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1. Introduction 
Accurate characterization of subsurface systems is 
paramount for efficient exploration, production, and 
injection for hydrocarbon and geothermal systems (Aihar et 
al., 2023; Irofti et al., 2023). Shear velocity logs play a pivotal 
role in providing critical information about the mechanical 
properties of rock formations (Ifrene et al., 2022), including 
anisotropy (Irofti et al., 2023), stiffness, shear strength, and 
seismic wave propagation. The anisotropic medium is 
another factor that raises the reservoir characterization 
complexity (Mellal et al., 2023).  
 
According to Shawaf et al. (2023), the anisotropic rock 
mechanical behavior has a direct impact on the stimulation 
parameters, well trajectory, and well stability. A deep 
understanding of the elastic properties is essential for an 
accurate and representative reservoir characterization which 
directly contributes to the success of field development 
projects and future decisions. However, acquiring shear 
velocity logs through conventional methods is often a costly 

and time-consuming process (Chaikine et al., 2020). The 
need for drilling additional wells solely for shear velocity 
measurements can significantly escalate operational 
expenses, making it challenging to obtain a comprehensive 
dataset across an entire field or basin (Suleymanov et al., 
2022). 
 
To address this challenge, recent research has been focused 
on exploring innovative approaches to predict shear velocity 
logs using machine learning (ML) techniques (Zhang et al., 
2020). Big data analytics and machine learning algorithms 
have demonstrated their effectiveness in gaining insights into 
patterns and relationships from oil and gas field data (Ifrene 
et al., 2023; Latrach et al., 2023a), enabling them to leverage 
well logs data to make accurate predictions for shear velocity 
without the need for additional expensive measurements 
(Suleymanov et al., 2022). By leveraging the abundance of 
well log data, this approach presents a cost-effective 
alternative to conventional methods, allowing for the 
estimation of shear velocity profiles across a broader area 
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Shear velocity logs are crucial in the oil and gas industry for assessing subsurface 
mechanical properties, including rock stiffness, shear strength, and seismic wave 
propagation, essential for optimizing hydrocarbon exploration and production strategies. 
However, obtaining shear velocity logs conventionally is expensive and time-consuming, 
especially when drilling additional wells solely for this purpose. With the recent boom in 
machine learning algorithms adoption across various scientific domains, it proved to be 
an extremely valuable tool for numerous applications in the oil and gas industry.  It makes 
use of the readily available large datasets collected over decades and leverages this data 
to train powerful, data-driven models, reducing the reliance on empirical relationships 
that usually have poor generalization. This study follows this approach and presents the 
use and comparison of machine learning algorithms for predicting shear velocity logs 
from conventional and readily available logs in the Ahnet field, Algeria. Ultimately, this 
study aims to enhance reservoir assessment and optimize hydrocarbon recovery 
processes, potentially reducing exploration costs and improving oil and gas production 
decision-making in the region.  
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without extensive well drilling, besides replacing the use of 
empirical relationships that often exhibit poor generalization 
and inaccuracy (Anemangely et al., 2019). 
 
Due to the potential improvement in the shear wave velocity 
prediction in complex reservoirs, data-driven models, 
analytical, rock physics and ML models have been used in 
several studies over the past two decades (Shawaf et al., 
2022). One of the recent studies on slowness prediction using 

ML algorithms was conducted by (Jiang et al., 2022) who 
compared the shear wave velocity obtained from logging 
tools with the one obtained using empirical models. The 
authors then applied a novel method of deep learning (DL) 
to predict the shear wave velocity in a tight sandstone 
reservoir and found that the prediction accuracy is higher 
than the empirical equations (Zhang et al., 2020) tested 
theoretical, petrophysical, and machine learning models in a 
complex carbonate reservoir using conventional logs.  

 
 
 

 
 

Fig. 1. Geographical location of Ahnet basin, Algeria (Allaoui et al., 2022) 
 
 
 

The results showed that the results of the prediction using 
deep learning models are more accurate than conventional 
methods with a correlation coefficient of 95% for DL 
methods and 73% for the other conventional methods (Miah, 
2021) developed data-driven connectionist models using a 
machine learning approach of least square support vector 
machine (LSSVM) to develop a correlation that predicts 
shear wave velocity for old wells drilled in clastic 
sedimentary rocks. The authors then verified and compared 
the developed correlation with the existing models using 
measured data of sandstone formation and found that it 
exhibits a minimal error and high correlation coefficient of 
96%. 
 
On the other hand, machine learning algorithms have proven 
their efficiency and accurately identify the relationship 
between non-linear complex phenomena (Hamadi et al., 
2023). ML algorithms have better generalization ability and 
can discover and extract hidden trends and relationships 
from huge datasets that were previously impossible to explore 
manually (Suleymanov et al., 2021). Machine learning 
techniques have been used successfully for a wide range of 
tasks in the oil and gas industry, from exploration and 

geophysics applications to production, such as seismic data 
processing (Karrenbach et al., 2000), ROP prediction (Moran 
et al., 2010), UCS prediction (Chellal et al. 2023), drilling 
optimization (Ouadi et al., 2023), water saturation prediction 
(Mellal et al., 2023), stress-dependent porosity and 
permeability prediction (Ouadi et al., 2022), enhanced oil 
recovery applications (Chemmakh et al., 2021), and 
completion design (Laoufi et al., 2022),  Therefore, our study 
seeks to investigate the integration of machine learning and 
well logs for shear velocity prediction in the Ahnet Field, 
Algeria. The Ahnet Field is a naturally fractured reservoir 
(Irofti et al, 2022), located in a region of significant 
hydrocarbon potential, and presents an ideal testing ground 
to explore the practicality and efficiency of this predictive 
approach. By developing reliable models for shear velocity 
prediction, we aim to contribute to a deeper understanding of 
the subsurface properties in the Ahnet field and facilitate 
more informed decision-making in hydrocarbon exploration 
and production endeavors. 
 
This paper presents the methodology and results of our 
research, highlighting the benefits of using machine learning 
to predict shear velocity logs. The predictive models 
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developed in this study hold the potential to not only reduce 
exploration costs but also improve the accuracy of reservoir 
assessments, leading to enhanced oil and gas production in 
the Ahnet field and potentially serving as a blueprint for 
similar applications in other geological settings. Ultimately, 
the findings of this study may have far-reaching implications 
for the oil and gas industry, fostering more sustainable and 
economically viable practices for subsurface characterization 
and resource extraction. 
 
2. Study Area 
The Ahnet Basin is situated within the Southern Algeria 
region, specifically forming part of the Western province of 
the Saharan Platform (Fig. 1). Its boundaries are defined by 
the meridians 1° and 3°, as well as the parallels 24° and 27°, 
encompassing a total area of 50,000 km2 (Kadri and Hacini, 
2018). Geologically, the Ahnet Basin is situated in the 
Algerian Sahara, specifically to the northwest of the Hoggar 
massif. This basin occupies a unique geographical position, 
endowing it with distinct structural characteristics (Mofredj 
et al., 2019). It is surrounded by several geological features; 
to the west, the West African Craton forms a remarkably 
stable and rigid zone that has been stable for over 3 billion 

years. To the east, the mobile zones of the Hoggar became 
stable during the Pan-African Orogeny, which took place 
approximately 550 to 600 million years ago. South of the 
basin, the stable Mole d'In Ouzzal develops within the 
basement. In the northern region, the suture zone between 
the Hoggar and the West African Craton is marked by the 
folded ridge of Ougartha, oriented in a northwest-southeast 
direction (Lüning et al., 2004). 
 
During the Paleozoic period, sedimentation in the Ahnet 
Basin was primarily detrital and occurred in a variety of 
depositional environments, including continental, marine, 
glacial, and littoral settings. Emphasis has been placed on 
comprehensive sedimentological and stratigraphic 
investigations of select Paleozoic sequences, notably the 
Cambrian-Ordovician, undertaken by Beuf et al. (1971).  
 
The Paleozoic deposits overlie the Infra Tassilian 
unconformity. Below this unconformity, substantial and 
relatively unmetamorphosed series are occasionally 
observed, preserved within grabens, representing remnants of 
pre-Cambrian chains. These specific series, known as the 
"purple series," were initially identified by Beuf et al. (1971).  

 
 
 

 
 

Fig. 2. Stratigraphic column of Ahnet Basin (Allaoui et al, 2022) 
 
 
 

The typical stratigraphic sequence of the basin begins at its 
base with the Cambrian-Ordovician sandstones, which are 
highly compacted and cemented (Mofredj et al., 2019). The 
Cambrian-Ordovician series is conventionally subdivided 
into three units (Fig. 2). At the base, coarse to conglomeratic 

sandstones with oblique stratification are found, deposited in 
a fluvial environment, and resting unconformably on the 
Substratum. Moving up to Unit II, the sandstones become 
finer, and better bedded, and the oblique stratification tends 
to diminish. Unit III is a clayey-sandy unit with a 
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predominance of clayey facies and fine-grained sandstones 
characterized by abundant trace fossils known as "tigillites."  
 
It is better known as the "upper clayey-sandy" unit and was 
deposited in a mixed to predominantly marine environment, 
showing a clear transgressive trend on the Saharan platform 
scale. Locally, this formation is discordant with Unit II. The 
Silurian is characterized by a clayey sedimentation that 
developed in a distinctly marine environment. The 
radioactive clays at the base of the Silurian are widely 
recognized throughout the Saharan platform as excellent 
source rocks and serve as a reliable stratigraphic marker 
(Kadri and Hacini, 2018).  
 
The Devonian period is marked by alternating layers of 
sandstones and clays, with occasional limestone interbeds. 
The clays are attributed to a marine environment, while the 
sandstones were deposited in a littoral setting. Moving 
upwards in sequence, the Middle Devonian is characterized 
by deposits with clayey marine facies. Finally, the 
Carboniferous is a clay-sandy unit that begins with 
sandstones and transitions to clays towards the top of the 
sequence. 
 
3. Materials and Methods 
3.1. Data Collection 
The dataset consists of a total of six wells, providing a 
substantial amount of information with 11,249 data points. 
To ensure effective model training and evaluation, the 
dataset is divided into a training set, comprising five wells, 
encompassing 10,140 data points, and a separate testing set 
with one well, containing 1,109 data points. This division 

allows for comprehensive exploration and validation of the 
machine learning approach in predicting shear velocity from 
well logs. By utilizing the training data, the machine learning 
model can learn underlying patterns and relationships 
between the input well log data and the corresponding shear 
velocities. Following training, the model's performance will 
be evaluated on the testing data to assess its generalization 
capability and its ability to accurately predict shear velocities 
on unseen data points. Instead of randomly shuffling the data 
points then splitting them to train and test sets, we opted to 
reserve one well at a time for testing and use the remaining 
wells for training to simulate real-world scenarios when we 
already have data available for whole wells and we want to 
predict the shear velocity logs for newer wells. This 
exploratory analysis sets the stage for the subsequent sections 
of the paper, where the developed machine learning model's 
results and implications will be discussed and analyzed in 
detail. 
 
3.2. Empirical Methods 
In the realm of subsurface exploration, empirical relations 
have proven to be valuable tools for predicting shear velocity 
logs from other well log data (Fabricio et al., 2015).These 
relations leverage the interdependencies between various 
geophysical parameters to estimate shear velocity, a critical 
parameter for characterizing rock properties and assessing 
subsurface formations. By analyzing the correlations between 
sonic, density, and porosity logs, among others, engineers 
and geoscientists can establish empirical models that offer 
reasonably accurate predictions of shear velocity (Sohail and 
Hawkes, 2020). We can count several empirical correlations 
for this purpose for various rock formations (Table 1). 

 
 
 

Table 1. Empirical correlations to shear wave velocity calculation for various rock types 
 

Rock Types Empirical Correlations Reference 

Shale rocks 𝑉௦  = 0.862𝑉௉
  − 1.172 (Castagna et al, 1985) 

Sandstone rocks 𝑉௦  = 0.794𝑉௉
  − 0.849 (Han, 1987) 

Sandstone rocks 𝑉௦  = 0.80416𝑉௉
  − 0.85588 (Greenberg and Castagna, 1992) 

Sedimentary rocks 𝑉௦  = 𝐴 − 𝐵𝑉௉
  + 𝐶𝑉௉

ଶ +  𝐷𝑉௉
ଷ +  𝐸𝑉௉

ସ (Brocher, 2005) 
Mud-rocks 𝑉௦  = 0.59𝑉௉

  − 0.6 (Lee, 2013) 
Sedimentary rocks 𝑉௦

ଶ = 𝑃𝑉௉
ସ +  𝑄𝑉௉

ଶ +  𝑅 (Ojha and Sain, 2014) 
Where 𝑉௦ and 𝑉௣ are the shear and compressional velocities respectively 

 
 
 

While these empirical relations have proved to be very useful, 
especially considering the cost of obtaining direct 
measurements of shear velocity, they are very often 
unreliable and inaccurate. Furthermore, they are very lacking 
when it comes to generalization, where several relations need 
to be developed to account for the various (Jiang et al., 2022). 
While these relations may have inherent limitations and 
varying applicability across geological settings, they serve as 
efficient shortcuts in the absence of direct shear velocity 
measurements, aiding in the interpretation and 
understanding of subsurface structures and rock properties 
during exploration and development endeavors (Fabricio et 
al., 2015). 
  
3.3. Machine Learning Models 
Machine learning models can be a valuable tool for 
prediction of shear velocity from conventional well logs by 

leveraging their ability to identify complex patterns and 
relationships within vast datasets (LeCun et al., 2015). 
Unlike traditional empirical relations, machine learning 
models excel at capturing intricate nonlinear dependencies 
and interactions among multiple log measurements. By 
training on a diverse set of well logs with corresponding shear 
velocity values, these models can generalize and make 
accurate predictions for new data. The incorporation of 
advanced algorithms, such as artificial neural networks, 
decision trees, or support vector machines, empowers these 
models to adapt to varying geological conditions and 
lithologies and optimize their predictions (Bressan et al, 
2020). Additionally, machine learning models have the 
potential to continuously improve and refine their 
performance as they are exposed to more data, making them 
versatile and robust tools for enhancing subsurface 
exploration and reservoir characterization (Liu, 2017). 
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For this work, we opted to use various machine learning 
models, namely linear regression, random forest regression, 
support vector regression, and neural networks. Each of these 
models offers unique strengths that complement the 
prediction of shear velocity from conventional well logs. 
Linear regression provides a simple yet interpretable 
approach, identifying linear relationships between input logs 
and shear velocity. Random forest regression excels at 
handling nonlinearity and interactions between features, 
offering robust predictions even in the presence of noisy data. 
Support vector regression leverages the concept of support 
vectors to create accurate predictions by effectively handling 
outliers and maximizing the margin between data points.  
 
Finally, neural networks, with their deep architecture, can 
capture highly complex relationships, allowing for 
exceptional performance in modeling intricate subsurface 
patterns. By combining these diverse machine learning 
techniques, we aim to enhance the accuracy and reliability of 

our predictions and provide valuable insights for geological 
and reservoir engineering applications. 
 
3.3.1. Linear Regression 
A linear regression model is a fundamental statistical method 
used to analyze the relationship between a dependent 
variable and one or more independent variables. The goal of 
this model is to find a linear equation that best fits the data 
points and can predict the value of the dependent variable 
based on the values of the independent variables. The 
equation is represented as y=mx+b, where y is the predicted 
value, x is the input variable, m is the slope (representing the 
relationship between the variables), and b is the y-intercept 
(representing the value of y when x is 0). The model's 
performance is evaluated using metrics like mean squared 
error or R2, which indicate how well the model fits the data. 
Linear regression is widely used in various fields, including 
economics, finance, and data science, due to its simplicity 
and interpretability. 

 
 
 

 
 

Fig. 3. Typical structure of a fully connected neural network (Latrach, 2023b) 
 
 

3.3.2. Random Forest 
Random Forest is an ensemble learning method that 
combines multiple decision trees to make more accurate 
predictions. Each decision tree in the forest is built on a 
random subset of the data and random subsets of features. 
When a new data point is fed into the model, each tree in the 
forest predicts an outcome, and the final prediction is 
determined by majority voting or averaging the individual 
predictions. Random Forests are powerful and robust 
algorithms that can handle both classification and regression 
tasks. They are less prone to overfitting and can handle high-
dimensional datasets with complex interactions between 
features. 
 
3.3.3. Gradient Boosting 
Gradient Boosting is another ensemble learning technique 
that builds multiple weak learners (usually decision trees) 
sequentially, with each subsequent model trying to correct 
the errors of its predecessor. It works by fitting each tree to 
the negative gradient of the loss function with respect to the 
previous predictions. This process leads to increasingly 
accurate predictions with each iteration. Gradient Boosting 

is highly effective in handling complex data patterns and 
often outperforms other algorithms, but it may require careful 
tuning to prevent overfitting. 
 
3.3.4. AdaBoost 
AdaBoost is an ensemble learning method that iteratively 
combines weak classifiers (e.g., decision stumps) to create a 
strong learner. It assigns higher weights to misclassified 
samples in each iteration, making the subsequent weak 
classifiers focus on those samples. In this way, AdaBoost 
adapts and improves its performance over time by giving 
more emphasis to the challenging examples. The final 
prediction is made by combining the individual weak 
classifiers, where the stronger classifiers have more influence. 
AdaBoost is particularly useful for binary classification 
problems and is less prone to overfitting. 
 
3.3.5. Artificial Neural Networks 
Neural Networks are a class of machine learning models 
inspired by the structure and functioning of the human brain. 
They consist of interconnected nodes (neurons) organized 
into layers: input layer, hidden layers, and output layer. Each 
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neuron applies a mathematical transformation to its input 
and passes the result to the next layer. Neural networks can 
learn complex patterns and relationships in data, making 
them suitable for various tasks, including image recognition, 
natural language processing, and time-series prediction. 
However, training neural networks requires a large amount 
of data and computational resources, and they are susceptible 
to overfitting, which demands careful regularization 
technique (Fig. 3). 
 
4. Results and Discussion 
The following is a discussion of the findings of this work. 
Starting by an exploratory data analysis, statistical properties 
of the dataset, discussion of the various machine learning 

models used for this study, and the prediction results. 
 
4.1. Exploratory Data Analysis 
As for any data-driven workflow, we start this work with an 
exploratory data analysis (EDA). This crucial step involves 
thoroughly examining the raw well log data to gain insights 
into its distribution, quality, and potential outliers. We 
visualize the relationships between different log 
measurements and shear velocity using plots and graphs, 
identifying any patterns or correlations that may guide our 
model selection and feature engineering process. During 
EDA, we also check for missing data, perform data 
imputation if necessary, and assess the overall data integrity 
to ensure the reliability of our subsequent analyses. 

 
 
 

Table 2. Statistical summary of the features of the dataset 
 

 Depth Caliper GR PEFZ Por Rhoz DTCO DTSM 

Mean 2187 7.357 130.07 2.75 0.03 2.620 63.404 102.54 
Std 167.94 1.297 111.932 0.72 0.03 0.079 5.218 12.735 
Min 1793.596 4.243 12.40 1.26 0.00 1.697 46.75 76.670 
25% 2066.087 6.020 69.10 2.15 0.1 2.5625 59.94 93.731 
50% 2189.073 8.1304 110.84 2.63 0.029 2.620 62.64 100.192 
75% 2322.576 8.448 167.62 3.27 0.053 2.681 66.360 107.962 
Max 2506.3074 14.325 2119.55 10 0.374 2.858 88.154 173.573 

 
 
 

 
 

Fig. 4. Pair plot of the different independent and dependent variables in the dataset. The diagonal represents the distribution of a specific variable 
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Fig. 5. Correlation matrix of the variables in the dataset 
 
 
 

Additionally, we conduct statistical tests and feature 
importance analysis to determine which logs have the most 
significant impact on predicting shear velocity. The findings 
from this exploratory phase lay the foundation for selecting 
appropriate machine learning models, preprocessing the 
data, and ultimately building a robust predictive model for 
shear velocity estimation. 
 
As a starter, we begin by presenting some statistics of the 
dataset on Table 2. 
 
From the pair plot in Fig. 4, we can see that most of the logs 
exhibit a normal distribution, for the exception of density and 
caliper that tend to follow a bimodal distribution. The 
correlation analysis (Fig. 5) between shear velocity and 
various well logs was conducted to uncover potential 
relationships and dependencies between these geological 
attributes. 
 
The results revealed several noteworthy correlations that 
provide valuable insights into the subsurface properties. The 
strongest correlation was found between shear velocity and 
compressional velocity, with a coefficient of 0.86. This high 
correlation suggests a strong positive association between the 
two velocity components, indicative of consistent rock 
properties within the subsurface. Additionally, a significant 
positive correlation of 0.8 was observed between shear 
velocity and porosity, indicating that higher porosity levels 
tend to correspond to increased shear velocities. 
 
Furthermore, the study identified a moderate positive 
correlation of 0.62 between shear velocity and the 
photoelectric factor, suggesting a potential connection 

between these attributes, though not as strong as the previous 
relationships. The gamma-ray log displayed a relatively 
weaker positive correlation of 0.34 with shear velocity, 
indicating a less pronounced association between these 
parameters. Similarly, the density log exhibited a modest 
positive correlation of 0.4 with shear velocity, indicating a 
potential but moderate relationship. 

 
 
 

 
 
Fig. 6. R2 scores on the test set for the various implemented machine 
learning models 

 
 
 

 
 

Fig. 7. Features importance for the best performing model 
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4.2. Machine Learning and Empirical Relations Predictions 
In this study, various machine learning models were 
employed to predict shear velocity from well logs, and their 
respective correlation coefficients were obtained as 
performance metrics (Fig. 5). The results revealed that the 
Gradient Boosting Regressor exhibited the highest 
correlation coefficient of 0.95, indicating a strong positive 
relationship between the predicted and actual shear velocity 
values (Fig. 6).  
 
Following closely, the Linear Regression model 
demonstrated a correlation coefficient of 0.94, signifying its 
effectiveness in capturing the underlying patterns within the 
data. The Random Forest Regressor also yielded promising 
results, attaining a correlation coefficient of 0.93, showcasing 
its ability to handle complex relationships and make accurate 
predictions. While the Neural Networks model displayed a 
correlation coefficient of 0.83, it still showcased a reasonable 
performance, demonstrating the potential of deep learning 
techniques in this context. Lastly, the AdaBoost Regressor 
achieved a correlation coefficient of 0.61, implying a 

moderate level of predictive capability. Overall, the findings 
from this comprehensive analysis shed light on the 
comparative performance of the different machine learning 
models in predicting shear velocity from well logs, providing 
valuable insights for selecting the most suitable model for 
such predictive tasks. 
 
The impurity-based feature importance score (Fig. 7) shows 
that the most influential feature is compressional velocity log, 
by a score of 0.62. This is an expected result due to the 
relation between the two velocities, furthermore, many 
empirical relations rely solely on the compressional velocity 
log to predict shear velocity.  
 
Porosity also has a decent feature importance by a score of 
0.22, indicating a moderate feature importance. The 
remaining features in the dataset had a very modest 
importance with 0.06 for caliper and photoelectric factor, 
0.03 for depth, 0.01 for gamma ray, and 0 for bulk density. 
The prediction results from gradient boosting regression are 
plotted against the ground-truth shear velocity log in Fig. 8.  

 
 
 

 
 
Fig. 8. Comparison of the actual and the predicted (Gradient Boosting Regressor) shear velocity log for two testing wells using leave-one-out training scheme 

 
 
 
 

The test was run in two steps, where in each step, a well is 
reserved for testing while the remaining wells were used for 
training. The plot shows that predictions are almost identical 
to the actual shear velocity log in both cases. When 

evaluating empirical relationships, we found that the best 
performing model was that of shale rocks, which yielded 
relatively accurate results, yet it was not on par with those 
from the gradient boosting regression model (Fig. 9). 
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Fig. 9. Comparison between machine learning predictions (Gradient Boosting Regressor) and an 
empirical relation (shale rock), shows higher accuracy predictions from the machine learning model 

 
 
 

This study offers an effective solution for estimating shear 
slowness in reservoirs where sonic logs are absent, expensive, 
and challenging to measure. It also establishes a basis for 
future research, enabling validation and improvement of the 
proposed workflow. Additionally, the suggested workflow 
can be extended to predict other well logs. According to 
Mellal et al. (2023) defining rock types of any reservoir 
increases the accuracy of the prediction of well logs and 
petrophysical properties using ML algorithms. Therefore, 
future research should define rock types and add them to the 
proposed workflow in this study to increase the accuracy of 
the predicted shear slowness particularly and well logs in 
general. Geothermal and hydrogen storage projects require 
an understanding of the geomechanics properties variation 
along the targeted formations (Josephs et al., 2023). 
Therefore, predicting sonic logs using ML algorithms is 
required for such projects. 
 
5. Conclusion 
In conclusion, shear velocity logs play a crucial role in 
subsurface exploration and reservoir characterization, 

providing valuable insights into rock properties and 
geological structures. However, obtaining direct shear 
velocity measurements can be expensive and sometimes 
impractical. Empirical models have traditionally served as 
useful tools for predicting shear velocity from other well logs. 
While these models offer simplicity and ease of 
implementation, they often struggle to capture complex 
nonlinear relationships and may exhibit limited accuracy 
across diverse geological settings. 
 
In contrast, machine learning models present a promising 
alternative, leveraging their ability to identify intricate 
patterns and interactions within vast datasets. Linear 
regression provides a straightforward approach, while 
random forest regression excels at handling nonlinearity and 
noisy data. Support vector regression effectively deals with 
outliers, and neural networks, with their deep architecture, 
can model highly complex relationships. 
 
In our study, the utilization of various machine learning 
models allowed us to explore a range of techniques to predict 
shear velocity from conventional well logs. Among these 
models, artificial neural networks demonstrated exceptional 
performance, surpassing other methods in accuracy and 
predictive power. Their ability to learn complex 
representations and adapt to various geological conditions 
enabled them to achieve the best results in shear velocity 
estimation.  
 
A more scientific take on machine learning applications in 
science and engineering is the emerging technology of 
physics-informed machine learning (PIML). This approach 
imposes explicit physical laws into the machine learning 
model to achieve more physically-sound results. Latrach et 
al. (2023c) reviewed various applications of PIML in the oil 
and gas industry, and the authors noted the lack of 
applications in petrophysics and petrophysical data 
processing. The findings of this study can be further enforced 
by adopting the PIML approach and regulating the model 
using explicit physical laws. This will be the goal for our 
future work. 
 
By embracing machine learning and specifically artificial 
neural networks, we can make significant strides in 
overcoming the challenges posed by expensive shear velocity 
logging. These advanced models enhance our understanding 
of subsurface formations, enabling more informed decision-
making in exploration and reservoir engineering. As 
technology continues to advance and more data becomes 
available, further improvements in shear velocity prediction 
can be expected, providing invaluable contributions to the 
field of geosciences and the energy industry. 
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