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ABSTRACT

In the next generation of smart cities, Unmanned Aerial Vehicles (UAV) also known as drones 
are playing a vital role in many advanced applications such as power transmission line in-
spection, transportation, aerospace and surveillance etc. Due to the excessively high and wide 
transmission tower heights, the conventional methods of power line inspection are general-
ly ineffective. This manuscript’s primary focus is the development of an autonomous UAV/
quadcopter that can hover over transmission towers and capture photographs and videos by 
flying along pre-planned routes. Quadcopters have a distinct feature that distinguishes them 
with the existing aerial vehicles and have a vital role in wide range of applications such as live 
monitoring of traffic and crowded areas, remote locations, delivery and inspection. This man-
uscript also explains about the advanced sensors & components such as Global Navigation 
Satellite System (GNSS), optical flow sensor and Here Link etc. required for fabrication of an 
autonomous quadcopter for power transmission line applications. The fabricated quadcopter 
includes a light weight S-500 frame equipped with intelligent controller such as Pixhawk cube 
orange (2.1) and NVIDIA nano board for receiving and analyzing the data from the onboard 
sensors and camera based on pre-determined criteria. The proposed approach increases effec-
tiveness and accuracy, has a promising future for intelligent insulator detection and inspection 
which is a valuable addition to power networks. The suggested deep learning technique has 
a detection speed of 51.8 frames/sec and a detection accuracy of up to 90.31 percent. The 
suggested DL algorithm has a promising future in terms of intelligent insulator inspection in 
power grids.
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INTRODUCTION

Power line components are considered to be the most 
important parts of transmission lines and it is mandatory to 
conduct efficient inspection and maintenance in a safer way 

in order to meet the demands of consumer and power sec-
tor. Earlier inspection methods were often sluggish, risky 
and costly. The monitoring and inspection of overhead 
power transmission lines includes two facets namely: com-
ponents on transmission lines and their surroundings such 
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as vegetation. So far from the literature survey, it is observed 
that, only a few studies have concentrated on developing the 
autonomous quadcopter system and Deep Learning (DL) 
based inspection of overhead power transmission lines in 
India. As part of continuous efforts and to take advantage 
on current developments in UAV and DL technology, this 
manuscript’s primary focus is developing an autonomous 
quadcopter based on deep learning techniques for safely 
and accurately inspecting electricity transmission lines. To 
avoid unscheduled power outages and blackouts, it is essen-
tial to maintain power transmission towers and their com-
ponents. Numerous studies are working into autonomously 
based UAV inspections for quick findings and precision to 
address this [1,2].

 UAVs are categorized and selected depending up on 
the type of application and environment in order to achieve 
the best range and efficiency. The drone market is expected 
to reach $1.5 billion by 2022. (Strategy &). By 2024, the 
consumer drone market is estimated to earn more than 
$9 billion in revenue and sell more than 15 million units. 
Inspections and surveys, as well as aerial filmmaking and 
photography, will be the most popular applications. Drones 
will be used at all phases of construction projects to gain 
a competitive advantage and accelerate the construction 
process. The drone industry will have a global economic 
impact of $8 billion to $10 billion and will create 100,000 
employments (Global Market Insights, Inc.) [18]. As the 
demand for electricity grows, the numbers of transmission 
lines are being multiplied. In order to meet this require-
ment, a continuous power supply should be maintained. 
Due to the unattended repair of existing faults in transmis-
sion conductors and insulators leads to improper power 
supply [3]. Now-a-days UAV’s are utilized in all day to 
day applications such as pesticide sprayer in agriculture, 
monitoring of crowd, delivery in logistics and inspection 

in various domains [4]. In the present scenario researchers 
across the globe are focusing on the application of power 
transmission line inspection by using quadcopter/drone 
for better stability, fast hovering and accuracy in terms of 
inspection. Applications for UAV are being developed that 
can fly or hover autonomously along a transmission line 
while adhering to pre-defined waypoints. As the most mod-
ern cameras can record images and videos and send them 
back to the Ground Control Station (GCS) with live trans-
mission features, they are also regarded as autonomous in 
data collection [5-6]. Although many theories have been 
proposed to explain the current issues, such as damage to 
insulators, conductor corrosion, vibration damage, cracks 
on conductors and insulators, atmospheric contaminants, 
fretting between aluminum conductors close to clamps and 
other fittings, sparking, transmission line corona and par-
tial discharging levels [7-10]. The power line components 
are first identified via the detection methods for defective 
insulators, and their features are extracted using a classi-
fier. The processes for locating insulators include histogram 
projection [19], clustering [20], sliding windows [21], and 
structure data [22]. These techniques are primarily used to 
transform the detection task into a classification problem. 
However, they rely on the shape and size of the insulator 
and fail to identify the precise position of flaws. 

 Power line inspection is primarily used to assess the 
condition of transmission lines and use that information 
to generate maintenance decisions. This procedure entails 
keeping track of the state of the power transmission lines 
and other parts, as shown in Figure 1. Which is obtained 
from [3] and modified with all the notations of power 
line components as shown in Figure 1. The modeled pro-
totype flies autonomously loiters for at least 20 seconds at 
each power mast to ensure that electronic components are 
correctly captured or recorded and proceeds to the next 

Figure 1. Front and side view of the corrugated tube. [From Barba et al. [95], with permission from Elsevier.]
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waypoint. The developed quadcopter also records insula-
tor flaws, rust on towers, missing bolts, broken spacers, and 
anomalies in transmission lines.

Structure of Quadcopter
This manuscript mainly defines the UAV type of 

(Quadcopter) inspection for power transmission lines 
due to their maneuverability and take-off, hover and land 
smoothly without any wobble nature which is essential for 
power transmission line inspections. Figure 2 shows a tra-
ditional quadcopter with a flight controller and receiver, 
Electronic Speed Controller (ESC), Brushless DC Motors 
(BLDC), Lithium Ion Polymer (Li-Po) battery, Power 
Distribution Board (PDB), 3D gimbal, surveillance camera, 
video transmission and receiving module and frame etc.

Bibliometric Analysis
To know the status of existing research on inspection of 

power transmission lines and methods, authors have con-
ducted a bibliometric analysis on 18 January 2021 using the 
acknowledged databases such as web of science and google 
scholar. The total number of research publications indexed 
by the databases from 2004-2021 are shown in Figure 3. 
A total number of 348 documents are found that includes 
137 research articles related to power line inspection and 
deep learning methods. The total number of research arti-
cles was very low and stable till 2014. From 2015 onwards 
articles on power transmission line inspection, methods 
and UAV’s has increased to a higher level and reached to 
the number of 70 publications in 2020. At present there are 
54 articles in 2021 i.e. (18/11/2021). Before 2012, inspec-
tion methods and methodologies are published in research 

Figure 2. Quadcopter internal hardware.

Figure 3. Number of publications indexed in databases based on power line inspection.
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articles but implementation was not done in real time sce-
nario. After 2016, research articles have gradually increased 
on power line inspection methods, types and deep learning 
algorithms related to inspection. With the development of 
UAV and deep learning technologies, aerial inspection has 
recently become widely used by power companies.

 The primary tasks addressed by the modeled prototype 
are as follows: (i) the detection of multiple components 
on overhead power transmission cables is examined using 
deep learning techniques in tandem with the acquired aerial 
photographs utilizing the domestically sourced quadcopter 
working model. (ii) A specially designed quadcopter that 
has two high definition quality cameras on board is used in 
this manuscript to hover along power transmission cables 
and circle around power poles in order to capture images of 
different components from various angles. (iii) The inde-
pendent flight of the modeled prototype allows it to cor-
rectly record or capture electronic components by hovering 
at each power mast for at least 15 seconds before moving on 
to the next waypoint. The quadcopter also records trans-
mission line defects, tower rust and insulator flaws.

The rest of this document is as follows: A summary of 
the current study is provided in Section I. Section II dis-
cusses the gear for the quadcopters electricity line inspec-
tion. Section III briefly explains the dynamic modeling of 

a quadcopter, and Section IV explains data collecting and 
power line inspection procedures. Section V discusses 
experimental findings of UAV-based power line inspec-
tion. Conclusion and future prospects are summarized in 
Section VI.

HARDWARE COMPONENTS OF QUADCOPTER

The fabrication of autonomous quadcopter includes 
various stages and components. Among them, the frame 
of quadcopter plays a crucial role. In this manuscript, an 
S-500 quad-frame with an attached landing sticks and 
power module is used as it can withstand the vibrations and 
flexible for mounting the electronic components as shown 
in Figure 4.

Brushless DC Motors (BLDC)
Four Emax MT3506 BLDC motors are mounted on the 

wings of quadcopter with 650 kV rating as shown in Figure 
5. These motors have long durability and light in weight 
reducing the payload of quadcopter and are powered by the 
ESC’s with 5V. 

Each motor is equipped with the 13*55 carbon fiber 
propellers and generates a maximum thrust of 1100 grams 
and 9720 revolutions per minute. So, the fours motors will 
generate 4400 grams of thrust in order to achieve the suc-
cessful Vertical Take-off and Landing (VTOL).

Electronic Speed Controller (ESC)
The main output of the ESC’s is to reduce input voltage 

to BLDC rotors in order to overcome the unwanted short 
circuits and damage to the quadcopter. In this manuscript, 
Readytosky 40A Esc’s are used to supply a smooth flow of 
power and a it has a spurt rating of 60A as shown in Figure 
6. Four ESC’s are connected to four motors and weighs 
approximately 26 grams.

Pixhawk Orange Cube with HERE2 GNSS
The controller is considered to be the heart of quad-

copter. In this manuscript a Pixhawk 2.1 orange cube and 
carrier board is loaded with latest firmware for achieving 
autonomous missions and it is mounted on the top of the 

Figure 5. (a) Emax BLDC motors 650KV and (b) 13*55 carbon fiber propellers.

Figure 4. Quadcopter frame (S500).
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quadcopter for overcoming the unwanted disturbances in 
input signals as shown in Figure 7. A HERE2 GNSS is also 
mounted alongside the controller for loading the waypoints 
through mission planner software. It is equipped with a sat-
ellite navigation system and an ADS-B (automated depen-
dent surveillance-broadcast) receiver. This board includes 
a uAvionix 1090 MHz ADS-B receiver that transmits the 
UAVs location to mission planner software for viewing, 
including speed, altitude, and position.

The cube includes an STM32F100 32-bit ARM 
Cortex-M3 24 MHz 8 KB SRAM failsafe co-processor as 
well as an 32-bit high processing speed ARM Cortex-M7. 
The orange cube also comes with inbuilt accelerometer 
ICM20948, an internal compass for GNSS signals, a gyro-
scope for stability and Inertial Measurement Unit (IMU) 
The input voltage for the controller is 5V and it can with-
stand a maximum voltage of 40-55V or 25A. The controller 
can withstand temperature between -100 to 550 Celsius.

Lithium Ion Polymer battery
The fabricated quadcopter is powered by using a 

Lithium Ion Polymer (Li-Po) battery as it is light in weight 
and can supply an adequate amount of power required for 
the quadcopter movement. The specifications of battery 
are, it is a 4-cell battery with 14.8 V and 5200 mAh rating 

and can discharge at the rate of 40C as shown in Figure 8. 
The total weight of the battery is approximately 350 grams 
and can with stand for a total flight time of 18-25 minutes. 
In order to observe the current rating of battery, a digital 
power indicator is connected to overcome the low power 
failures during flight of quadcopter. The weight of the 
quadcopters onboard components is shown in Table 1.

Figure 6. Electronic speed controller. Figure 7. Pixhawk Orange cube controller and here2 board.

Figure 8. Lipo battery.

Table 1. Components of quadcopter

Sr.
No.

Component Weight (gm)

1. S500 frame 125
2. Pixhawk orange cube controller 60
3. GNSS module 30
4. BLDC Motors (650 kV) 255
5. Electronic Speed Controllers (ESC) 110
6. Propellers (12*38) 100
7. Li-Po battery 350
8. Go Pro hero 7 (12 Mega Pixels, 4K 

resolution with 3X zoom and 20 minutes 
battery life etc.) 

110

Total Weight 1,140
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DYNAMIC MODELLING OF QUADCOPTER

The movements (Roll, Pitch and Yaw) are calibrated and 
monitored by using a Proportional Integral (PI) controller 
in order to achieve the stability and altitude hold while hov-
ering the quadcopter as shown in Figure 9. The required 
values are upgraded every time by using the auto tune 
function in mission planner software. U1, U2, U3 and U4 
are the four quadcopter input forces that affect hovering. 
U1 controls the quad copter’s altitude, U2 controls the roll 
angle rotation, U3 controls the pitch angle and U4 controls 
the yaw angle.

The pilot can maneuver the quadcopter in the desired 
direction by incorporating these input forces. An equation 
is used to calculate each input force as in (1) [12].

  
(1)

Where U = Total thrust of all motors; T1 = Thrust of 
front of motor (M1); T2 = Thrust of rear motor (M2); T3 
= Thrust of right motor (M3); T4 = Thrust of remaining 
motor (M4); m = Quadcopter weight; I = Inertia moment; 
l = quad copter’s half-length; x, y, z denotes maneuver of 
quadcopter in multiple axis.

Calculation of Thrust 
The mechanical force is referred to as thrust generated 

by the BLDC motors and propellers mounted on it in order 
to move the quadcopter in the mid-air. A motor spins at a 

specific angular velocity to generate it. A rotor’s thrust is 
computed as in below equations [13]. 

  (2)

Km = Resistance of motor in Ohms.
I0 = No load current

  (3)

RPM and Torque at current (I) is:

  
(4)

Efficiency of BLDC motor is:   
η = Output of power/input electrical work

  (5)

where V and Iare working voltage and current  
Maximum efficiency of current is:

  
(6)

Torque at maximum efficiency is:

  (7)

RPM at maximum efficiency is:

Where RPM is kV rating of BLDC motor multiplied by 
battery voltage and diameter is the total length of propel-
lers. Air density is calculated separately and CF is selected 
depending on propeller type (In most cases it is 1). 

 A schematic of control structure is proposed for achiev-
ing the stability and altitude hold of quadcopter. As shown 
in Figure 10, there are different control modules such as 
obstacle avoidance and navigation system, altitude control 
& stabilization and dynamics of quadrotor system. In the 
control system, two loops are presented such as outer loop 
and inner loop. The output of sensors and control modules 
are illustrated in the inner loop while the outer loop has the 
inner loop and control systems of obstacle avoidance and 
altitude control. The platform’s basic operation and control 
are handled by the inner loop [14-15].

The altitude stabilization algorithm and altitude mea-
surements are handled by this loop. The algorithms for 

Figure 9. Front and side view of the corrugated tube. [From 
Matikainenet al. [11], with permission from Elsevier.]
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altitude control, navigation and collision avoidance are all 
included in the outer loop. The GPS module, magnetometer, 
ultrasonic and infrared sensors are all used in this outer loop.

Firmware installation and compass calibration
The Pixhawk cube controller is upgraded with the latest 

firmware of Ardupilot by using mission planner software. 
In order to achieve the VTOL, accelerometer is calibrated 
by placing the nose of quadcopter in various directions. 
Compass calibration is considered to be the vital step for 

achieving the smooth hovering and attaining the altitude 
stability. All the steps included in calibration of quadcopter 
are achieved successfully as shown in Figure 11 (a-e).

DATA ACQUISITION AND POWER LINE 
INSPECTION

 In Figure 12, a quadcopter-based pipeline for identi-
fying power line insulators is illustrated. The deep learn-
ing pipeline consists of four steps. Pre-processing aerial 

Figure 11. Front and side view of the corrugated tube. [From Ahmed et al. [17], with permission from IEEE.]

Figure 10. Front and side view of the corrugated tube. [From Mohanta et al. [14], with permission from Elsevier.]
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photographs is the first stage. The second stage entails 
identifying masts from aerial images. The third stage entails 
training the model using SSD architecture. The fourth stage 
entails detecting real-time insulators from power transmis-
sion lines. 

 Before data augmentation techniques are employed, 
the original aerial photos are preprocessed by flipping, 
scaling, cropping, and labeling. The SSD architecture and 
aerial images are utilized for training the detection model. 
The authors combined a binary fine-tuning method with 
standard deep learning techniques to increase precision 
and robustness. SSD has a high degree of accuracy when 
it comes to component detection and classification. The 
usage of a tiny filter (convolutional) for component recog-
nition and their classes, as well as offsets for bounding box 

positions, make it an upgraded version of YOLO. SSD is 
now faster and more accurate than older techniques thanks 
to these developments. Separate filters for item predictions 
at varying ratios are run to get detections in multiple cate-
gories and yield the final detections.

The standard design for SSD to achieve accurate picture 
categorization is the base network. Since VGG-16 performs 
exceptionally well in high-definition photo categorization 
and is simple to code into embedded devices for real-time 
detection, it is selected as the foundational network in this 
case. Unfortunately, according to review of the literature, 
there are no readily available datasets for training and 
inspection of power line components. In order to proceed 
with the deep learning-based visual inspection for compo-
nent detection and classification training, a medium-sized 

Figure 13. Front and side view of the corrugated tube. [From Miao & Ahmed et al. [12, 16], with permission from Elsevier.]

Figure 12. General structure of our proposed pipeline and intelligent approach for identification of insulators.
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dataset of insulators is prepared by capturing power line 
components. The aerial photographs for this dataset were 
taken using a quadcopter equipped with a 4K GoPro Hero7 
black camera and a Nikon D810 camera operating at sev-
eral resolutions, including 1080p: 1920*1080, 7360*4912, 
and 60 frames per second. The authors have integrated var-
ious photographs of insulators and power line components 
obtained by UAVs to broaden the reach of the datasets, as 
shown in Figure 13. The captured datasets are trained in 
the ration 70:15:15, i.e. 70% images are used for training, 
15% images are used for testing and 15% images are used 
for validation.

RESULTS AND DISCUSSION 

A medium-sized dataset comprising multiple insulators 
with varying backdrops and vegetation is used to train and 
apply the proposed component detection technique and 
assess its efficacy in identifying components from aerial 
images. Since there are no publicly available datasets for 
power line inspection, the author’s dataset of aerial images 
is used for training. 

The trained model with the Single Shot Detector (SSD) 
can identify insulators from aerial photos with different 
backgrounds. The Average Precision (AP) rate of multiple 
insulator detection at various training stages is shown in 
Figure 14. The tests were run every 2000 iterations out of a 

Figure 14. Average precision at various training steps.

Figure 15. Detection of insulator in multiple backgrounds
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total of 20000 iterations and the detection model shows that 
after 10,000 iterations, the AP’s reach 89.04% and 90.31%, 
respectively. All of these processes take about 0.8 seconds 
to complete each iteration. Detection of aerial photographs 
with insulators against the different backgrounds is shown 
in [Figure 15 (a-d)]. The suggested method will instantly 
generate the green bounding box to locate the insulators 
against varied backgrounds.

As illustrated in Figure 15, normal insulators are 
depicted in green, and defective insulators are shown in 
yellow padded boxes. Our suggested approach locates 

the majority of insulator faults in a variety of backdrops, 
as shown in Figure 16. As shown in [Figure 16 (a-f)], the 
detection model is able to differentiate between the pin and 
disc insulators in a cluttered background.

According to various field testing by authors, the safe 
flight range for quadcopter autonomous missions are main-
tained at 3-5 meters for 33 kV overhead power transmission 
lines and 7-10 meters for 110 kV overhead power transmis-
sion lines, etc. These reference values include unexpected 
events like a strong wind, a wind gust or a malfunction into 
account by including a safe margin of 18m. Figure 17 shows 

Figure 16. Detection of pin and disc insulator in various backgrounds and results of insulator detection with defects.



Sigma J Eng Nat Sci, Vol. 42, No. 3, pp. 621−632, June, 2024 631

how the suggested model performs in comparison to four 
other object detectors on various insulator classes of gath-
ered datasets. Comparison with the other models shows 
that the recommended model operates rapidly, precisely 
and accurately. 

CONCLUSION 

This article proposes the use of aerial photos captured 
by a self-flying quadcopter as a non-invasive means of 
condition monitoring and fault identification in power 
line insulators. The deep learning method is implemented 
on an SSD dataset of power line insulators. The authors 
have addressed the shortcomings of inadequate aerial 
images and class imbalance by introducing a two-phase 
fine-tuning mechanism into the SSD training process. 
First, power line component parameters associated with 
different kinds of insulator detection and defects are inte-
grated with a natural insulator dataset. After undergoing 
comprehensive training, the final model is able to distin-
guish between various insulators in aerial photos. The 
findings show that, with an overall running time of 0.8 
seconds each iteration, suspension, pin, and disc power 
line insulators, as well as their constituent parts, can be 
easily identified with an average precision of 90.31 per-
cent. The recommended model produced the greatest 
results from aerial photos, even with the intricate back-
ground and greenery. The robustness detection, classifica-
tion, and model applicability were all markedly enhanced 
by the two-stage fine-tuning approach. With respect to 
competitive precision and multilevel component feature 
extraction, the suggested model can outperform the other 
models and their outcomes.

 Two potential future stages in the development of an 
autonomous vision-based power line component inspec-
tion system are suggested by the authors: The first is using 
binding thermal images as a dedicated dataset to identify 

anomalies in power line components and enhancing the 
detection model with important information about insula-
tor defect features to identify even small fractures in power 
line insulators and missing top caps. In order to develop 
a completely autonomous quadcopter for inspecting mul-
tistage sections of overhead power transmission cables 
and components, the suggested pipeline model must be 
improved on embedded platforms like edge GPUs.
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