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1. Introduction 
The dynamics of pressure distribution within porous media, 
particularly in the intricate network of pore throats, holds 
immense importance across a multitude of industrial 
applications. From optimizing processes in petroleum 
engineering to managing groundwater resources and 
designing advanced materials, understanding the behavior of 
fluids within porous structures is essential. Over the years, 
researchers have turned to computational methods to unravel 
the complexities of fluid flow and pressure behavior within 
porous structures. This approach offers a powerful means to 
simulate and analyze the intricate interactions occurring at 
the pore scale. By leveraging computational models, 
researchers can gain insights into how pressure dynamics 
influence various industrial processes and develop strategies 
to enhance efficiency and sustainability. In this study, we aim 
to delve into the nuances of pressure dynamics along distinct 
pathways within pore throats using computational modeling 
techniques implemented in MATLAB. Through meticulous 
analysis and comparison, our research endeavors to 

contribute to a deeper understanding of pore-scale fluid 
dynamics and their implications for diverse industrial 
applications. 
 
2. A Glance at Previous Works  
2.1. Previous Studies on Pressure Dynamics in Pore Throats 
Numerous researchers have delved into the intricate 
dynamics of pressure distribution within pore throats, 
employing various methodologies to shed light on this 
fundamental aspect of fluid flow in porous media. Smith and 
Johnson (2018) conducted pioneering research on pressure 
dynamics in porous media, focusing on the impact of pore 
structure and connectivity on fluid flow behavior. Their study 
highlighted the significance of pore throat size and tortuosity 
in governing pressure gradients within porous materials, 
providing valuable insights into the fundamental principles 
underlying fluid transport in geological formations. 
 
In a subsequent study, Wang et al. (2020) employed 
advanced imaging techniques, such as X-ray 
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Understanding pressure dynamics in pore throats is crucial for various applications in 
fields such as petroleum engineering, groundwater hydrology, and materials science. In 
this study, we investigate the pressure changes along two distinct pathways of pore 
throats using computational methods implemented in MATLAB. The objective is to 
compare and analyze the pressure behavior in these pathways to elucidate their 
differences and implications. We present a comprehensive analysis of pressure data 
obtained from the computational simulations, highlighting the variations in pressure 
dynamics between the two pathways. Our findings reveal unique trends and phenomena, 
shedding light on the underlying mechanisms governing fluid flow through pore 
networks. The results contribute to a deeper understanding of pore-scale fluid dynamics 
and have implications for optimizing various processes reliant on pore throat 
characteristics. This research underscores the importance of computational modeling in 
elucidating complex fluid behavior in porous media and provides valuable insights for 
future studies and practical applications.  
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microtomography, to visualize pressure distribution within 
porous media at the pore scale. Their research revealed 
complex flow patterns and pressure gradients within pore 
throats, emphasizing the importance of considering pore-
scale heterogeneity in fluid flow simulations and modeling 
efforts. 
 
Furthermore, Jones and Smith (2019) investigated the 
influence of surface roughness on pressure dynamics in pore 
throats, exploring how surface interactions affect fluid flow 
behavior in porous materials [3]. Their findings highlighted 
the role of surface roughness in altering flow pathways and 
pressure gradients, providing valuable insights for 
applications in geosciences and engineering. 
 
Another research has extensively explored the dynamics of 
pressure distribution within pore throats, aiming to elucidate 
the fundamental mechanisms governing fluid flow in porous 
media. Alagoz and Giozza (2023) conducted a sensitivity 
analysis on bottomhole pressure calculations in two-phase 
wells, providing valuable insights into the factors influencing 
pressure dynamics within such systems.  
 
Additionally, studies by Alagoz et al. (2023) have focused on 
computational tools for analyzing wellbore stability, offering 
further understanding of pressure behavior in complex 
geological formations. These investigations have laid the 
groundwork for understanding pressure dynamics in pore 
throats and have set the stage for further exploration. 
 
These previous studies have contributed significantly to our 
understanding of pressure dynamics in pore throats, 
elucidating key principles governing fluid flow in porous 
media and paving the way for further research in this field. 
 
2.2. Computational Methods Used in Similar Research 
Computational methods play a pivotal role in studying 
pressure dynamics in pore throats. Researchers have 
employed various numerical techniques, such as finite 
element analysis (FEA), computational fluid dynamics 
(CFD), and lattice Boltzmann methods (LBM), to simulate 
fluid flow and pressure behavior within porous structures. 
These methods enable the modeling of complex geometries 
and fluid interactions, allowing for detailed analysis of 
pressure distributions at the pore scale. The works of Alagoz 
et al. (2023) exemplify the application of computational 
methods in analyzing pressure dynamics and their 
implications for industrial processes (Alagoz, 2023; Alagoz 
et al., 2023). 
 
2.3. Relevant Theories and Models 
The study of pressure dynamics in pore throats often relies on 
established theories and models from fluid mechanics and 
porous media physics. The Hagen-Poiseuille equation, for 
instance, provides insights into pressure-driven flow through 
cylindrical channels, serving as a fundamental principle for 
understanding fluid flow in pore networks. Additionally, 
models such as the Darcy-Brinkman equation and the 
Navier-Stokes equations offer frameworks for simulating 
fluid flow and pressure distributions within porous media. 
These theoretical foundations, coupled with computational 
methods, facilitate the analysis of pressure behavior in pore 

throats and contribute to advancements in various fields, 
including petroleum engineering and groundwater 
hydrology. 
 
3. Computational Mechanisms  
The calculation in this paper is based on the notation and 
numbering for pores as following (Figs. 1 and 2). 

 
 
 

 
 

Fig. 1. Pore Network-1 
 
 
 

 
 

Fig. 2. Pore Network-2 
 
 
 

When analyzing the flow of incompressible fluids through 
porous networks, it becomes essential to establish a set of 
assumptions that provide a foundation for the modeling 
process. Firstly, it is assumed that the system operates under 
ideal conditions where there is neither energy loss nor energy 
production. This assumption ensures that the energy balance 
within the system remains constant, facilitating a simplified 
analysis of fluid flow dynamics. Additionally, the absence of 
any sink or source of mass within the system ensures a steady-
state flow regime, where the mass of the fluid remains 
constant over time, further simplifying the analysis. 
 
Another critical assumption made in the modeling process is 
the characterization of pore throats within the network as 
uniform tubes. This simplification allows for the 
representation of the complex pore structure as a series of 
uniform channels, with each throat having the same 
dimensions in terms of radius and length. By treating pore 
throats as uniform tubes, the geometric complexities 
associated with irregular pore structures are mitigated, 
enabling a more straightforward analysis of fluid flow 
behavior. 
 
Furthermore, it is assumed that the fluid properties such as 
temperature, density, and viscosity remain uniform 
throughout the entire system. This assumption ensures that 
the fluid behaves consistently across the porous network, 
simplifying the modeling process. For example, when 
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considering the flow of methane at 300 K, it is assumed that 
the fluid maintains constant density and viscosity properties, 
regardless of its location within the network. 
 
To facilitate comparison with alternate scenarios, density and 
viscosity values are chosen based on the average pressure 
within the system. This approach ensures a standardized 
analysis method, allowing for meaningful comparisons 
between different scenarios. These assumptions collectively 
provide a framework for modeling fluid flow through porous 
networks, enabling researchers to systematically examine 
flow behavior and performance in various industrial 
applications. Mass balance can be set up for each pore using 
Hagen-Poiseuille equation, with flux/ flow rate associated 
with each pore should be zero at steady state.  
 
Mass flow rate between pore-i and pore-j:   
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3.1. For Network 1 
Since we have constant cross section for each pore throat, 
mass balance at steady state can be set up as following: 
 

pore #1:     1 12 0AW W        (2) 

 
pore #2:     21 23 0W W        (3) 

 
pore #3:     32 3 0BW W        (4) 

 
pore #4:     4 45 0AW W        (5) 

 
pore #5:     54 5 0BW W        (6) 

 
pore #6:     6 67 0AW W        (7) 

 
pore #7:     76 78 0W W         (8) 

 
pore #8:     87 8 0BW W        (9) 

 
Boundary conditions:   
 

610 10AP Pa   (10) 
 

61 10BP Pa   (11) 

 
Then we can solve the above Equations from (1) to (11) to get 
the pressure distribution in network, and then flow rate in the 
network can be obtained with Hagen-Poiseuille equation. 

The results are discussed together with results for network2. 
To solve the systems of linear equations, we use matrix 
calculation X=A\b method in matlab, and matrix A in both 
networks are nonsingular. 
 
3.2. For Network 2 
Similarly, we can set up mass balance for network 2 as 
follows: 
 

pore #1:     1 12 14 0AW W W         (12) 

 
pore #2:     21 25 23 0W W W         (13) 

 
pore #3:     32 3 35 0BW W W         (14) 

 
pore #4:     4 41 45 46 0AW W W W          (15) 

 
pore #5:     54 52 53 5 58 57 0BW W W W W W            (16) 

 
pore #6:     6 64 67 0AW W W    (17) 

 
pore #7:     76 75 78 0W W W          (18) 

 
pore #8:     87 85 8 0BW W W         (19) 

 
Boundary conditions:   
 

610 10AP Pa   (20) 
 

61 10BP Pa   (21) 
 
Again, we can solve Equations 1, 12-21 to get the pressure 
distribution and then acquire the flow rate in the network. 
The same numerical method can be applied for the 
calculation as for network1. 
 
4. Results and Discussion  
Furthermore, to provide a comprehensive analysis of the 
fluid flow within the porous network, detailed data regarding 
pressure distribution and flow distribution are presented 
below in Tables 1 and 2, respectively.  

 
 
 

Table 1 – Pressure distribution 
 

Pore 
Pi (Mpa) 

Network1 Network2 
#1 7.7500 7.4110 
#2 5.5000 4.9863 
#3 3.2500 3.3836 
#4 7.0000 7.2466 
#5 4.0000 4.1644 
#6 7.7500 7.4110 
#7 5.5000 4.9863 
#8 3.2500 3.3836 

 
 
 

These tables offer valuable insights into the spatial variation 
of flow rates and pressure gradients within the system, 
enabling a more thorough understanding of fluid behavior in 
complex porous media configurations. By examining these 
datasets alongside the established assumptions, researchers 
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can gain a deeper insight into the underlying mechanisms 
governing fluid flow dynamics and pressure behavior in 
porous networks. 

 
 
 

Table 2 – Flow rate distribution 
 

Pore 
Associated pore 
throat rate Wij 

(Kg/s) 
Network 1 Network 2 

#1 W1A -3.0747e-012 -3.5380e-012 
 W12 3.0747e-012 3.3133e-012 
 W14 N.A. 2.2463e-013 

 W1 (total flow rate 
for pore #1) 

-0.3635 e-026<< Wij 0.7699 e-026 << Wij 

#2 W21 -3.0747e-012 -3.3133e-012 
 W23 3.0747e-012 2.1902e-012 
 W25 N.A. 1.1232e-012 
 W2 e-026<< Wij -0.5049 e-026 << Wij 

#3 W32 -3.0747e-012 -2.1902e-012 
 W3B 3.0747e-012 3.2572e-012 
 W35 N.A. -1.0670e-012 
 W3 0.3635 e-026<< Wij -0.1818 e-026 << Wij 

#4 W4A -4.0996e-012 -3.7626e-012 
 W41 N.A. -2.2463e-013 
 W45 4.0996e-012 4.2119e-012 
 W46 N.A. -2.2463e-013 
 W4 -0.1212 e-026<< Wij -0.9744 e-026 << Wij 

#5 W54 -4.0996e-012 -4.2119e-012 
 W5B 4.0996e-012 4.3242e-012 
 W52 N.A. -1.1232e-012 
 W53 N.A. 1.0670e-012 
 W58 N.A. 1.0670e-012 
 W57 N.A. -1.1232e-012 
 W5 -0.4847 e-026<< Wij -0.4645 e-026 << Wij 

#6 W6A -3.0747e-012 -3.5380e-012 
 W67 3.0747e-012 3.3133e-012 
 W64 N.A. 2.2463e-013 
 W6 0.2423 e-026<< Wij -0.6033 e-026 << Wij 

#7 W76 -3.0747e-012 -3.3133e-012 
 W78 3.0747e-012 2.1902e-012 
 W75 N.A. 1.1232e-012 
 W7 -0.3635 e-026<< Wij -0.1414 e-026 << Wij 

#8 W87 -3.0747e-012 -2.1902e-012 
 W8B 3.0747e-012 3.2572e-012 
 W85 N.A. -1.0670e-012 
 W8 0.3635 e-026<< Wij 0 e-026 << Wij 

Total Wtot=WA=WB 1.0250e-011 1.0839e011 
 
 
 

Total flow rate:  
Network 1:  Wtotal=1.0250 e-11 kg/s 
Network 2:  Wtotal= 1.0839 e-11  kg/s  
 
The distribution of pressure and flow rate is shown 
graphically as bellow:  
 
 
 

 
 

Fig. 3. Pressure and flow rate distribution in Network 1 

 
 

Fig. 4. Pressure and flow rate distribution in Network 2 
 
 
 

From the above distribution, we see the main differences 
between network1 and network 2: 
 
Network1 has three independent paths (1-2-3; 4-5; 6-7-8), 
each path can be treated as a pipe with constant cross section 
and the flow rate in each path is proportional the pressure 
gradient; The flow and pressure are independent on flow and 
pressure in other paths, since they are not connected. 
However, network2 has each path connected to each other, 
the pressure and flow rate of each path receives “regulation” 
because of this interconnection. The total flow rate of 
network1 is slightly smaller than the total flow rate in 
network2, this is partly due to the interconnection among 
pores increases the “effective cross section area”. 
 
5. Conclusion 
In conclusion, this study has provided valuable insights into 
the dynamics of fluid flow and pressure distribution within 
porous networks. By employing a series of carefully crafted 
assumptions and computational modeling techniques, we 
have been able to analyze the behavior of incompressible 
fluids flowing through pore throats with greater clarity. The 
assumptions, ranging from the uniformity of pore throat 
dimensions to the constant fluid properties throughout the 
system, have allowed us to simplify the complexity of porous 
media and focus on fundamental fluid behavior principles. 
The presented data in Tables 1 and 2 offer detailed insights 
into the flow distribution and pressure gradients within the 
system, highlighting the spatial variations and providing a 
basis for further analysis. 
 
Through this study, we have demonstrated the importance of 
computational modeling in understanding fluid behavior in 
porous media and its implications for various industrial 
applications. While our assumptions provide a framework 
for analysis, it is essential to recognize their limitations and 
consider the potential impact of deviations from these 
idealized conditions in real-world scenarios. Future research 
could explore the effects of varying pore throat geometries, 
non-uniform fluid properties, and transient flow conditions 
to further refine our understanding of fluid flow dynamics in 
porous networks. Overall, this study contributes to the 
ongoing efforts to advance our knowledge of fluid behavior 
in porous media and lays the groundwork for future 
investigations in this field. 
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Appendices  
Calculation Explanation 

Table 3 – MATLAB Codes Explanation 
 

Matlab Programm Purpose 

Senario_a_1.m Calculate pressure and flow rate distribution in network 1 using x=A\b method 
Senario_a_2.m Calculate pressure and flow rate distribution in network 2 using x=A\b method 

 
 
 

Senario_a_1.m MATLAB CODES 
% Senario a)  Network1 
% parameters 
r= 20*10^(-9); L=150*10^(-9); 
rou= 39.5973; miu= 1.21316*10^(-5); P_A=10;P_B=1; epsilon=1.0e-20; 
  
% system of linear equations for mass balance in terms of pressure 
A=[2  -1  0  0  0  0  0  0; 
  -1  2  -1  0  0  0  0  0; 
  0   -1  2  0  0  0  0  0; 
  0   0   0  2  -1 0  0  0; 
  0   0   0  -1  2 0  0  0; 
  0   0   0   0  0  2  -1 0; 
  0   0   0   0  0  -1 2 -1; 
  0   0   0   0  0  0  -1 2; 
  ]; 
b=[10;0;1;10;1;10;0;1;]; 
  
% check matrix A single or not 
C=det(A); 
str = sprintf('det(A)= %d', C); 
disp(str); 
if abs(C) < epsilon, error('A is singular matrix!'); 
break; 
end; 
  
% solve pressure distribution from above  
% system of linear equations by matrix 
P=A\b 
  
% flow rate of pore #1 
W_1A= 3.14*r^4*rou/(8*miu*L)*(P(1)-P_A)*10^6 
W_12= 3.14*r^4*rou/(8*miu*L)*(P(1)-P(2))*10^6 
% flow rate of pore #2 
W_21= 3.14*r^4*rou/(8*miu*L)*(P(2)-P(1))*10^6 
W_23= 3.14*r^4*rou/(8*miu*L)*(P(2)-P(3))*10^6 
% flow rate of pore #3 
W_32= 3.14*r^4*rou/(8*miu*L)*(P(3)-P(2))*10^6 
W_3B= 3.14*r^4*rou/(8*miu*L)*(P(3)-P_B)*10^6 
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% flow rate of pore #4 
W_4A= 3.14*r^4*rou/(8*miu*L)*(P(4)-P_A)*10^6 
W_45= 3.14*r^4*rou/(8*miu*L)*(P(4)-P(5))*10^6 
% flow rate of pore #5 
W_54= 3.14*r^4*rou/(8*miu*L)*(P(5)-P(4))*10^6 
W_5B= 3.14*r^4*rou/(8*miu*L)*(P(5)-P_B)*10^6 
% flow rate of pore #6 
W_6A= 3.14*r^4*rou/(8*miu*L)*(P(6)-P_A)*10^6 
W_67= 3.14*r^4*rou/(8*miu*L)*(P(6)-P(7))*10^6 
% flow rate of pore #7 
W_76= 3.14*r^4*rou/(8*miu*L)*(P(7)-P(6))*10^6 
W_78= 3.14*r^4*rou/(8*miu*L)*(P(7)-P(8))*10^6 
% flow rate of pore #8 
W_87= 3.14*r^4*rou/(8*miu*L)*(P(8)-P(7))*10^6 
W_8B= 3.14*r^4*rou/(8*miu*L)*(P(8)-P_B)*10^6 
  
% check balance of flow rate  
W(1)=W_1A+W_12; 
W(2)=W_21+W_23; 
W(3)=W_32+W_3B; 
W(4)=W_4A+W_45; 
W(5)=W_54+W_5B; 
W(6)=W_6A+W_67; 
W(7)=W_76+W_78; 
W(8)=W_87+W_8B; 
  
%Display total flow rate for each pore  
W 
W_total=W_1A+W_4A+W_6A 
 
Senario_a_2.m MATLAB CODES 
% Senario a)  Network2 
% parameters 
r= 20*10^(-9); L=150*10^(-9); 
rou= 39.5973; miu= 1.21316*10^(-5); P_A=10;P_B=1;epsilon=1.0e-20; 
  
% system of linear equations for mass balance in terms of pressure 
A=[ 
    3  -1  0  -1  0  0  0  0 ; 
    -1  3 -1  0  -1  0  0  0; 
    0  -1  3  0  -1  0  0  0 ; 
    -1  0  0  4  -1 -1  0  0; 
    0  -1  -1 -1  6  0 -1  -1; 
    0   0  0   -1 0  3  -1 0; 
    0   0  0   0  -1 -1  3  -1; 
    0   0  0   0  -1  0  -1  3; 
  ]; 
b=[10;0;1;10;1;10;0;1;]; 
  
% check matrix A single or not 
C=det(A); 
str = sprintf('det(A)= %d', C); 
disp(str); 
if abs(C) < epsilon, error('A is singular matrix!'); 
break; 
end; 
  
% solve pressure distribution from above  
%system of linear equations by matrix 
P=A\b 
  
% flow rate of pore #1 
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W_1A= 3.14*r^4*rou/(8*miu*L)*(P(1)-P_A)*10^6 
W_12= 3.14*r^4*rou/(8*miu*L)*(P(1)-P(2))*10^6 
W_14= 3.14*r^4*rou/(8*miu*L)*(P(1)-P(4))*10^6 
  
% flow rate of pore #2 
W_21= 3.14*r^4*rou/(8*miu*L)*(P(2)-P(1))*10^6 
W_23= 3.14*r^4*rou/(8*miu*L)*(P(2)-P(3))*10^6 
W_25= 3.14*r^4*rou/(8*miu*L)*(P(2)-P(5))*10^6 
  
% flow rate of pore #3 
W_32= 3.14*r^4*rou/(8*miu*L)*(P(3)-P(2))*10^6 
W_3B= 3.14*r^4*rou/(8*miu*L)*(P(3)-P_B)*10^6 
W_35= 3.14*r^4*rou/(8*miu*L)*(P(3)-P(5))*10^6 
  
% flow rate of pore #4 
W_4A= 3.14*r^4*rou/(8*miu*L)*(P(4)-P_A)*10^6 
W_41= 3.14*r^4*rou/(8*miu*L)*(P(4)-P(1))*10^6 
W_45= 3.14*r^4*rou/(8*miu*L)*(P(4)-P(5))*10^6 
W_46= 3.14*r^4*rou/(8*miu*L)*(P(4)-P(6))*10^6 
  
% flow rate of pore #5 
W_54= 3.14*r^4*rou/(8*miu*L)*(P(5)-P(4))*10^6 
W_5B= 3.14*r^4*rou/(8*miu*L)*(P(5)-P_B)*10^6 
W_52= 3.14*r^4*rou/(8*miu*L)*(P(5)-P(2))*10^6 
W_53= 3.14*r^4*rou/(8*miu*L)*(P(5)-P(3))*10^6 
W_58= 3.14*r^4*rou/(8*miu*L)*(P(5)-P(8))*10^6 
W_57= 3.14*r^4*rou/(8*miu*L)*(P(5)-P(7))*10^6 
  
% flow rate of pore #6 
W_6A= 3.14*r^4*rou/(8*miu*L)*(P(6)-P_A)*10^6 
W_67= 3.14*r^4*rou/(8*miu*L)*(P(6)-P(7))*10^6 
W_64= 3.14*r^4*rou/(8*miu*L)*(P(6)-P(4))*10^6 
  
% flow rate of pore #7 
W_76= 3.14*r^4*rou/(8*miu*L)*(P(7)-P(6))*10^6 
W_75= 3.14*r^4*rou/(8*miu*L)*(P(7)-P(5))*10^6 
W_78= 3.14*r^4*rou/(8*miu*L)*(P(7)-P(8))*10^6 
  
% flow rate of pore #8 
W_87= 3.14*r^4*rou/(8*miu*L)*(P(8)-P(7))*10^6 
W_85= 3.14*r^4*rou/(8*miu*L)*(P(8)-P(5))*10^6 
W_8B= 3.14*r^4*rou/(8*miu*L)*(P(8)-P_B)*10^6 
  
% check balance of flow rate  
W(1)=W_1A+W_12+W_14; 
W(2)=W_21+W_23+W_25; 
W(3)=W_32+W_3B+W_35; 
W(4)=W_4A+W_45+W_41+W_46; 
W(5)=W_54+W_5B+W_52+W_53+W_58+W_57; 
W(6)=W_6A+W_67+W_64; 
W(7)=W_76+W_78+W_75; 
W(8)=W_87+W_8B+W_85; 
  
%Display total flow rate for each pore 
W 
W_total=W_1A+W_4A+W_6A 
 
Flux.m MATLAB CODES 
function J = flux(P1,P2) 
r= 20*10^(-9); M=16.04*10^-3; R=8.314; T=300; L=150*10^(-9); 
miu= 1.1242*10^(-5); rou0= 6.57281; p0=1; alpha=0.8; 
Tc=191.15; Pc=4.641*10^6; omega=0.0115; 
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P_avg =(P1+P2)/2; 
  
% caclulate compressibility factor Z 
Tr=T/Tc; 
k=0.37466+1.54226*omega-0.26992*omega^2; 
a=0.457235*8.314^2*Tc^2/Pc; 
b=0.077796*8.314*Tc/Pc; 
alpha_0=(1+k*(1-Tr^0.5))^2; 
A=a*alpha_0*P_avg*10^6/(8.314^2*300^2); 
B=b*P_avg*10^6/(8.314*300); 
Q=[1,B-1,A-2*B-3*B*B,-(A*B-B^2-B^3)]; 
z_temp=roots(Q); 
Z=max(z_temp); 
  
% calculate average density 
rou_avg=P_avg*(10^6)*M/R/T/Z;  
  
%calculate F 
F = 1 + (8*3.14*R*T/M)^(0.5)*miu*(2/alpha-1)/(P_avg*10^(6)*r); 
  
%calculate flux J 
AA = 2*r*M/(3000*R*T); 
BB = (8*R*T/(3.14*M))^0.5; 
J = -(AA*BB+ F*r^(2)*rou_avg/(8*miu))*(P2-P1)*10^(6)/L; 
 
Output of Senario_a_1.m MATLAB CODES : 
det(A)= 4.800000e+001 
 
P = 
 
    7.7500 
    5.5000 
    3.2500 
    7.0000 
    4.0000 
    7.7500 
    5.5000 
    3.2500 
 
W_1A = -3.0747e-012 
W_12 =  3.0747e-012 
W_21 = -3.0747e-012 
W_23 =  3.0747e-012 
W_32 = -3.0747e-012 
W_3B =  3.0747e-012 
W_4A = -4.0996e-012 
W_45 =  4.0996e-012 
W_54 = -4.0996e-012 
W_5B =  4.0996e-012 
W_6A = -3.0747e-012 
W_67 =  3.0747e-012 
W_76 = -3.0747e-012 
W_78 =  3.0747e-012 
W_87 = -3.0747e-012 
W_8B =  3.0747e-012 
W = 1.0e-026 * 
  Columns 1 through 7 
   -0.3635    0.3635   -0.1212   -0.4847    0.2423   -0.3635    0.3635 
  Column 8 
   -0.1212 
W_total = -1.0249e-011 
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Output of Senario_a_2.m MATLAB CODES : 
det(A)= 4599 
 
P = 
    7.4110 
    4.9863 
    3.3836 
    7.2466 
    4.1644 
    7.4110 
    4.9863 
    3.3836 
 
W_1A = -3.5380e-012 
W_12 =  3.3133e-012 
W_14 =  2.2463e-013 
W_21 = -3.3133e-012 
W_23 =  2.1902e-012 
W_25 =  1.1232e-012 
W_32 = -2.1902e-012 
W_3B =  3.2572e-012 
W_35 = -1.0670e-012 
W_4A = -3.7626e-012 
W_41 = -2.2463e-013 
W_45 =  4.2119e-012 
W_46 = -2.2463e-013 
W_54 = -4.2119e-012 
W_5B =  4.3242e-012 
W_52 = -1.1232e-012 
W_53 =  1.0670e-012 
W_58 =  1.0670e-012 
W_57 = -1.1232e-012 
W_6A = -3.5380e-012 
W_67 =  3.3133e-012 
W_64 =  2.2463e-013 
W_76 = -3.3133e-012 
W_75 =  1.1232e-012 
W_78 =  2.1902e-012 
W_87 = -2.1902e-012 
W_85 = -1.0670e-012 
W_8B =  3.2572e-012 
W =  1.0e-026 * 
 
Columns 1 through 7 
    0.7699   -0.5049   -0.1818   -0.9744   -0.4645   -0.6033   -0.1414 
Column 8 
         0 
W_total = -1.0839e-011 
 


