as lay date, egg volume, egg success and nest fate were used as training 

and testing data sets to model these variables. Lay date data were calculated as an average of all eggs in the 

nest. Eggs lay date was estimated by differencing the nest observation date and incubation day which is 

indicated by egg’s floating stage (for a review see Noszály & Székely, 1993). Each lay date was arranged 

according to first field work date (1 April). 

Egg volume (V) data were estimated using equation 1 as an average of eggs’ volume in the nest (Szentirmai 

and Székely 2004).  

V=0,486w2l                   (Eq 1.) 

Where; 

 V = egg volume 

 w = egg’s width 

 l = egg’s length 

Egg success was calculated by dividing the number of chicks that hatched by eggs incubated in the nest 

(Murray, 2000) and nest fate was categorized as succeed (hatched) and failed (predated, deserted and tramped). 

Accuracy figures of the model results were derived using 20 % of the ground data. 

2.2.2. Remote sensing and GIS 

Explanatory variables were derived from the mosaic image of two IKONOS images that were recorded 14 

June 2002 over the study area. Approximately 15 evenly distributed ground control points (GCPs) were 

selected from each image. The IKONOS images were geometrically corrected and geocoded to the Universal 

Transverse Mercator (UTM) coordinate system using the nearest neighbour algorithm. The transformation had 
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a root mean square (RMS) error of between 0.4 and 0.6, indicating that image rectification was accurate to 

within 1 pixel. The image was classified into six land cover classes using a maximum likelihood algorithm.  

Tuzla Village, Tuzla Lake and agricultural lands were digitized from the image. Impacts of proximity were 

included to the model by producing the distance layers to these features within a GIS environment. 

Additionally, Salicornia europaea’s patches which are dominant vegetation cover in the field were extracted 

from classified image and used to create distance layer to Salicornia europaea patches.  

Normalized Difference Vegetation Index (NDVI) that represent amount of healthy vegetation in the field was 

derived as an additional explanatory variable for the models by using near infra red (band 4) and red band 

(band3) wavebands of IKONOS image. Four wavebands of IKONOS image (blue, green, red and near infra 

red) were also included into the model as complementary variables. 

2.2.3. Modelling 

Explanatory variables were used within four different modelling techniques including regression, co-kriging, 

artificial neural network and decision tree. Explanatory variable selection involved feature selection for the 

most relevant input variables for modelling. This was accomplished using the Stepwise Linear Regression 

(SLR) method to find Maximum Adequate Model (MAM) provided by the R Project for Statistical Computing 

(Development Core Team, 2006). The SLR method selects the best subset of predictor variables to be 

employed in modelling using a stepwise procedure, which repeatedly alters the model at the previous step by 

adding or removing predictor variables (Helsel & Hirsch, 1992). The Akaike Information Criteria (AIC) 

statistic is expressed as: 

( ) pLAIC 2ln2 +−=  (Eq 2.) 

where L is the likelihood of the model parameters, p is the number of free parameters (number of explanatory 

variables plus one) (Johnson & Omland, 2004). The AIC statistic provides a convenient criterion for 

determining whether a model is more accurate by modulates the log-likelihood of the fitted model with the 

number of predictors, and include only the variables that maximize the proportion of the null deviance 

explained by the model (Zaniewski et al., 2002) 

2.2.3.1. Linear regression 

Multivariate linear regression was performed to model reproductivity variables including lay date, egg volume 

and egg success, additionally nest fate was modelled using binomial logistic regression. 

2.2.3.2. Co-kriging 

As a second technique co-kriging was performed. Co-kriging utilizes not only the primary variable but also 

utilizes cross-correlated secondary variables. Co-kriging is thus a linear interpolator of both primary and 

secondary data values (Li et al., 2006). It is a mathematical interpolation tool that can be utilized when 

measurements have been made at scattered sampling points. Co-kriging is an extension of kriging in which 

random variables are simultaneously predicted by utilizing their inter-relationships and their spatial co-

dependence (Myers, 1982; Wu & Murray, 2005). It is based on a theory of regionalized variables whose values 

vary from place to place (Kleijnen & Wim van Beers, 2005). Co-kriging gives weights to data that minimize 

the estimation variance (co-kriging variance) (Isaaks & Srivastana, 1988). When more than one property has 

been measured, then co-kriging will be preferred for spatial prediction through cross-variogram functions 

(Lark, 2003). Co-kriging was performed to every response variable using ArcGIS software with their tree most 

significant explanatory variables retained from MAM. 
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2.2.3.3. Artificial neural network (ANN) 

An important advantage of using an artificial neural network model is its non-parametric nature. It is not 

necessary to transform data to match a certain distribution. Neural network models can be non-linear and can 

model logical expressions such as ‘and’, ‘or’, ‘not’, and ‘exclusive or’. For non-linear relationships and 

interactions among variables neural networks may result more accurate predictions than linear statistical 

models (Özesmi & Özesmi, 1999). Because of non-parametric structure of ANN (Özesmi & Özesmi 1999), it 

is commonly used for predictive habitat models (Mastrorillo et al., 1997; Manel et al., 1999; Özesmi & Özesmi 

1999; Thuiller 2003). 

The multi-layer perceptron described by Rumelhart et al. (1986) is the most commonly encountered ANN 

model in ecological modelling (because of its generalization capability) so this model is used in this study. 

This type of ANN model consists of three or more layers each of which is interconnected to the previous and 

subsequent layers, but there are no interconnections within a layer. Each layer consists of processing elements 

called units or nodes. The first layer is called the input layer and serves as a distribution structure for the data 

being presented to the network. It holds input values and distributes these values to all units in the next layer. 

The final processing layer is called the output layer and in the present case it comprises our response variables. 

Layers between input and output layers are termed hidden layers. The number of hidden layers and units within 

the network are defined by the user (Berberoğlu et al, 2009) 

The three steps of an ANN procedure are testing, allocation, and training. The neural network is trained by 

providing it with known response variable values along with pixel values. Building a model of the data 

generation process is the goal of network training, which enables the network to generalize and forecast outputs 

from inputs it has never seen before in the testing stage. Various learning algorithms are available for network 

training. In ecological modeling, back-propagation via the generalized delta rule is the most often utilized 

algorithm. (Rumelhart et al., 1986). The difference between the expected and actual feed-forward network 

output is measured, and network weights are changed to minimize the error. A forward and a backward phase 

via the ANN structure make up the back-propagation algorithm. When training data is entered into the network, 

the weights connecting network units are randomly set, signaling the start of the forward phase of training. 

After comparing the network's actual output to the target, an error measure is computed. This error is fed 

backward through the network towards the input layer during the backward phase, changing the weights of the 

connections in the preceding layer in proportion to the error. This procedure is carried out repeatedly until a 

predetermined number of iterations is reached or the overall error in the system drops to a predetermined level.  

2.2.3.4. Decision tree 

Decision tree is a powerful statistical technique ideally suited for the analysis of complex ecological data 

(De’Ath and Fabricius 2000; Kerns and Ohmann 2004). Rather than estimating a mean value for a range of 

environmental variables (as with most parametric techniques), decision trees identify specific thresholds of 

environmental conditions above or below which a response variable can be found (Moore et al., 1991). The 

response variable is usually either categorical (classification trees) or numeric (regression trees), and the 

explanatory variables can be categorical and/or numeric (Miller & Franklin, 2002).  

The tree is created by splitting the data based on a single explanatory variable using a simple rule. Each split 

divides the data into two distinct groups that are as similar as possible. The splitting process is then repeated 

for each group separately. The goal is to create homogeneous groups for the response variable while keeping 

the tree relatively small. The tree's size is determined by the number of final groups. The splitting continues 

until the tree becomes too large, at which point it is pruned to the desired size. Each group is characterized by 

either the distribution (for categorical responses) or mean value (for numeric responses) of the response 

variable, the size of the group, and the values of the explanatory variables that define it. (De’Ath & Fabricius, 

2000). 
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This study modelled the lay date, egg volume and egg success using regression tree (RT) however, nest fate 

was modelled with classification tree (CT) due to its categorical structure. 

2.2.4. Accuracy assessment 

Using data from holdout tests, the final model's accuracy was validated. As a result of their foundation in set-

aside test data that wasn't utilized to fit the model, test error estimates were regarded as reliable. Twenty percent 

of the data nests for each response variable were chosen at random to evaluate accuracy. The correlation 

coefficient (r), which is a measure of prediction precision, was used to assess the performance of the model by 

comparing the actual and predicted values for the test samples that were set aside. However, using the same 

test data set, the error matrix was used to evaluate the model results for nest fate. 

3. RESULTS 

Response variables were derived from original data set includes 293 nests. 288 nests have lay date data, 231 

nests have mean egg volume data, 105 nests have fate data, and 108 nests have egg success data that were 

adequate for modelling process (Figure 2).  

  

  

Figure 2. Histograms and descriptive statistics of response variables 

Additional explanatory variables were extracted from the mosaic of IKONOS image wavebands and NDVI 

for nest locations. The descriptive statistics of explanatory variables for each nest and whole study area are 

listed in Table 1.  

Table 1. Descriptive statistics of explanatory variables. 
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Variables 
NESTS  WHOLE STUDY AREA 

Mean Std. dev. Min. Max.  Mean Std. dev. Min. Max. 

Distance to village 2578.61 1419.28 601.33 5163.10  1562.23 938.82 0 5097.47 

Distance to lake 73.99 67.87 3.56 409.80  254.10 222.67 0 970.68 

Distance to agricultural lands 231.77 238.18 4.00 937.37  251.44 231.44 0 998.31 

Distance to salicornia patches 41.16 30.10 0.00 118.12  35.74 41.37 0 384.52 

NDVI 0.02 0.10 - 0.27 0.44  0.09 0.21 -0.39 1.00 

IKONOS blue band 504.47 49.95 390.89 668.72  522.88 62.61 353.05 849.97 

IKONOS green band 572.34 82.47 396.32 797.61  609.13 99.04 342.48 1071.90 

IKONOS red band 486.19 93.32 273.66 773.26  527.73 110.65 214.77 982.44 

IKONOS near infra red band 489.47 117.32 188.57 810.29  563.07 113.75 156.12 1205.80 

To take the advantage of quadratic effect, the environmental variables together with squared values were 

included as explanatory variable to backward stepwise procedure in linear regression models of lay date, mean 

egg volume, and egg success response and also in multinomial logistic regression model of fate. The MAMs 

of these response variables were determined by seeking minimum AIC value with backward elimination. 

The results of linear and binomial logistic regressions MAMs were given in Table 2. The explanatory variables 

of distance to agricultural fields, distance to lake, IKONOS red wave band, quadratic terms of distance to lake, 

IKONOS red band and distance to village were considered variables by performing minimum AIC for MAM 

of lay date (R2=0.123; F6,127=5.072; p=0.00006). The MAM of egg volume (R2=0.064; F4,176=3.01; p=0.02) 

was explained with four variables of NDVI, IKONOS red band and their quadratic terms which remained after 

the stepwise procedure. Egg success reached minimum AIC with its MAM (R2=0.202; F4,81=5.13; p=0.001) 

that was explained with seven retained explanatory variables of distance to agricultural fields, distance to lake, 

quadratic terms of distance to agricultural fields and distance to village. Distance to village is the most 

significant variable for nest fate following to stepwise logistic regression. 

Table 2. MAM for linear and binomial logistic regressions 

Response variable Explanatory variable B t value P(>|t|) 

Lay date Dist. to agricultural fields -0,0694 -2,87 0,005 

Dist. to lake -0,4452 -2,54 0,012 

IKONOS red band -0,8804 -2,34 0,02 

Square of dist. to lake 0,0043 1,86 0,064 

Square of IKONOS red band 0,0032 2,21 0,028 

Square of dist. to village -0,0003 -3,50 0,001 

Full model: R2 =0,123, F6, 127=5,072, p=0.00006 

Egg volume NDVI 20,99 1,88 0,061 

IKONOS red band -39,59 -2,75 0,007 

Square of NDVI -0,15 -2,25 0,026 
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Square of IKONOS red band 0,14 2,56 0,011 

Full model: R2 =0,064, F4, 176=3,01, p=0.02 

Egg success Dist. to agricultural fields -0.00841 -2.713 0.008 

Dist. to lake -0.00517 -2.185 0.032 

Square of dist. to agricultural fields 0.00002 1.694 0.094 

Square of dist. to village -0.00001 -2.974 0.004 

Full model: R2 =0.202, F4, 81=5.13, p=0.001 

Response variable Explanatory variable B z value P(>|z|) 

Nest Fate Dist. to village 0.00593 3.35 0.001 

Square of NDVI -8.988 -2.27 0.023 

Square of dist. to village 0.000001 -3.45 0.001 

IKONOS red band -0.0713 -1.83 0.068 

Square of IKONOS blue band -0.00002 -1.82 0.069 

Square of IKONOS red band 0.00008 1.92 0.056 

Because of the parametric nature of co-kriging, it was not performed to the response variable of fate which had 

a categorical structure. However, co-kriging was applied with remaining response variables of the most three 

significant explanatory variables from MAMs of regression analyze as co-dependent variables. Co-kriging 

models -like all other kriging models- provide prediction error measurements that can be used for model 

selection in a basic way (Boone & Krohn, 2002; Anderson et al., 2003). The models that have mean 

standardized error (MSE) close to zero and root-mean-square standardized error (RMSE) close to one have 

more accurate predictions (Jiguet et al., 2005). According to these measurements for all response variables 

were very similar to each other. However, lay date was predicted (MSE:-0.00026; RMSE:1.005) more accurate 

than others and egg volume had second most accurate prediction (MSE:-0.00028; RMSE:0.99) according to 

egg success prediction (MSE:-0.0023; RMSE:0.98) using  co-kriging models (Table 3).  

Table 3. Co-kriging modelling output error statistics 

Parameters Lay date Egg volume Egg success 

Mean -0.012 0.14 0.0005 

Root-Mean-Square 17.22 561.1 0.4002 

Average Standard Error 17.19 576.5 0.4122 

Mean Standardized Error (MSE) -0.00026 -0.0003 0.0023 

Root-Mean-Square Standardized Error (RMSE) 1.005 0.989 0.9850 

The prediction success of ANN primarily depends on its five parameters: (i) size of training set, (ii) network 

architecture, (iii) learning rate, (iv) learning momentum and (v) number of training cycles. The settings chosen 

for the parameters in this analysis were as follows: 

(i) Size of training set: for every response variable the size of training set is given in  
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(ii) Network architecture: The number of input units was 18 which were defined below as explanatory 

variables. The neural network architecture which results in the most accurate output can be determined only 

experimentally and this can be a lengthy process for large classification tasks. This is frequently regarded as 

an ANN method's drawback. Nonetheless, heuristics for determining the approximate size of a network can be 

derived using certain geometrical argument (Lippmann, 1987; Paola & Schowengerdt 1997). Single hidden 

layer works well most of the time. Although the number of hidden layers has an impact, the number of units 

within the hidden layers is the significant factor. A network should ideally have two or three times as many 

input layer units in its first hidden layer. So, the network architecture consisted of single hidden layer with 42 

nodes. 

(iii) Learning rate: The percentage of the calculated weight change that will be used for weight adjustment 

depends on the learning rate. This operates as a low-pass filter, allowing the network to ignore tiny features in 

the error surface. Its range is 0.1 to 0.9. Less changes in the network's weights at each cycle correspond with 

a lower learning rate. What makes the error surface unique determines the ideal learning rate. Due to the highest 

level of classification accuracy, the networks were trained using a learning rate of 0.2. On the other hand, 

compared to a higher learning rate, this rate needs more training cycles. 

(iv) Learning momentum: To fit the current direction of movement in the weight space with the weight changes 

that have occurred in the past, momentum is added to the learning rate. Adjusting the weights and ranges 

between 0 and 9 points is an extra adjustment to the learning rate. With a learning momentum value of 0.3, the 

networks were trained using a back-propagation learning algorithm. 

(v) Number of training cycles: The networks underwent training until the root mean square (rms) error was 

lowered to a level that was deemed appropriate. Because it is simple to over-train, which lowers the network's 

capacity for generalization, this is one of the most crucial design considerations for ANNs. 6000 cycles were 

used to train the network. 

In network training process, to each hidden and output neuron the linear transformation that fits best the 

available data. The quality of the overall fit of all those linear transformations may be assessed by various 

measures (Holeńa et al., 2003). The most commonly used measures to assess the quality of the overall fit of 

network is the mean squared error (MSE), i.e. the mean squared distance between the output values that the 

network computes for a given sequence of inputs, and the output values that for those inputs have been 

experimentally measured. Once a measure of the overall data fit is fixed, neural network training reduces the 

task of finding the linear transformations optimal with respect to that measure. In the case of MSE, this means 

finding those linear transformations that lead to the minimal sum of squared distances between the computed 

and measured outputs (Hagan et al., 1996; Rumelhart et al., 1986). In respect of these, egg volume neural 

network process has the best prediction in terms of its MSE value. The lay date has close prediction error 

results after egg success (Table 4). 

Table 4. ANN Modelling output statistics 

Parameters Lay date Egg volume Egg success Fate 

MSE 0.043 0.032 0.143 0.108 

Gradient 10.75 0.246 2.410 0.264 

Regression tree models was established using response variables of lay date, egg volume, egg success and 

evaluated using all explanatory variables as input. The modes were implemented using Cubist software with 

10-fold cross validation. The error statistics drived from cross validation were given in Table 5. Using a small 

number of reference data samples for both training and accuracy assessment, cross-validation is intended to 

produce reasonably realistic accuracy estimates (Michie et al. 1994). N subsets of the training data set make 
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up an N-fold cross-validation. The accuracy of the classification created using all reference samples is 

represented by the average value of the accuracy estimates obtained by utilizing each subset to assess the 

classification created using the remaining training samples (Huang et al., 2001).  

Table 5. Regression tree modelling output statistics 

Variable 
Average  

error 

Relative 

error 

Correlation 

coefficient 

Lay date 14.4 0.96 0.25 

Egg volume 412.6 0.79 0.40 

Egg success 3.4 0.89 0.31 

The relative error magnitude is the ratio of the average error magnitude to the error magnitude that would result 

from the mean value; for accurate models, this should be less than 1. The correlation coefficients are the 

agreement between the cases' actual values of the target attribute and those values predicted by the model 

(Rulequest Research, 2008). All regression tree models were acceptable according to their relative error values. 

The egg volume is the best modelled variable with regression tree regarding to its correlation coefficient and 

also its relative error.  

For nest fate, classification tree algorithm along with the 5% confidence level of pruning and 10-fold cross 

validation was used. Fate was predicted with an average 4.3 rules and an average error rate of 32,1% (Table 

6). 

Table 6. Classification tree modelling output statistics of nest fate 

Folds 1 2 3 4 5 6 7 8 9 10 Mean SE 

Rules  
numbers 1 3 3 8 3 3 9 3 7 3 4.3 0.8 

error (%) 37.5 25.0 37.5 25.0 25.0 37.5 22.2 33.3 44.4 33.3 32.1 2.3 

The prediction results of linear regression, binomial logistic regression and decision tree techniques were 

mapped using various techniques (Figure 2, 3, 4, and 5). The prediction results were extracted from these 

images for all response variables along nest location coordinates of test data sets. 
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Figure 2. Prediction results lay date 

 

Figure 3. Prediction results of gg volume 
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Figure 4. Prediction results egg success 

 

Figure 5. Prediction results nest fate 

The outputs of all four modelling techniques were compared by correlating the test data set values (Table 7).  

Table 7. Accuracy results of modelling techniques 

Variables Unit Regression Co-kriging ANN Decision tree 

Lay date Corr.Coef. 0.13 0.14 0.05 0.19 
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Egg volume Corr.Coef. -0.26 0.29 0.05 -0.25 

Egg success Corr.Coef. 0.43 0.34 0.28 0.34 

Nest fate            Percent 75 - 75 60 

The overall prediction accuracies were poor for the lay date in terms of the coefficient correlation of all four 

techniques. However, decision tree resulted the most accurate result and decision tree had similar accuracy 

with linear regression and co-kriging. Egg volume predictions were very limited. Because egg volume has 

negative correlation coefficient for regression and decision tree predictions. However, co-kriging predicted 

success for egg volume. Most accurately Linear regression performance for egg success and accuracy 

magnitude moderately better than other techniques according to their correlation coefficient scores. Fate was 

predicted reasonably for all tree techniques. Binomial logistic regression and ANN predicted fate with an 

accuracy of 75% which is more accurate than the decision tree technique.  

4. CONCLUSION 

This paper aimed to compare various modelling techniques which are frequently used for habitat modelling. 

However, this study differs from recent habitat modelling studies in various ways such as, utilization of 

breeding success measurements as response variables rather than presence or presence/absence data only. 

Thus, distribution patterns of Kentish plover breeding success and the relationship between breeding success 

features and environmental factors were analysed. 

Using regression models, especially with a stepwise elimination process provides a unique advantage different 

from other techniques to determine environmental variables have impact on desired response variable and their 

magnitudes.  

MAMs of regression results supported that; 

• Kentish plover lay date affected by human disturbance, proximity to feeding source and vegetation 

occurrence. These impacts are directly related to reproductive success according to Nisbet and Cohen 

(1975), and the largest clutches were laid by early nesters (Nisbet, 1978). 

• Egg volume of Kentish plover was affected by vegetation occurrence. This was proved by variables of 

NDVI and IKONOS red bands which are good indicators for healthy vegetation. This result supports the 

finding of Burger & Gochfeld (1987) and Li & Martin (1991) for other species. They suggested that nesting 

substratum is an environmental factor that influences the variations in breeding success. 

• The impacts on lay date and egg volume were also effectual for egg success. Especially the most significant 

two variables distance to agricultural fields and village for egg success support that human activities are 

the main constraint on the breeding habitat of Kentish plover. This result is backed up by the studies of 

Stephens et al. (2005), Vander Haegen (2005), and Showler et al. (2010) which support the idea of 

decreasing the nest location proximity to settlement and agricultural fields decline the bird reproductive 

success. 

• Distance to village was the most significant variable for nest fate among the other response variables. This 

establishes the fact that predation made by domestic dogs coming from Tuzla village. This conclusion 

supports the result of Ricklefs (1969), Marzluff & Neatherlin (2006),and Mönkkönen (2007) who suggested 

that nest predation often is the primary source of nest mortality for a wide range of bird spices. 

Each modelling technique within this study has differed in terms of accuracy and error measurements depend 

on their nature. To ensure comparability of four modelling techniques, 20% of response variable data was set 

aside for accuracy figures. However, four response variables could be investigated according to error or 
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accuracy outputs of modelling techniques to find out the compatibility between response variable and 

modelling techniques. 

Lay date has the most significant model (p=0.00006) for regression among the other response variables. 

Models’ coefficient of determination scores revealed that egg success regression has the best goodness of fit 

(R2=0,2). The nest fate regression model is exluded as its regression method is binomial logistic regression. 

The co-kriging models with mean standardized error (MSE) close to zero and root-mean-square standardized 

error (RMSE) standardized error close to one results more accurate predictions (Jiguet et al., 2005). Co-kriging 

models for all three response variable resulted very close MSE and RMSE scores. However lay date was 

predicted most accurately with co-kriging than those response variables (Table 3). This was the result of 

parametric nature of co-kriging because it has the the same order as normality scores of response variables. 

Thus, co-kriging produces more accurate predictions if response variables have better normality values.  

Egg volume was estimated with the smallest mean square error with ANN modelling. The results from other 

response variables with ANN have close mean square error values to each other in the order of lay date, nest 

fate and egg success. In contrary, majority of the literature have shown that ANN represented non-linearity 

such as species environment (Guégan et al, 1998; Walley & Fontama, 1998). Particulary ANN has the 

advantage in modelling species presence and absence (Mastrorillo et al,1997). 

Decision tree produces relative error and correlation coefficient to measure the performance of the models. 

Egg volume which has the largest normality results than other response variables, was modelled with the best 

scores of relative error and coefficient by regression tree (except fate because of its categorical data structure). 

However other response variables modeled with decision tree have closer relative error and correlation 

coefficient values. Decision tree induction is a nonparametric approach for building classification models. In 

other words, it does not require any prior assumptions regarding the type of probability distributions satisfied 

by the class and other attributes. 

There is no reason to believe that major differences in performance should occur between response variables. 

Probably of greater importance is the choice of criteria used to assess performance (Fielding and Bell 1997), 

the nature of the data on which prediction is based (e.g. linearity, species prevalence, data quality, sampling 

error) and the assumptions that must be satisfied by any given operation. However, comparing modelling 

techniques using various response provides better performances of modelling techniques understanding of with 

variables which are a measure or an indicator of breeding success for avian.  

The comparison of modelling techniques over response variables showed the potential of techniques estimating 

success for breeding success measures. All four modelling techniques achieved low accuracies for all response 

variables especially for egg volume and lay date. Reasons for the low accuracies can be attributed to data set 

which was not collected specifically for this study or the difference between resolution of imaginary used 

(IKONOS 4m) and defective accuracy of GPS technology (36 m) on the time data collected. 

In spite of low accuracy scores, results introduced the ascendant techniques for every breeding success 

measures. Response variable of lay date had best estimate with decision tree and egg volume were estimated 

most accurately by co-kriging according to their correlation coefficient scores. The technique comparison 

results of lay date is not agree however egg volume is agree with the suggestion of Boone and Krohn (2002) 

co-kriging gives better results with better normality values. Linear regression technique had the best accuracy 

scores than other techniques while estimating response variables of egg success instead of its poor normality 

score. Nest fate moderately good estimate results for all techniques (except co-kriging). Especially binomial 

logistic regression and ANN have better estimates than decision tree with same score of 75%. This is an 

expected result according to these two suggestions; i) binomial logistic regression performs better than various 



Türkiye Peyzaj Araştırmaları Dergisi 
2024, 7:1, 62-82 

Araştırma Makalesi  
 

Turkish Journal of Landscape Research  
2024, 7:1, 62-82 
Research Article 

77 

ecological modelling techniques (Manel et al., 1999; Pearce & Ferrier 2000; Manel et al., 2001); ii) ANN to 

be to be advantageous in modelling species presence and absence (Mastrorillo et al., 1997) 

This study emphasized that regression models with stepwise process is a powerful technique to determine 

which variable have an impact and what their magnitude for habitat modelling studies especially modelling 

with breeding success measures. According to these results the variable of IKONOS Red band which reflect 

the vegetation remained in all MAMs except the one for egg success. This points the vegetation occurrence 

mostly as the primary factor that effects the Kentish plover habitat in Tuzla. The human disturbance which is 

the only factor that effects egg success and the factor of proximity to feeding side are the secondary factors 

that influence the Kentish plover in Tuzla. 

Lay date and egg volume which had better normality results were the only response variables which had best 

scores according to models’ own error measures. This shows being a statistically normal response variable 

especially which are more detailed than presence or presence absence data like breeding success measures, 

still has advantages while being predicted by modelling techniques which are either parametric or non-

parametric. 

All four response variables have their own best accuracy results with four different modelling techniques. This 

result mentioned that these four modelling techniques have a potential for such kind of habitat modelling 

studies depend on breeding success. However, nest fate has the best accuracies with ANN (Cai et al., 2014; 

Yılmaz et al., 2020) and regression (Dinsmore et al., 2002; Webb, 2012). With this result in a general view 

regression model have slight more advantage than other techniques in this studies frame. This can be related 

to regression models well developed history and its various types according to variables data structure such as 

linear regression or logistic regression which were used in this study. 

In addition to the best accuracy results with four different modelling techniques, all accuracy results were not 

good enough for all response variables over these modelling techniques. In this study, these two general results 

can be related to the following factors: 

• Response data set which was derived from an overall data set that have a general purpose and is not specific 

for this study. 

• User’s error while recording data especially location of nests also depends on the Global Positioning System 

(GPS) technology limitation at that time. 

• Limitations depend on that time’s technology for satellite images which were used as base maps and 

explanatory variables in this study. 

• The ongoing poor performances of modelling approaches on estimating much more complex structures of 

ecological relations. 

Under these conditions to determine habitat characteristics of species in a detailed way such as depending on 

breeding success measures in this study there must be more studies which (i) have specific data set, (ii) try to 

develop new techniques to understand the phenomenon of ecology, (iii) use recent potentials of current 

technologies like Remote sensing and GIS. 
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