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Abstract  Keywords 

In this work, we define a chaotic map that contradicts Elaydi’s conjecture. Firstly, 

we present some important concepts used in this paper and define a continuous map 

𝑓 on [0,2], which is connected according to the usual topology on ℝ. Moreover, we 

show that 𝑓 is chaotic on [0,2] by using topological conjugacy with the ‘tent map’. 

Finally, we conclude that 𝑓2 = 𝑓 ∘ 𝑓 is not chaotic on [0,2]. In addition, this 

example also shows that topological transitivity does not imply total transitivity. 
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1. INTRODUCTION 
 

Chaotic dynamical systems are often used in image encryption, cryptology, fractal geometry, etc. [1-3]. 

Devaney presented the definition of a chaotic map, which is widely used in mathematics [4]. The 

definition of a chaotic map consists of three conditions: topological transitivity, the density of the set of 

periodic points, and sensitive dependence on initial conditions. Topological transitivity indicates that 

the system exhibits complex behavior, while the density of the set of periodic points suggests that the 

system exhibits regular behavior. Additionally, sensitive dependence on initial conditions indicates that 

the system is unpredictable. 

 

Many researchers examined the relations between chaos conditions [5-8]. Banks and his colleagues 

showed that topological transitivity and the density of the set of periodic points imply sensitive 

dependence on initial conditions in a non-finite metric space with a continuous map [5]. Vellekoop and 

Berglund showed that topological transitivity is sufficient for chaos on intervals [6]. Değirmenci and 

Koçak investigated the relationship between topological transitivity and dense orbit [7]. Chaos 

conditions were adapted to product spaces by Değirmenci and Koçak [8]. The question may arise 

whether, for a metric space 𝑋 and a chaotic map 𝑓: 𝑋 → 𝑋, the map 𝑓𝑚, which is the composition of 𝑓 

with itself 𝑚 times for all 𝑚 ∈ ℤ+, is also chaotic. In [9] (p. 143), Elaydi put forward the following 

claim: “Let 𝑓: 𝑋 → 𝑋 be a continuous map on a metric space 𝑋 (an interval 𝐼) which is chaotic. Show 

that if 𝑋 is connected, then 𝑓𝑚 is chaotic for all 𝑚 ∈ ℤ+.”  

 

The aim of this paper is to define a chaotic map that contradicts Elaydi’s conjecture. Firstly, we present 

some important concepts used in this paper and define a continuous map 𝑓 on [0,2], which is connected 
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according to the usual topology on ℝ. Moreover, we show that 𝑓 is chaotic on [0,2] by using topological 

conjugacy with the ‘tent map’. Finally, we conclude that 𝑓2 = 𝑓 ∘ 𝑓 is not chaotic on [0,2]. In addition, 

this example also shows that topological transitivity does not imply total transitivity. 

 

2. PRELIMINARIES 

 

Let 𝑋 be a topological space and 𝑓: 𝑋 → 𝑋, then (𝑋, 𝑓) is called discrete dynamical system [4]. For any 

𝑎 ∈ 𝑋, the set 𝑂𝑟𝑏𝑓(𝑎) = {𝑎, 𝑓(𝑎), 𝑓
2(𝑎), 𝑓3(𝑎),… , 𝑓𝑚(𝑎),… } is called orbit of 𝑎 under 𝑓 [4]. A point 

𝑝 ∈ 𝑋 is called a periodic point of 𝑓 if there is a positive integer 𝑚 such that 𝑓𝑚(𝑝) = 𝑝 [4]. The smallest 

such 𝑚 is called prime period of 𝑝 [4]. The set 𝑃𝑒𝑟(𝑓) = {𝑝 ∈ 𝑋 ∶ 𝑓𝑚(𝑝) = 𝑝, 𝑚 ∈ ℤ+} is called the 

set of periodic points of 𝑓 [4]. 

 

Definition 2.1. ([4]) Let (𝑋, 𝑓) be a discrete dynamical system. 𝑓 is called topologically transitive if for 

every non-empty open subsets 𝑈, 𝑉 ⊂ 𝑋, there exists a 𝑚 ∈ ℤ+ such that 𝑓𝑚(𝑈) ∩ 𝑉 ≠ ∅. 

 

Definition 2.2. ([10]) Let (𝑋, 𝑓) be a discrete dynamical system. 𝑓 is called totally transitive if     

𝑓𝑚: 𝑋 → 𝑋 is topologically transitive for all 𝑚 ∈ ℤ+.  

 

From the definition of total transitivity, it is easy to see that every totally transitive map is topologically 

transitive. However, as we will see, the reverse is not always true. 

 

Definition 2.3. ([4]) Let (𝑋, 𝑓) be a discrete dynamical system where 𝑋 is a metric space. 𝑓 is called 

sensitive dependent on initial conditions if for 𝑟 > 0 following hold, for all 𝑥 ∈  𝑋 and for every open 

neighborhood 𝑈 of 𝑥, there exists a 𝑚 ∈ ℤ+ and 𝑦 ∈ 𝑈 such that, 𝑑(𝑓𝑚(𝑥), 𝑓𝑚(𝑦)) ≥  𝑟.   

 

Definition 2.4. ([4]) Let (𝑋, 𝑓) be a discrete dynamical system, where 𝑋 is a metric space. The map 𝑓 

is called chaotic (sense of Devaney) if 𝑓 is topologically transitive, 𝑃𝑒𝑟(𝑓) is dense in 𝑋, and 𝑓 is 

sensitive dependent on initial conditions. 

 

Theorem 2.5. ([5]) Let (𝑋, 𝑓) be a discrete dynamical system, where 𝑋 is a non-finite metric space and 

𝑓 is continuous. If 𝑓 is topologically transitive and 𝑃𝑒𝑟(𝑓) is dense in 𝑋, then 𝑓 is sensitive dependent 

on initial conditions, i.e., 𝑓 is a chaotic map. 

 

Theorem 2.6. ([6]) Let (𝐼, 𝑓) be a discrete dynamical system, where 𝐼 ⊂ ℝ is an interval and 𝑓 is 

continuous. If 𝑓 is topologically transitive, then 𝑃𝑒𝑟(𝑓) is dense in 𝐼, i.e., 𝑓 is a chaotic map. 

 

The notion of topological conjugacy is used for the equivalence of the dynamics of the maps. 

 

Definition 2.7. ([4]) Let (𝑋, 𝑓) and (𝑌, 𝑔) be two discrete dynamical systems. If a homeomorphism 

ℎ: 𝑋 → 𝑌 exists such that ℎ ∘ 𝑓 = 𝑔 ∘ ℎ, then 𝑓 and 𝑔 are said to be topologically conjugate maps, and 

(𝑋, 𝑓) and (𝑌, 𝑔) are said to be topologically equivalent dynamical systems. 

 

Theorem 2.8. ([4,10]) Let (𝑋, 𝑓) and (𝑌, 𝑔) be topologically equivalent dynamical systems, where 𝑋, 𝑌 

are non-finite metric spaces and 𝑓, 𝑔 are continuous maps. Then,  

(i) 𝑃𝑒𝑟(𝑓) is dense in 𝑋 iff 𝑃𝑒𝑟(𝑔) is dense in 𝑌. 

(ii) 𝑓 is topologically transitive iff 𝑔 is topologically transitive. 

(iii) 𝑓 is totally transitive iff 𝑔 is totally transitive. 

(iv) 𝑓 is chaotic on 𝑋 iff 𝑔 is chaotic on 𝑌. 

 

 

 



Güvey / Estuscience  – Theory , 13 [1] – 2025 

 

3 

 

3. COUNTEREXAMPLE 

 

We define 𝑓: [0,2] → [0,2] by 

𝑓(𝑥) =

{
 
 

 
    2𝑥 + 1,   0 ≤ 𝑥 ≤

1

2

−2𝑥 + 3,   
1

2
≤ 𝑥 ≤

3

2

    2𝑥 − 3,   
3

2
≤ 𝑥 ≤ 2.

 (1) 

To show 𝑓 is a chaotic map, it is sufficient to show that 𝑓 is topologically transitive by Theorem 2.6, 

because 𝑓 is defined on an interval and 𝑓 is continuous. Graphs of 𝑓 and 𝑓2 are shown in Figure 1. 

 

 
(a) 

 
(b) 

Figure 1. (a) Graph of 𝑓; (b) Graph of 𝑓2. 

 

We use the famous ‘tent map’ and a map which is topologically conjugate to it to achieve our aim. The 

tent map is defined by 𝑇: [0,1] → [0,1],  
 

𝑇(𝑥) = {
2𝑥     ,   0 ≤  𝑥 ≤  

1

2

2 − 2𝑥 ,   
1

2
≤  𝑥 ≤  1.

 (2) 

 
𝑇 is a well-known chaotic map in the theory of chaotic dynamical systems [4,10]. In addition, 𝑇 is a 

totally transitive map, i.e., 𝑇𝑚 is topologically transitive for all 𝑚 ∈ ℤ+ [10]. We will use transitivity of 

𝑇 and 𝑇2 (see Figure 2). 

 

 
(a) 

 
(b) 

 
Figure 2. (a) Graph of 𝑇; (b) Graph of 𝑇2. 

 

Define 𝑅: [0,1] → [0,1] by 

𝑅(𝑥) = {
−2𝑥 + 1 ,   0 ≤  𝑥 ≤  

1

2

2𝑥 − 1 ,  
1

2
≤  𝑥 ≤  1.

 (3) 
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Example 3.1. The tent map 𝑇 defined in (2) is topologically conjugate to the map 𝑅 defined in (3) via 

homeomorphism ℎ: [0,1] → [0,1], ℎ(𝑥) = 1 − 𝑥. Let 𝑥 ∈ [0, 1
2
], then (ℎ ∘ 𝑅)(𝑥) = 2𝑥 = (𝑇 ∘ ℎ)(𝑥). If 

𝑥 ∈ [1
2
, 1], then (ℎ ∘ 𝑅)(𝑥) = 2 − 2𝑥 = (𝑇 ∘ ℎ)(𝑥). Hence, (ℎ ∘ 𝑅)(𝑥) = (𝑇 ∘ ℎ)(𝑥) for all 𝑥 ∈ [0,1]. 

Finally, 𝑇 and 𝑅 are topologically conjugate maps.  

 

Result 3.2 According to Theorem 2.8, the dynamical behavior of 𝑇 and 𝑅 are same. Since 𝑇 is chaotic 

and totally transitive, 𝑅 is also chaotic and totally transitive.  

 

 
(a) 

 
(b) 

Figure 3. (a) Graph of 𝑅; (b) Graph of 𝑅2. 
 

Example 3.3. The map 𝑓 defined in (1) is chaotic on [0,2]. By Theorem 2.6, it is sufficient to show that 

𝑓 is topologically transitive. Consider the restricted maps of 𝑓2 as 𝑔1 = 𝑓
2|[0,1] and 𝑔2 = 𝑓

2|[1,2]. Note 

that, the map 𝑔1 is equal to 𝑅2 (see Figure 1 (b) and Figure 3 (b)). Since 𝑅 is totally transitive, by Result 

3.2, 𝑅2 is topologically transitive. Hence, 𝑔1 is topologically transitive. We show that 𝑔2 and 𝑇2 are 

topologically conjugate via homeomorphism 𝑘: [0,1] → [1,2], 𝑘(𝑥) = 𝑥 + 1. Explicit forms of 

𝑔2: [1,2] → [1,2] and 𝑇2: [0,1] → [0,1] are 

𝑔2(𝑥) =

{
 
 

 
    4𝑥 − 3,   1 ≤ 𝑥 ≤

5

4

−4𝑥 + 7,   
5

4
≤ 𝑥 ≤

3

2

    4𝑥 − 5,   
3

2
≤ 𝑥 ≤

7

4

−4𝑥 + 9,   
7

4
≤ 𝑥 ≤ 2

  

and 

𝑇2(𝑥) =

{
 
 

 
           4𝑥,   0 ≤ 𝑥 ≤

1

4

−4𝑥 + 2,   
1

4
≤ 𝑥 ≤

1

2

    4𝑥 − 2,   
1

2
≤ 𝑥 ≤

3

4

−4𝑥 + 4,   
3

4
≤ 𝑥 ≤ 1

  

respectively. We will show that (𝑘 ∘ 𝑇2)(𝑥) = (𝑔2 ∘ 𝑘)(𝑥) for all 𝑥 ∈ [0,1]. Let 𝑥 ∈ [0,1].  
If  𝑥 ∈ [0, 1

4
], then (𝑘 ∘ 𝑇2)(𝑥) = 4𝑥 + 1. Since 𝑥 + 1 ∈ [1, 5

4
], (𝑔2 ∘ 𝑘)(𝑥) = 𝑔2 (𝑥 + 1) = 4𝑥 + 1.  

If 𝑥 ∈ [1
4
, 1
2
],   then (𝑘 ∘ 𝑇2)(𝑥) = −4𝑥 + 3. Since 𝑥 + 1 ∈ [5

4
, 3
2
], (𝑔2 ∘ 𝑘)(𝑥) = 𝑔2(𝑥 + 1) = −4𝑥 + 3. 

If 𝑥 ∈ [1
2
, 3
4
], then (𝑘 ∘ 𝑇2)(𝑥) = 4𝑥 − 1. Since 𝑥 + 1 ∈ [3

2
, 7
4
], (𝑔2 ∘ 𝑘)(𝑥) = 𝑔2(𝑥 + 1) = 4𝑥 − 1.  

If 𝑥 ∈ [3
4
, 1], then (𝑘 ∘ 𝑇2)(𝑥) = −4𝑥 + 5. Since +1 ∈ [7

4
, 2], (𝑔2 ∘ 𝑘)(𝑥) = 𝑔2(𝑥 + 1) = −4𝑥 + 5. 

Hence, (𝑘 ∘ 𝑇2)(𝑥) = (𝑔2 ∘ 𝑘)(𝑥) for all 𝑥 ∈ [0,1], i.e., 𝑇2 and 𝑔2 topologically conjugate maps. Since 

𝑇 is totally transitive, 𝑇2 is topologically transitive. By Theorem 2.8, 𝑔2 is topologically transitive. Let 

𝑈 and 𝑉 be non-empty open subsets of [0,2]. We will show that 𝑓 is topologically transitive, i.e., we 

obtain a 𝑚 ∈ ℤ+ such that 𝑓𝑚(𝑈) ∩  𝑉 ≠ ∅. We investigate five cases. 
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Case 1: If 𝑈, 𝑉 ⊂ [0,1], since 𝑔1 is topologically transitive, there exists a 𝑛 ∈ ℤ+ such that                      

𝑔1
𝑛(𝑈) ∩  𝑉 ≠ ∅. Hence, 𝑓2𝑛(𝑈) ∩ 𝑉 ≠ ∅. 

 

Case 2: If 𝑈, 𝑉 ⊂ [1,2], since 𝑔2 is topologically transitive, there exists a 𝑘 ∈ ℤ+ such that                      

𝑔2
𝑘(𝑈) ∩  𝑉 ≠ ∅. Hence, 𝑓2𝑘(𝑈) ∩ 𝑉 ≠ ∅. 

 

Case 3: Let ⊂ [0,1], 𝑉 ⊂ [1,2]. Since 𝑓 is continuous, 𝑓−1(𝑉) ⊂ [0,1] is an open set. By Case 1, there 

exists a 𝑛 ∈ ℤ+ such that 𝑓2𝑛(𝑈) ∩ 𝑓−1(𝑉) ≠ ∅. If 𝑥 ∈ 𝑓2𝑛(𝑈) ∩ 𝑓−1(𝑉), then 𝑥 ∈ 𝑓2𝑛(𝑈) and       

𝑥 ∈ 𝑓−1(𝑉). Therefore, 𝑓(𝑥) ∈ 𝑓2𝑛+1(𝑈) and 𝑓(𝑥) ∈ 𝑉 (since 𝑓 is onto, 𝑓(𝑓−1(𝑉)) = 𝑉). Hence, 

𝑓2𝑛+1(𝑈) ∩ 𝑉 ≠ ∅. 

 

Case 4: Let ⊂ [1,2], 𝑉 ⊂ [0,1]. Since 𝑓 is continuous, 𝑓−1(𝑉) ⊂ [1,2] is an open set. By Case 2, there 

exists a 𝑘 ∈ ℤ+ such that 𝑓2𝑘(𝑈) ∩ 𝑓−1(𝑉) ≠ ∅. If 𝑥 ∈ 𝑓2𝑘(𝑈) ∩ 𝑓−1(𝑉), then 𝑥 ∈ 𝑓2𝑘(𝑈) and       

𝑥 ∈ 𝑓−1(𝑉). Therefore, 𝑓(𝑥) ∈ 𝑓2𝑘+1(𝑈) and 𝑓(𝑥) ∈ 𝑉 (since 𝑓 is onto, 𝑓(𝑓−1(𝑉)) = 𝑉). Hence, 

𝑓2𝑘+1(𝑈) ∩ 𝑉 ≠ ∅. 

 

Case 5: If 𝑈 or 𝑉 are open sets containing 1, the desired result can be similarly obtained from Case 1,2. 

 

Therefore, 𝑓 is topologically transitive. Consequently, by Theorem 2.6, 𝑓 is chaotic on [0,2]. 
 

Result 3.4. 𝑓2 is not a chaotic map. Let 𝑈 ⊂ [0,1] and 𝑉 ⊂ [1,2] be non-empty open subsets. Since 

(𝑓2)𝑚(𝑈) ⊂ [0,1] for all 𝑚 ∈ ℤ+ (see Figure 1 (b)), (𝑓2)𝑚(𝑈) ∩  𝑉 = ∅. Therefore, 𝑓2 is not 

topologically transitive, i.e., by Definition 2.4, 𝑓2 is not chaotic. Although we construct a chaotic and 

continuous map 𝑓 on [0,2], which is connected, 𝑓𝑚 is not chaotic on [0,2] for 𝑚 = 2. Hence, this 

situation contradicts Elaydi’s conjecture in [9] (p. 143). Moreover, 𝑓 is an example of a map that is 

topologically transitive but not totally transitive. 

 

ACKNOWLEDGEMENTS 

 

I would like to thank the referees for their valuable comments and suggestions, which helped very much 

in improving the paper. I would also like to thank The Scientific and Technological Research Council 

of Türkiye (TÜBİTAK) for their support. 

 

CONFLICT OF INTEREST 

  

The author stated that there are no conflicts of interest regarding the publication of this article. 

 

 

CRediT AUTHOR STATEMENT 

 

İsmail Alper Güvey: Conceptualization, Formal analysis, Investigation, Visualization, Writing – 

Original Draft. 

 

 

REFERENCES 

 

[1] Zhang B, Liu L. Chaos-based image encryption: Review, application, and challenges. 

Mathematics 2023; 11(11): 2585. 

 

[2] Smaoui N, Kanso A. Cryptography with chaos and shadowing. Chaos, Solitons & Fractals 2009; 

42 (4): 2312-2321. 



Güvey / Estuscience  – Theory , 13 [1] – 2025 

 

6 

 

[3] Aslan N, Koparal FD, Saltan M, Özdemir Y, Demir B. A family of chaotic dynamical systems on 

the Cantor dust 𝐶 × 𝐶. Filomat 2023; 37 (6): 1915-1925.  

 

[4] Devaney RL. An Introduction To Chaotic Dynamical Systems. New York, NY, USA: Addison 

Wesley, 1989. 

 

[5] Banks J, Brooks J, Cairns G, Davis G, Stacey P. On Devaney's Definition of Chaos. Am Math 

Mon 1992; 99 (4): 332-334. 

 

[6] Vellekoop M, Berglund R. On Intervals, Transitivity = Chaos. Am Math Mon 1994; 101 (4): 353-

355. 

 

[7] Değirmenci N, Koçak Ş. Existence of a dense orbit and topological transitivity: When are they 

equivalent? Acta Math Hungar 2003; 99 (3): 185-187. 

 

[8] Değirmenci N, Koçak Ş. Chaos in product maps. Turk J Math 2010; 34 (4): 593-600. 

 

[9] Elaydi SN. Discrete Chaos. 2nd ed. Boca Raton, FL, USA: Chapman & Hall/CRC, 2007. 

 

[10] Grosse-Erdman KG, Manguillot AP. Linear Chaos. London, UK: Springer, 2011.  

 

 

 


