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1. Introduction 
Accurate prediction of rock shear velocity is a cornerstone in 
the field of geophysics  (Bouabdallah et al., 2023; Latrach et 
al., 2023; Pothana et al., 2023) and rock mechanics (Ifrene et 

al., 2023; Garcia, et al., 2024a), underpinning critical 
applications such as geothermal energy extraction (Aihar et 
al., 2023), carbon dioxide storage (Ifrene, et al., 2024), 
hydrogen storage, and broader geomechanical studies. These 
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Accurate prediction of rock shear velocity is paramount for various applications, 
including geothermal energy extraction, CO2 storage, hydrogen storage, and 
geomechanics. This study introduces an innovative approach to rock shear velocity 
prediction by integrating neural networks optimized through the differential evolution 
algorithm. The dataset comprises critical well-logging parameters, including depth, 
gamma ray, photo-electric factor, neutron porosity, and density. Neural networks are 
trained to model intricate relationships between these well-logging parameters and rock 
shear velocity. The application of the differential evolution optimization algorithm, with 
tuned parameters (population size: 50, crossover probability: 0.8, differential weight: 0.9, 
and convergence criteria: 0.001), refines neural network parameters. This fine-tuning 
optimizes the model's ability to capture nuanced variations associated with diverse 
geological formations, strategically balancing exploration and exploitation within the 
optimization process. Validation against a comprehensive dataset reveals a notable 
improvement in rock shear velocity prediction accuracy compared to traditional 
methods, with an average increase of 15%. Results demonstrate the synergistic effect of 
specific well-logging parameters and the strategic configuration of differential evolution 
parameters. A detailed analysis of the differential evolution process highlights how the 
algorithm explores the solution space, guiding the neural network toward more optimal 
configurations. The enhanced predictive performance is attributed to the differential 
evolution algorithm's ability to efficiently search the parameter space, adjusting neural 
network weights and biases. The population-based approach, governed by the crossover 
probability and differential weight, facilitates a dynamic exploration of potential 
solutions. The convergence criteria ensure the algorithm refines the neural network until 
a satisfactory predictive model is achieved, reducing convergence time by 20%. This 
research contributes a robust tool to the geophysical community, facilitating precise 
subsurface structure characterization. The strategic inclusion and optimization of well-
logging parameters, coupled with an insightful adjustment of differential evolution 
parameters, underscore the method's effectiveness in real-world geological contexts. The 
proposed approach proves valuable for resource exploration, reservoir management, and 
geological risk assessment, marking a significant advancement in rock shear velocity 
prediction methodologies.  
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applications demand precise subsurface characterization to 
ensure safety, efficiency, and environmental sustainability. 
Traditionally, rock shear velocity prediction has relied on 
empirical correlations and analytical models that often fall 
short of capturing the complex interplay of geological factors. 
 
Recent advancements in computational techniques and data-
driven approaches have opened new avenues for enhancing 
prediction accuracy in petroleum engineering). Among these, 
neural networks have emerged as a powerful tool for 
modeling nonlinear relationships between well-logging 
parameters and rock shear velocities (Mehrgini et al., 2019; 
Garcia, et al., 2024b; Singh and Kanli, 2016; Wang et al., 
2020) Neural networks' ability to learn from data makes them 
ideally suited for geophysical applications, where the 
relationships between parameters are often complex and not 
well understood. However, the performance of neural 
networks heavily relies on the choice of architecture and 
hyperparameters, which are typically selected through trial 
and error or grid search methods. These approaches can be 
time-consuming and may not always lead to optimal 
solutions. 
 
In this study, we introduce an innovative approach that 
leverages the synergies between neural networks and 
differential evolution, an optimization algorithm known for 
its efficiency in solving complex problems. Differential 
evolution optimizes the neural network's architecture and 
hyperparameters by iteratively improving a population of 
candidate solutions based on simple mathematical 
operations and selection criteria. This process enhances the 
neural network's ability to model the intricate relationships 
between well-logging parameters and rock shear velocities, 
leading to improved prediction accuracy. 
 
Our approach is validated against a comprehensive dataset 
comprising critical well-logging parameters, including depth, 
gamma ray, photo-electric factor, neutron porosity, and 
density. By integrating neural networks with differential 
evolution, we demonstrate a notable improvement in 
prediction accuracy compared to traditional methods. This 
synergy not only enhances the model's performance but also 
provides insights into the optimization process and the 
importance of specific well-logging parameters. 
 
The integration of neural networks and differential evolution 
represents a significant advancement in the field of rock shear 
velocity prediction. This research contributes a robust tool to 
the geophysical community, offering a new perspective on 
optimizing predictive models. By exploring the synergies 
between these two powerful techniques, we open the door to 
more accurate and efficient subsurface characterization, with 
broad implications for resource exploration, reservoir 
management, and geological risk assessment. 
 
2. Literature Review 
Energy moves the world. This statement might at first sound 
like an exaggeration, but under closer inspection, you will 
notice that it is absolutely true. Thus, to ensure an enduring 
and continuous energy supply, researchers have been 
studying methods to extract gas from shale formations 
through unconventional methods. Even with all the 

difficulties they present, shale formations swiftly attracted the 
attention of the oil industry because of their impacts on the 
economy, and their unlimited potential. Furthermore, the 
ultralow porosity and permeability of shale gas reservoirs 
pose significant obstacles to efficient gas extraction. The 
limited flow pathways within the rock matrix restrict the 
movement of gas (Aihar et al., 2023) , and are composed of 
multi-scale constituents (Akono and Ulm, 2012). Two 
methods developed to deal with this dilemma are horizontal 
drilling and hydraulic fracturing. Horizontal drilling presents 
a way to maximize the area coverage of the trapped 
hydrocarbon which is not possible with vertical drilling. On 
the other hand, hydraulic fracturing propagates the 
preexisting natural fractures within shale formations, 
effectively creating a network of interconnected pathways for 
fluid flow (Ifrene et al., 2023; Irofti et al., 2022), through the 
injection of highly pressurized fracturing fluid. That 
enhances the permeability of the reservoir by allowing access 
to trapped gas.  
 
To successfully maintain an open crack and produce the gas, 
the fracturing fluid must be able to exceed the fracture 
toughness of the reservoir rock. This requires careful 
selection of fracturing fluids with appropriate viscosity, 
proppants to prop open the fractures, and additives to control 
fluid behavior and prevent premature closure of fractures. 
Striking the right balance between fluid properties and the 
geomechanical characteristics of the reservoir rock is critical 
for achieving optimal fracture propagation and sustained gas 
production (Imani et al., 2022). Thus, it is highly imperative 
to measure the fracture toughness of a shale formation. Three 
methods used to estimate the value of fracture toughness of 
rocks are the scratch test, the straight-notched Brazilian disk 
specimen (SNBD) test, and the semicircular bend test. A 
comparison of the procedures, equations, and results of each 
test showed three primary differences between them, and one 
common limitation. 
 
2.1. Survey of Existing Methods for Rock Shear Velocity 
Prediction 
Rock shear velocity prediction is fundamental in geophysical 
exploration (Laalam et al., 2022) essential for understanding 
subsurface properties. Traditional prediction methods have 
primarily utilized empirical correlations and analytical 
models, leveraging well-logging parameters such as gamma-
ray intensity, bulk density, and acoustic travel times. These 
empirical relationships, while quick for estimation, are 
generally restricted by the specific conditions for which they 
were developed. The evolution of seismic attribute analysis, 
incorporating multivariate regression and inversion methods, 
has offered improved shear velocity predictions from seismic 
and log data. Nevertheless, the intrinsic heterogeneity of 
geological formations introduces significant challenges to 
these approaches, complicating shear velocity predictions in 
mixed lithology environments. 
 
2.2. Previous Applications of Neural Networks in Geophysics 
The integration of neural networks into geophysics has 
introduced a powerful means to surpass the constraints of 
traditional predictive models. By learning complex patterns 
in data, neural networks have been applied across a broad 
spectrum of geophysical issues, ranging from seismic signal 



F. Chanane et al. International Journal of Earth Sciences Knowledge and Applications (2024) 6 (1) 21-28

 

3 
 

processing to lithology classification. This body of research 
underscores neural networks' capacity to enhance predictions 
of rock properties significantly. The advent of deep learning 
has propelled this field further, with convolutional neural 
networks (CNNs) and recurrent neural networks (RNNs) 
facilitating seismic data interpretation and offering marked 
improvements over conventional machine learning 
techniques. 
 
2.3. Role of Optimization Algorithms in Enhancing Neural 
Network Performance 
Optimization algorithms are pivotal in refining neural 
network architectures and hyperparameters, thereby 
enhancing model accuracy and efficiency. Techniques such 
as genetic algorithms, simulated annealing, and swarm 
optimization have been investigated for this purpose. 

Differential evolution, in particular, has been recognized for 
its efficiency in optimizing complex functions, providing a 
straightforward yet potent approach for solving 
multidimensional optimization problems. Its application 
spans various domains, including neural network 
optimization for image processing tasks and, by extension, 
geophysics, where optimizing neural network parameters 
significantly influences prediction accuracy and model 
adaptability. 
 
3. Geological Setting 
The Ahnet Basin, located in the southern part of Algeria 
within the Western province of the Saharan Platform, spans 
an area of approximately 50,000 square kilometers. 
Geographically, it is positioned between longitudes 1° and 3° 
East and latitudes 24° and 27° North (Fig. 1).

 
 
 

 
 

Fig. 1. Localization of the study area (Ifrene et al., 2023) 
 
 
 

This basin shares its borders with notable geological features: 
it lies to the south of the expansive Timimoun Basin, to the 
west of the Mouydir Basin, eastward of the Reggane, and to 
the north of the Hoggar Shield (Logan and Duddy, 1998). A 
notable aspect of the Ahnet Basin is its complex tectonic 
structure, featuring significant anticlines and domes that 
underscore its intricate geological fabric. 
 
Primarily recognized as a gas-rich region, the Ahnet Basin's 
gas reservoirs are found beneath layers of Paleozoic 

sediments, known for their compactness. However, the 
extraction efficiency varies significantly due to the challenges 
posed by natural fractures within these reservoirs (Irofti et al., 
2023). This variability in well productivity has been 
attributed to the limited understanding of fracture geometry 
and distribution (Beekman et al., 2000), complicating the 
identification of well-connected zones and thus, impacting 
the development and exploitation of gas and oil fields. 
 
The basin's geological history is marked by a dynamic mix of 
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quiescent periods and tectonic activity throughout the 
Paleozoic era, leading to the reactivation of various structural 
alignments including north-south, northeast-southwest, and 
northwest-southeast orientations. These structural 
reactivations have shaped the basin's arch and basin 
configurations. The Ahnet Basin's structure is further defined 
by its northward dip and is influenced by the vertical 
alignments of the Precambrian basement.  
 
The geological layers from the Cambrian to the 
Carboniferous period have been subjected to folding and 
faulting due to Hercynian/Variscan compressional forces, 
highlighting major north-south and northwest-southeast 
strike directions, which align with the structural trends of the 
Ougarta Range to the north. 
 
Stratigraphically, the Ahnet Basin features Paleozoic 
successions primarily composed of siliciclastic detrital 
sediments, with the basin's center experiencing alterations 
due to erosion (Zazoun, 2001). The stratigraphic 
organization is punctuated by six major regional 
unconformities (Perron et al., 2021), with a significant 
portion of the sedimentary deposits being sandstones laid 
down discordantly over the Precambrian basement during 
the Cambro-Ordovician period. These sandstones, reaching 
up to 500 meters in thickness (Fig. 2), are acknowledged as 
key petroleum sources within Algerian Basins.  
 
The Cambro-Ordovician sequence is further subdivided into 
three units, with the basal unit comprising primarily of 
conglomerate sandstones deposited in fluvial settings. 
Despite not being a primary target for petroleum exploration, 
this unit is noted for its superior petrophysical properties, 
especially porosity, which is further enhanced by localized 
fracturing. The subsequent unit features alternations of shale 
and sandstone, including a notable quartzite layer, while the 
uppermost unit is characterized by sandstone and quartzite 
facies, reflecting a glacial depositional environment. 
 
4. Methodology 
4.1. Description of the Dataset 
The study utilizes a comprehensive dataset compiled from 
well-logging operations across four distinct wells. The dataset 
includes several critical parameters that are instrumental in 
predicting rock shear velocity. These parameters are: 
 
 Total Depth (TDEP): Reflects the depth at which each 

measurement was taken, serving as a proxy for the 
geological layering and conditions. 

 Gamma Ray (GR): Indicates the radioactivity of the rock 
formations, helpful in identifying shale and non-shale 
sections. 

 Photo-Electric Factor (PEFZ): Provides insights into the 
mineral composition of the rock. 

 Neutron Porosity (Por): Measures the volume of pore 
space in the rock, which can be filled with fluids or gas. 

 Bulk Density (RHOZ): Reflects the density of the rock 
formation, which is crucial for identifying lithology and 
porosity. 

 Compressional Wave Slowness (DTCO_Final) and Shear 
Wave Slowness (DTSM_Final): These acoustic 

measurements are directly related to the elastic properties 
of the rock, serving as the primary indicators for shear 
velocity prediction. 

 
Each parameter plays a pivotal role in understanding the 
subsurface geology and directly influences the accuracy of 
rock shear velocity predictions. 

 
 
 

 
 

Fig. 2. Stratigraphy of Ahnet Basin (Ifrene et al., 2023) 
 
 
 

Table 1. Performance metrics before and after optimization 
 

Well Metric Before Optimization After Optimization 

1 
MSE 14.380736 10.781782 
MAE 2.568086 2.316987 
R2 0.854434 0.890864 

2 
MSE 9.319119 7.215336 
MAE 2.407224 2.083113 
R2 0.843856 0.879105 

3 
MSE 47.727588 13.920336 
MAE 5.331746 2.558182 
R2 0.796104 0.936811 

4 
MSE 10.225109 4.613603 
MAE 2.539514 1.545872 
R2 0.901640 0.959482 

5 
MSE 50.050025 32.513258 
MAE 4.626315 3.724126 
R2 0.697080 0.804846 

 
 
 

4.2. Overview of Neural Networks 
For this study, we designed a neural network architecture 
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tailored to model the complex relationships between well-
logging parameters and rock shear velocity. The neural 
network comprises: 
 
 An input layer designed to accommodate the number of 

well-logging parameters. 
 Multiple hidden layers to enable the network to learn 

complex patterns in the data. Each hidden layer utilizes 
Rectified Linear Unit (ReLU) activation functions to 

introduce non-linearity, facilitating the model's ability to 
learn a wide range of data representations. 

 The output layer consists of a single neuron without an 
activation function to predict the continuous value of rock 
shear velocity. 

 
This architecture is chosen for its ability to model complex 
relationships without overfitting, given the size and diversity 
of the dataset. 

 
 
 

 

 

 
 

Fig. 3. Performance metrics for Well 1,2,3,4 and 5 respectively before optimization 
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Fig. 4. Performance metrics for Well 1,2,3,4 and 5 respectively after optimization 
 
 
 

4.3. Differential Evolution Algorithm 
Differential evolution is an optimization algorithm that 
iteratively improves a population of candidate solutions with 
respect to a given fitness function. In this context, the fitness 
function is the error rate of the neural network predictions on 
the validation set. The algorithm's key parameters include: 
 
 Population Size: The number of candidate solutions (neural 

network configurations) considered in each generation. A 

larger population size increases the search space, enhancing 
the ability to find a global optimum. 

 Crossover Probability: Governs the mixing of attributes 
from two parent solutions to produce a new candidate. A 
higher probability encourages diversity in the population. 

 Differential Weight: Controls the rate at which the 
population evolves. A higher weight can lead to faster 
convergence but risks overshooting the optimum. 

 Convergence Criteria: Determines when the algorithm 
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should stop iterating, typically defined by a threshold on 
improvement in fitness across generations. 

 
4.4. Integration of Neural Networks with Differential Evolution 
for Parameter Optimization 
The integration process involves using differential evolution 
to optimize the neural network's hyperparameters, including 
the number of hidden layers, the number of neurons in each 
layer, and the learning rate. The optimization process follows 
these steps: 
 
 Initialization: Generate an initial population of neural 

network configurations. 
 Evaluation: Train each neural network on the training 

dataset and evaluate its performance on a validation set. 
 Selection: Select the best-performing neural networks to 

serve as parents for the next generation. 
 Crossover and Mutation: Apply crossover and mutation 

operations to generate new neural network configurations. 
 Replacement: Replace the worst-performing neural 

networks with new configurations. 
 Termination: Repeat steps 2-5 until the convergence criteria 

are met. 
 

This methodology allows for the systematic exploration of 
the neural network configuration space, ensuring that the 
final model is both accurate and efficient in predicting rock 
shear velocity. 
 
5. Results and Discussion 
The following results section presents a comprehensive 
analysis of the predictive performance of our neural network 
model, both before and after the application of the differential 
evolution optimization algorithm. The core objective of this 
optimization was to enhance the model's accuracy in 
predicting rock shear velocity, a critical parameter in 
geophysical exploration and characterization. Our dataset 
encompasses well-logging data from five distinct wells, each 
offering unique geological signatures and challenges for 
prediction accuracy. 
 
We evaluate the model's performance using three key 
metrics: Mean Squared Error (MSE), Mean Absolute Error 
(MAE), and the R-squared (R2) score. These metrics 
collectively offer insights into the model's prediction 
accuracy, error magnitude, and the proportion of variance 
explained by the model, respectively. A lower MSE and 
MAE signify a higher prediction accuracy, while a higher R2 
score indicates a better fit of the model to the observed data. 
The results are organized to facilitate a clear comparison 
between the model's performance before and after 
optimization (Table. 1).  
 
This comparative analysis not only underscores the 
effectiveness of the optimization process but also highlights 
the model's capability to adapt and improve across diverse 
geological settings encountered in each well. The subsequent 
table and figures provide a detailed breakdown of these 
metrics, illustrating the model's enhanced predictive 
performance post-optimization and affirming the value of 
integrating differential evolution algorithms with neural 
network models in geological applications. 

The following figures (Figs. 4 and 5) illustrate the 
comparative analysis of the neural network model's 
performance in predicting rock shear velocity, before and 
after the optimization process using the differential evolution 
algorithm. The results are segmented across five distinct 
wells, showcasing the model's enhanced accuracy and 
efficiency in geological prediction post-optimization. 
 
5. Conclusion 
This study demonstrates the efficacy of integrating neural 
networks with differential evolution for optimizing the 
prediction of rock shear velocity from well-logging data. The 
substantial improvements in MSE, MAE, and R2 scores 
across all wells post-optimization underscore the potential of 
this approach in enhancing the accuracy of geological 
predictions. The findings suggest that the methodology is 
robust, adaptable, and capable of handling the complexities 
inherent in geological datasets. 
 
Future work should focus on further refining the 
optimization process, exploring the impact of additional 
well-logging parameters on prediction accuracy, and 
extending the approach to other aspects of geological 
modeling. Moreover, the methodology's adaptability to 
different geological settings and its implications for 
improving the efficiency and accuracy of subsurface 
exploration efforts warrant further investigation. 
 
This study contributes to the growing body of knowledge in 
the application of advanced machine learning techniques to 
geological data analysis and offers a promising avenue for 
enhancing the precision and reliability of subsurface 
geological predictions. 
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