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1. Introduction

Axial algebras of Jordan type were introduced by Hall, Rehren, and Shpec-

torov [12] within the framework of the general theory of axial algebras [11]. The

main inspiration for this theory are the Griess algebra [9], Majorana theory [16],

and algebras associated with 3-transposition groups [20]. Modern results and open

problems in the theory of axial algebras can be found in a recent survey [22].

Consider a commutative F-algebra A, where F is a field of characteristic not

equal to two. For each element a of A and λ ∈ F, the λ-eigenspace for the adjoint

operator ada on A is denoted by Aλ(a). An idempotent whose adjoint operator is

semisimple will be called an axis. If A is generated by a set of axes, then A is an

axial algebra. An axis a is primitive if A1(a) is one-dimensional, i.e., spanned by a.

Suppose that η ∈ F and 0 ̸= η ̸= 1. The commutative F-algebra A is a primitive

axial algebra of Jordan type η provided it is generated by a set of primitive axes

with each member a satisfying the following properties:

A = A1(a)⊕A0(a)⊕Aη(a), A0(a)
2 ⊆ A0(a),

The work is supported by Mathematical Center in Akademgorodok under agreement No.075-15-

2022-281 with the Ministry of Science and Higher Education of the Russian Federation.



2 ILYA GORSHKOV, ANDREY MAMONTOV AND ALEXEY STAROLETOV

and for all δ, ϵ ∈ {±},

Aδ(a)Aϵ(a) ⊆ Aδϵ(a), where A+(a) = A1(a)⊕A0(a) and A−(a) = Aη(a).

These properties generalize the Peirce decomposition for idempotents in Jordan

algebras, where 1
2 is replaced with η. In particular, this explains the motivation for

the name of this class of axial algebras.

Another basic example of axial algebras of Jordan type are Matsuo algebras.

They were introduced by Matsuo [20] and later generalized in [12]. Recall that a

group G is a 3-transposition group if it is generated by a normal set D of involutions

such that the order of the product of any pair of these involutions is not greater

than three. Let η, as before, be an element of F distinct from 0 and 1. The Matsuo

algebra Mη(G,D) has D as its basis, where each element of D is an idempotent.

Moreover, the product in Mη(G,D) of two distinct elements c, d ∈ D equals 0 if

|cd| = 2 and η
2 (c+d−cd) if |cd| = 3. It turns out that Mη(G,D) is a primitive axial

algebra of Jordan type η with generating set of primitive axes D [12]. Moreover, it

is known that if η ̸= 1
2 , then every primitive axial algebra of Jordan type η ̸= 1

2 is

a factor algebra of a Matsuo algebra [12,13]. The case η = 1
2 remains open.

Conjecture 1. [8, Question 1],[22, Conjecture 4.3] Every primitive axial algebra

of Jordan type 1
2 is either a Jordan algebra or a factor of a Matsuo algebra.

De Medts and Rehren classified Matsuo algebras that are Jordan algebras [2].

As a consequence, it can be concluded that most Matsuo algebras are not Jordan.

The motivation for this paper is the following question: are there examples of axial

algebras of Jordan type 1
2 that are not factors of Matsuo algebras? We provide

examples of such algebras among Jordan algebras. We focus on Matsuo algebras

corresponding to connected 3-transposition groups (G,D), i.e., where D is a conju-

gacy class of 3-transpositions. If D is a union of conjugacy classes, then the Matsuo

algebra on D is the direct sum of the corresponding Matsuo algebras constructed

from each conjugacy class contained in D [12]. We say that two nontrivial con-

nected 3-transposition groups (G1, D1) and (G2, D2) have the same central type if

G1/Z(G1) and G2/Z(G2) are isomorphic as 3-transposition groups. It is easy to see

that if two 3-transposition groups have the same central type, then their Matsuo

algebras are isomorphic.

It turns out that every Matsuo algebra M = Mη(G,D), where (G,D) is a con-

nected 3-transposition group, has a maximal ideal M⊥ containing every proper

ideal of M . In fact, this ideal is the radical of a symmetric bilinear form on M

(see Section 3). Clearly, if an algebra is Jordan, then every homomorphic image is



ON JORDAN ALGEBRAS THAT ARE FACTORS OF MATSUO ALGEBRAS 3

Jordan. This implies that M has Jordan factors if and only if M/M⊥ is Jordan.

In this paper we describe all algebras M satisfying the latter condition. If G is a

group generated by a conjugacy class D of 3-transpositions, then we write p•h with

p ∈ {2, 3}, for a normal p-subgroup N with |D ∩ dN | = ph for all d ∈ D.

Theorem 1. Let F be a field of characteristic 0 and η ∈ F \ {0, 1}. Suppose that

(G,D) is a finite connected 3-transposition group and M = Mη(G,D) is the Matsuo

algebra constructed from (G,D) and η. If J = M/M⊥ is a Jordan algebra, then

one of the following statements holds.

(i) G is the cyclic group of order 2 and so J = M is one-dimensional;

(ii) the product of every two distinct elements of D has order 3, η = 2, and J

is one-dimensional;

(iii) η = 1
2 and G has the same central type as one of the following 3-transposition

groups: Sym(m) (m ≥ 2), 2•1 : Sym(m) (m ≥ 4), 3•1 : Sym(m) (m ≥ 4),

32 : 2, O+
8 (2), O

−
6 (2), Sp6(2),

+Ω−
6 (3), SU4(2), SU5(2), or 4•1SU3(2)

′. In

particular, dim J ∈ {1,m2, m(m−1)
2 }, where m ≥ 3.

Moreover, each of the possibilities in items (i)− (iii) is realized for some M .

In Section 5, we discuss possible Matsuo algebras M satisfying the hypothesis

of this theorem and the corresponding 3-transposition groups (G,D) in detail (see

Proposition 5.2). Note that the case M⊥ = 0 was considered in [2]. Moreover,

it was mentioned in [2, Remark 3.5] that the Weyl groups for simply-laced root

systems of types En with 6 ≤ n ≤ 8 and Dn, considered as 3-transposition groups,

correspond to Matsuo algebras that have among their factors the Jordan algebra

(of dimension n(n+1)
2 ) of all symmetric n× n matrices.

Note that for every integer n ≥ 1, there exists a simple Jordan algebra of di-

mension n which is a primitive axial algebra of Jordan type 1
2 . As an example one

can take a so-called Jordan spin factor algebra (see, for example, [13, Lemma 5.1]).

This together with Theorem 1 implies the following corollary.

Corollary 1.1. If F is a field of characteristic 0, then there exist infinitely many

primitive axial algebras of Jordan type 1
2 over F that are not factors of Matsuo

algebras.

In Section 6, we present another example, which is the cornerstone in the the-

ory of Jordan algebras. Given a field F of characteristic 0, we show that a 27-

dimensional Albert algebra over F is an axial algebra of Jordan type 1
2 generated

by four primitive axes. Theorem 1 implies that this algebra, known to be a simple

Jordan algebra, is not a factor of a Matsuo algebra.
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Finally, we mention two results on the status of Conjecture 1. Gorshkov and

Staroletov proved that every axial algebra of Jordan type 1
2 generated by at most

three primitive axes is Jordan and has dimension not exceeding 9 [8]. It has recently

been proved that the dimension of a 4-generated algebra does not exceed 81, which

is the dimension of a 4-generated Matsuo algebra [3]. In the general case, it is not

even known whether an axial algebra of Jordan type generated by a finite number

of primitive axes has a finite dimension or not.

The proof of Theorem 1 is based on the classification of 3-transposition groups

and the dimensions of the eigenspaces of diagrams on the corresponding sets of

3-transpositions. The necessary definitions and results are given in Section 2. In

Section 3, we provide the necessary information on Jordan and Matsuo algebras.

In Section 4, we give a convenient description of the 3-transposition groups that

are obtained from the symmetric group by the wreath product construction, these

groups are a special case in the proof of Theorem 1. Section 5 is devoted to this

proof. We emphasize that in many cases, for specific 3-transposition groups, the

Jordan identity in the corresponding algebras is verified using the computer algebra

system GAP [7]. Finally, in Section 6 we show that an Albert algebra over a field of

characteristic different from 2 and 3 is a primitive axial algebra of Jordan type 1
2 .

2. Preliminaries: 3-transposition groups

Suppose that G is a group and D ⊆ G is a normal set of involutions, i.e., a

union of conjugacy classes of elements of order 2. If for every pair d, e ∈ D, the

order of de is at most 3, then D is called a set of 3-transpositions. This notion

was introduced by Fischer as a generalization of properties of transpositions in

symmetric groups [4].

We say that (G,D) is a 3-transposition group if D generates G and is a set of

3-transpositions. If S is a subset of D, the diagram of S, denoted (S), is the graph

whose vertices are elements of S with the pair {d, e} forming an edge precisely when

|de| = 3. This notion is important for 3-transpositions groups since the subgroup of

G generated by S is a homomorphic image of the Coxeter group with diagram (S).

Lemma 2.1. [5, (1.2) and Lemma (2.1.1)] Suppose that D is a set of 3-transpositions

in G. Then the following statements hold.

(i) If H is a subgroup of G, then D∩H = ∅ or D∩H is a set of 3-transpositions

in H. If N is a normal subgroup of G, then D ⊂ N or the nontrivial

elements of DN/N form a normal set of 3-transpositions in G/N .
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(ii) Let Di, for i ∈ I, be the connected components of (D). Then each Di is a

conjugacy class of 3-transpositions in the group Gi = ⟨Di⟩. Furthermore,

the normal subgroup ⟨D⟩ is the central product of its subgroups Gi.

(iii) If G = ⟨D⟩, then for each d ∈ D \ Z(G), the coset dZ(G) meets D only in

d.

It follows that the building blocks for 3-transposition groups are groups with

connected diagrams. For brevity, we say that (G,D) is a connected 3-transposition

group if (D) is connected. Note that this is equivalent to D being a conjugacy class

of G. We say that the two connected 3-transposition groups (G1, D1) and (G2, D2)

have the same central type provided G1/Z(G1) and G2/Z(G2) are isomorphic as

3-transposition groups. By Lemma 2.1(iii), two connected 3-transpositions groups

have the same central type if and only if their diagrams are isomorphic.

Finite connected 3-transposition groups (G,D) such that O2(G)O3(G) ≤ Z(G)

were classified by Fischer in [5]. Basic examples of such groups are the following:

the symmetric groups Sym(m) with m = 2 or m ≥ 5 and D being the set of

transpositions; the symplectic groups Sp2m(2), where m ≥ 3 and D is the set of

symplectic transvections; the unitary groups SUm(2), where m ≥ 4 and D is the

set of unitary transvections; the orthogonal groups Oϵ
2m(2), where D is the set of

orthogonal transvections, m ≥ 3, and either ϵ = + if the Witt index equals m or

ϵ = − if the Witt index equals m − 1; five groups of sporadic type (in notation

of [1]): Fi22, Fi23, Fi24, PΩ
+
8 (2) : Sym(3), PΩ+

8 (3) : Sym(3). There are two more

infinite series of 3-transposition groups in Fischer’s classification paper: +Ω±
m(3),

where m ≥ 5. Consider an orthogonal group Oϵ
2m(3) corresponding to a symmetric

bilinear form b(·, ·) over a field of order 3, where ϵ is defined as above depending

on the Witt index. The group +Ωϵ
2m(3) is then the subgroup of Oϵ

2m(3) generated

by the 3-transposition conjugacy class D+ of all reflections d = σx with centers

x having b(x, x) = 1. The corresponding odd degree group +Ωϵ
2m−1(3) is found

within +Ωϵ
2m(3) as ⟨Dd⟩, where Dd = CD+(d)\{d} for an arbitrary 3-transposition

d ∈ D+. In what follows, we do not need explicit group constructions, but only

some properties of their diagrams.

Cuypers and Hall extended Fischer’s classification in [15] by dropping the as-

sumptions O2(G)O3(G) ≤ Z(G) and finiteness of G. As a consequence, they showed

that every 3-transposition group is locally finite, i.e., every finite subset of the group

generates a finite subgroup. Naturally, the groups in the general classification are

extensions of the groups obtained by Fischer. For the connected 3-transposition

group (G,D), we write p•h with p ∈ {2, 3}, for a normal p-subgroup N with
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|D ∩ dN | = ph for all d ∈ D. We give a simplified formulation of the classifi-

cation which is taken from [14] and sufficient for our purposes.

Theorem 2.2. (Cuypers–Hall Classification Theorem)[14, Theorem 5.3] Let (G,D)

be a finite connected 3-transposition group. Then for integral m and h, the group

G has one of the central types below. Furthermore, for each G, the generating class

D is uniquely determined up to an automorphism of G.

PR1. 3•h : Sym(2), all h ≥ 1;

PR2(a). 2•h : Sym(m), all h ≥ 0, all m ≥ 4;

PR2(b). 3•h : Sym(m), all h ≥ 1, all m ≥ 4;

PR2(c). 3•h : 2•1 : Sym(m), all h ≥ 1, all m ≥ 4;

PR2(d). 4•h : 3•1 : Sym(m), all h ≥ 1, all m ≥ 4;

PR3. 2•h : Oϵ
2m(2), ϵ = ±, all h ≥ 0, all m ≥ 3, (m, ϵ) ̸= (3,+);

PR4. 2•h : Sp2m(2), all h ≥ 0, all m ≥ 3;

PR5. 3•h+Ωϵ
m(3), ϵ = ±, all h ≥ 0, all m ≥ 5;

PR6. 4•h SUm(2)′, all h ≥ 0, all m ≥ 3;

PR7(a-e). Fi22, Fi23, Fi24, PΩ
+
8 (2) : Sym(3), PΩ+

8 (3) : Sym(3);

PR8. 4•h : (3 · +Ω−
6 (3)), all h ≥ 1;

PR9. 3•h : (2× Sp6(2)), all h ≥ 1;

PR10. 3•h : (2 ·O+
8 (2)), all h ≥ 1;

PR11. 3•2h : (2× SU5(2)), all h ≥ 1;

PR12. 3•2h : 4•1 : SU3(2)
′, all h ≥ 1.

Remark 2.3. The notation PRk comes from [1], here P means Parabolic and R

means Reflections. These abbreviations reflect how the groups arise in the classifi-

cation.

In Theorem 2.2, we follow notation from [14], in particular A : B means a split

group extension with normal subgroup A, while A ·B is a nonsplit group extension

with normal subgroup A and quotient B. We write AB indicating that A is a

normal subgroup while B is the quotient, but the extension may or may not be

split.

Let V be a nonempty set and (V ) a graph with V as a vertex set. The (0, 1)-

adjacency matrix of the graph will be denoted AMat((V )), and the spectrum of the

graph is the (ordered) spectrum of AMat((X)): Spec((X)) = ((. . . , ri, . . .)).

Suppose that (G,D) is a connected 3-transposition group. Hall and Shpectorov

determined in [14] the spectrum of the diagram (D) in all cases of Theorem 2.2.
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Before formulating their result, it is necessary to introduce some notation and

conventions.

Clearly, the all-one vector 1 is an eigenvector of AMat((V )) with eigenvalue k

if and only if (V ) is regular of degree k. If (V ) is connected, then the Perron–

Frobenius Theorem implies that k is the largest eigenvalue and the corresponding

eigenspace has dimension one. Following [14], we list k first in the spectrum and

separate it from the rest of eigenvalues by a semicolon. We use the convention that

[t]c indicates an eigenvalue t of multiplicity c and [t]∗ means that the eigenvalue t

has multiplicity such that the total multiplicity of all eigenvalues is equal to the

size of V .

Theorem 2.4. [14] Let (G,D) be a finite 3-transposition group from the conclusion

of Theorem 2.2. Then the size of (D) and its spectrum are as in the second and

third columns of Table 1, respectively.

Label Size Spectrum

PR1 3h ((3h − 1; [−1]3
h−1))

PR2(a) 2h−1m(m − 1) ((2h+1(m − 2); [2h(m − 4)]m−1, [0]∗,

[−2h+1]m(m−3)/2))

PR2(b) 3hm(m − 1)/2 ((3h(2m − 3) − 1; [3h(m − 3) − 1]m−1, [−1]∗,

[−3h − 1]m(m−3)/2))

PR2(c) 3hm(m − 1) ((3h(4m − 7) − 1; [3h(2m − 7) − 1]m−1,

[3h − 1]m(m−1)/2, [−1]∗, [−3h+1 − 1]m(m−3)/2))

PR2(d) 3(22h−1)m(m − 1) ((4h(6m − 10); [4h(3m − 10)]m−1, [0]∗,

[−4h]m(m−1), [−4h+1]m(m−3)/2))

PR3 ϵ = + 2h(22m−1 − 2m−1) ((2h(22m−2 − 2m−1); [2h+m−1](2
m−1)(2m−1−1)/3,

[0]∗, [−2h+m−2](2
2m−4)/3))

ϵ = − 2h(22m−1 + 2m−1) ((2h(22m−2 + 2m−1); [2h+m−2](2
2m−4)/3,

[0]∗, [−2h+m−1](2
m+1)(2m−1+1)/3))

PR4 2h(22m − 1) ((22m−1+h; [2m−1+h]2
2m−1−2m−1−1,

[0]∗, [−2h+m−1]2
2m−1+2m−1−1))

PR5

odd m ≥ 5, 3h(3m−1 − 3(m−1)/2)/2 ((3h(3m−2 − 2 · 3(m−3)/2) − 1; [3(m−3)/2+h − 1]f ,

ϵ = + [−1]∗, [−3(m−3)/2+h − 1]g))

for f = (3m−1 − 1)/4

and g = (3m−1 − 1 − 2(3(m−1)/2 + 1))/4

odd m ≥ 5, 3h(3m−1 + 3(m−1)/2)/2 ((3h(3m−2 + 2 · 3(m−3)/2) − 1; [3(m−3)/2+h − 1]f ,

ϵ = − [−1]∗, [−3(m−3)/2+h − 1]g))

for f = (3m−1 − 1 + 2(3(m−1)/2 − 1))/4

and g = (3m−1 − 1)/4

even m ≥ 6, 3h(3m−1 − 3(m−2)/2)/2 ((3m−2+h − 1; [3(m−4)/2+h − 1]f ,

ϵ = + [−1]∗, [−3(m−2)/2+h − 1]g))

for f = (3m − 9)/8

and g = (3m/2 − 1)(3(m−2)/2 − 1)/8

even m ≥ 6, 3h(3m−1 + 3(m−2)/2)/2 ((3m−2+h − 1; [3(m−2)/2+h − 1]f ,

ϵ = − [−1]∗, [−3(m−4)/2+h − 1]g))

for f = (3m/2 + 1)(3(m−2)/2 + 1)/8
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and g = (3m − 9)/8

PR6

even m ≥ 4 4h(22m−1 + 2m−1 − 1)/3 ((22h+2m−3; [22h+m−3]f , [0]∗, [−22h+m−2]g))

for f = 8(22m−3 − 2m−2 − 1)/9

and g = 4(22m−3 + 7(2m−3) − 1)/9

odd m ≥ 3 4h(22m−1 − 2m−1 − 1)/3 ((22h+2m−3; [22h+m−2]f , [0]∗, [−22h+m−3]g))

for f = 4(22m−3 − 7(2m−3) − 1)/9

and g = 8(22m−3 + 2m−2 − 1)/9

PR7(a) 3510 ((2816; [8]3080, [−64]429))

PR7(b) 31671 ((28160; [8]30888, [−352]782))

PR7(c) 306936 ((275264; [80]249458, [−352]57477))

PR7(d) 360 ((296; [8]105, [−4]252, [−64]2))

PR7(e) 3240 ((2888; [8]2457, [−28]780, [−352]2))

PR8 126 · 4h ((5 · 4h+2; [22h+3]35, [0]∗, [−4h+1]90))

PR9 63 · 3h ((11 · 3h+1 − 1; [5 · 3h − 1]27, [−1]∗, [−3h+1 − 1]35))

PR10 120 · 3h ((19 · 3h+1 − 1; [3h+2 − 1]35, [−1]∗, [−3h+1 − 1]84))

PR11 165 · 32h ((43 · 32h+1 − 1; [32h+2 − 1]44, [−1]∗, [−32h+1 − 1]120))

PR12 36 · 32h ((11 · 32h+1 − 1; [32h − 1]27, [−1]∗, [−32h+1 − 1]8))

Table 1: Spectra of diagrams

Before finishing this section, we introduce an alternative view of the elements of

the set of 3-transpositions. The Fischer space of a 3-transposition group (G,D) is

a point-line geometry Γ(G,D) whose point set is D and where distinct points c and

d are collinear if and only if |cd| = 3. Observe that any two collinear points c and d

lie in a unique common line, which consists of c, d, and the third point e = cd = dc.

It follows from the definition that the connected components of the Fischer space

coincide with the conjugacy classes of G contained in D. In particular, the Fischer

space is connected if and only if the diagram (D) is connected.

3. Preliminaries: Jordan and Matsuo algebras

Throughout this section we assume that F is a field of characteristic not 2. Recall

that a commutative F-algebra J is called Jordan if any two of its elements x and y

satisfy the identity (x2y)x−x2(yx) = 0. If x, y, z are three elements in an F-algebra,
then their associator is (x, y, z) := (xy)z − x(yz). The associator is convenient

when writing identities, for example the Jordan identity (x2y)x − x2(yx) = 0 can

be rewritten as (x2, y, x) = 0. To show that an algebra is Jordan we will use the

linearized Jordan identity.

Lemma 3.1. [21, Proposition 1.8.5(1)] Let F be a field of characteristic not 2 and

3. Then a commutative F-algebra J is a Jordan algebra if and only if (xz, y, w) +

(zw, y, x) + (wx, y, z) = 0 for all elements x, y, z, w in J .

Suppose thatA is an F-algebra and a ∈ A. For an element λ ∈ F denote byAλ(a),

the λ-eigenspace of the (left) adjoint operator of a: Aλ(a) = {b ∈ A | ab = λb}.
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Lemma 3.2. (Peirce decomposition)[21, Section 6.1] Suppose that e is an idempo-

tent in a Jordan algebra J . Then the following statements hold.

(i) J = J1(e)⊕ J0(e)⊕ J1/2(e);

(ii) J1(e) + J0(e) is a subalgebra of J and, moreover, J1(e)
2 ⊆ J1(e), J0(e)

2 ⊆
J0(e), and J1(e)J0(e) = (0);

(iii) J1/2(e)
2 ⊆ J0(e) + J1(e) and J1/2(e)(J0(e) + J1(e)) ⊆ J1/2(e).

Suppose that η ∈ F and η ̸= 0, 1. Fix a 3-transposition group (G,D). The

Matsuo algebra Mη(G,D) over F, corresponding to (G,D) and η, has the point set

D as its basis. Multiplication is defined on D as follows:

c · d =


c, if c = d;

0, if |cd| = 2;
η
2 (c+ d− e), if |cd| = 3 and e = cd = dc.

We use the dot for the algebra product to distinguish it from the multiplication in

the group G. It turns out that the assertions of Lemma 3.2 hold for every Matsuo

algebra Mη(G,D). This means that Matsuo algebras are examples of axial algebras

of Jordan type η (see [12, Theorem 6.4] for details).

The Matsuo algebra M = Mη(G,D) admits a bilinear symmetric form (·, ·) that
associates with the algebra product, i.e., (u · v, w) = (u, v ·w) for arbitrary algebra

elements u, v, and w (so-called Frobenius form). This form is given on the basis D

by the following:

(c, d) =


1, if c = d;

0, if |cd| = 2;
η
2 , if |cd| = 3.

The radical M⊥ of the form is the set of elements orthogonal to M :

M⊥ = {u ∈ M | (u, v) = 0 for all v ∈ M}.

Since the form associates with the algebra product, M⊥ is an ideal in M .

One can define a graph on the set D, called the projection graph, where distinct

involutions d and e are adjacent whenever (d, e) ̸= 0. By the definition of the

form on M , if G is connected, then this graph is connected. It follows from [18,

Corollary 4.15] that in this case M⊥ includes all proper ideals of M .

Proposition 3.3. Suppose that M = Mη(G,D) is a Matsuo algebra. If the diagram

(D) is connected, then each ideal of M lies in the radical M⊥.



10 ILYA GORSHKOV, ANDREY MAMONTOV AND ALEXEY STAROLETOV

It turns out that the values of η for which the radical is nonzero are easier to

find in terms of the adjacency matrix AMat((D)) than in terms of the form. The

following statement will be used to calculate the dimension of the radical.

Lemma 3.4. 1 Let F be a field of characteristic not 2 and η ∈ F \ {0, 1}. Suppose

that (G,D) is a 3-transposition group and M = Mη(G,D) is the Matsuo algebra for

(G,D). Fix some order of elements of D and denote by M the Gram matrix of the

Frobenius form of M with respect to D and by A the adjacency matrix AMat((D)).

Then ζ is an eigenvalue of A with multiplicity k if and only if 1+ η
2 ζ is an eigenvalue

of M with multiplicity k.

Proof. By definitions of M and A, we see that M = I + η
2A. Now the statement

follows from the fact that the Jordan normal forms of these matrices are related by

a similar equation. □

Corollary 3.5. Let M and A be as in Lemma 3.4. If η = 1
2 , then the multiplicity

of 0 in the spectrum of M is equal to that of −4 in the spectrum of A.

Proof. From the bijection between eigenvalues of M and A in Lemma 3.4, we find

that 0 corresponds to ζ such that 1 + 1
4ζ = 0, that is ζ = −4. □

De Medts and Rehren classified Matsuo algebras that are Jordan algebras in [2].

Yabe corrected a gap in the case when the characteristic of the field equals 3 [25].

For simplicity and since we are mainly interested in characteristic zero, we state

the result when the field characteristic is not three.

Theorem 3.6. [2, Main Theorem] Let F be a field, char(F) ̸= 2, 3, and let J be

a Jordan algebra over F which is also a Matsuo algebra. Then J is a direct prod-

uct of Matsuo algebras Ji = M1/2(Gi, Di) corresponding to 3-transposition groups

(Gi, Di), where for each i,

(i) either Gi = Sym(n), and Ji is the Jordan algebra of n × n symmetric

matrices over F with zero row sums;

(ii) Gi ≃ 32 : 2, and Ji is the Jordan algebra of hermitian 3× 3 matrices over

the quadratic étale extension E = F[x]/(x2 + 3).

1This lemma was mentioned by S. Shpectorov in his talk at Axial seminar, 12/10/21,

https://sites.google.com/view/axial-algebras/home
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4. Preliminaries: wreath product

In this section, we discuss 3-transposition groups that correspond to typesPR2(a-

e) in Theorem 2.2. All these groups can be constructed from the wreath product

of a group whose elements have orders not exceeding 3 and a symmetric group.

Denote the base group of the wreath product G = T wr Sym(n) by B, i.e.,

B = Tn. The natural injection ιi of T as the i-th direct factor Ti of B is given by

ιi(t) = ti, where 1 ≤ i ≤ n. The projection πi of B onto T induced by the i-th

factor is given by πi(b) = b(i). We identify Sym(n) with the complement to B in G

which acts naturally on the indices from {1, . . . , n}. Let Wr(T, n) be the subgroup

⟨dG⟩ of G, where d is a transposition of the complement to B. Note that the factor

group G/Wr(T, n) is isomorphic to the abelian group T/T ′, in particular Wr(T, n)

can be a proper subgroup of G. The following statement describes when dG is a

class of 3-transpositions.

Proposition 4.1. [26, Theorem 6], [10, Prop. 8.1] Suppose that T is a finite group

and G = T wr Sym(n). Fix a transposition d of Sym(n). Then dG is a class of

3-transpositions in G if and only if each element of T has order 1, 2, or 3.

Note that the groups T with restrictions as in the proposition were classified in

[23]. The next two lemmas are well known and describe how we deal with points

and lines of the Fischer space of Wr(T, n).

Lemma 4.2. [19, Lemma 3.2] Consider the wreath product G = T wr Sym(n) and

a transposition d ∈ Sym(n). Then dG consists of elements tit
−1
j (i, j), where t ∈ T

and 1 ≤ i < j ≤ n.

Notation. We write t.(i, j) for the 3-transposition tit
−1
j (i, j) from Lemma 4.2.

Since t.(i, j) = t−1.(j, i), we will usually assume that i < j.

Lemma 4.3. [19, Lemma 3.3] Suppose that each element of T has order 1, 2, or 3.

Then each line of the Fischer space of Wr(T, n) coincides with one of the following

sets.

(i) {t.(i, j), s.(j, k), ts.(i, k)}, where s, t ∈ T and 1 ≤ i < j < k ≤ n;

(ii) {t.(i, j), s.(i, j), st−1s.(i, j)}, where s, t ∈ T , |st−1| = 3, and 1 ≤ i < j ≤ n.

Now we focus on 3-transposition groupsWr(p, n), where pmeans the cyclic group

of order p ∈ {2, 3}. Following [19] and [6], we will use the following descriptions of

the Fischer spaces of these groups. Let n be an integer and n ≥ 3. For p ∈ {2, 3},
consider the n-dimensional permutational module V of Sym(n) over Fp. Let ei,
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i ∈ {1, . . . , n}, be a basis of V permuted by Sym(n). Then the natural semi-

direct product V ⋊ Sym(n) is isomorphic to pwr Sym(n). Denote the (n − 1)-

dimensional ‘sum-zero’ submodule of V by U . Then Wr(p, n) is isomorphic to

the natural semidirect product U ⋊ Sym(n). Note that, for p = 2 and even n,

U contains a 1-dimensional ‘all-one’ submodule, which is the center of Wr(2, n).

When p = 3, U is irreducible. In both cases, U is the unique minimal non-central

normal subgroup of Wr(p, n) and Wr(p, n)/U ≃ Sym(n). Since Sym(n) does not

have proper factor groups containing commuting involutions, we conclude that, up

to the center, groupsWr(p, n) have no other factors that are 3-transposition groups.

Now we describe the Fischer spaces of these groups.

Assume that p = 2. It follows from Lemmas 4.2 and 4.3 that the Fischer space

of Wr(2, n) = U : Sym(n) consists of n(n − 1) points: bi,j = (i, j) and ci,j =

(ei+ej)(i, j), for 1 ≤ i < j ≤ n; and n2 lines, where each ‘b’ line {bi,j , bi,k, bj,k}, 1 ≤
i < j < k ≤ n, is complemented by three ‘bc’ lines {bi,j , ci,k, cj,k}, {bi,k, ci,j , cj,k},
and {bj,k, ci,j , ci,k}.

Assume that p = 3. By Lemma 4.2, for each pair i and j with 1 ≤ i < j ≤ n, we

have three points: bi,j = (i, j) = bj,i, ci,j = (ei − ej)(i, j) and cj,i = (ej − ei)(i, j).

Consequently, the Fischer space has 3n(n−1)
2 points. By Lemma 4.3, the lines are

of several types. First, for each 1 ≤ i < j ≤ n, the triple (1) {bi,j , ci,j , cj,i} is a

line. Secondly, for distinct i, j, and k in {1, . . . , n}, the triples (2) {bi,j , bi,k, bj,k},
(3) {bi,j , ci,k, cj,k}, (4) {bj,k, ci,j , ci,k}, and (5) {ci,j , cj,k, ck,i} are lines.

Using the descriptions of Fischer spaces, we find bases of radicals for the corre-

sponding Matsuo algebras.

Lemma 4.4. Let G = Wr(p, n), where p ∈ {2, 3} and n ≥ 4. Denote by D the

corresponding 3-transposition set and by M the Matsuo algebra M1/2(G,D). Then

dimM⊥ = n(n−3)
2 and the following assertions hold.

(i) If p = 2, then M⊥ is the span of elements

bi,j − bi,l − bj,k + bk,l + ci,j − ci,l − cj,k + ck,l,

where i, j, k, l are distinct elements of {1, . . . , n} and i is less than j, k, l.

(ii) If p = 3, then M⊥ is the span of elements

bi,j − bi,l − bj,k + bk,l + ci,j − ci,l − cj,k + ck,l + cj,i − cl,i − ck,j + cl,k,

where i, j, k, l are distinct elements of {1, . . . , n} and i is less than j, k, l.

Proof. By Corollary 3.5, the dimension of M⊥ is equal to the multiplicity of −4

in the spectrum of the diagram (D). According to [1, Example PR2], if p = 2,
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then G corresponds to the type PR2(a) in Theorem 2.2, while if p = 3, then G

corresponds to the type PR2(b). In both cases the parameter h equals 1. It follows

from Theorem 2.4 that −4 has multiplicity n(n−3)
2 in Spec((D)). This implies that

dimM⊥ = n(n−3)
2 .

For arbitrary distinct integers i, j, k, l such that 1 ≤ i, j, k, l ≤ n and i is less

than j, k, l denote

r(i, j)(k, l) = bi,j − bi,l − bj,k + bk,l + ci,j − ci,l − cj,k + ck,l if p = 2,

and

r(i, j)(k, l) = bi,j−bi,l−bj,k+bk,l+ci,j−ci,l−cj,k+ck,l+cj,i−cl,i−ck,j+cl,k if p = 3.

We claim that each r(i, j)(k, l) belongs to M⊥. By symmetry of indices, it suffices

to show this for r(1, 2)(3, 4). Now we verify that each 3-transposition of D is

orthogonal to r(1, 2)(3, 4) with respect to the Frobenius form. Suppose that p = 3.

Take a 3-transposition xi,j ∈ D, where x ∈ {b, c}. First we consider the case

i, j ∈ {1, 2, 3, 4}. If xi,j ∈ {b1,2, c1,2, c2,1}, then

(xi,j , b1,2 + c1,2 + c2,1) = 1 +
1

4
+

1

4
=

3

2
, (xi,j , b3,4 + c3,4 + c4,3) = 0,

(xi,j ,−b1,4 − b2,3 − c1,4 − c4,1 − c3,4 − c4,3) = −6 · 1
4
= −3

2
.

Therefore, we infer that (xi,j , r(1, 2)(3, 4)) = 0. Similarly, we see that

(xi,j , r(1, 2)(3, 4)) = 0

when xi,j ∈ {b3,4, c3,4, c4,3, b1,4, c1,4, c4,1, b2,3, c2,3, c3,2}.
Let xi,j ∈ {b1,3, c3,1, c3,1, b2,4, c2,4, c4,2}. Then

(xi,j , b1,2 + c1,2 + c2,1) = (xi,j , b3,4 + c3,4 + c4,3) =
3

4
, (xi,j ,−b1,4 − c1,4 − c4,1)

= (xi,j , b2,3 + c2,3 + c3,2) = −3

4
.

Therefore, we see that (xi,j , r(1, 2)(3, 4)) = 0. Clearly, if i, j ̸∈ {1, 2, 3, 4}, then
(xi,j , r(1, 2)(3, 4)) = 0. So it remains to consider the case when |{i, j}∩{1, 2, 3, 4}| =
1. Note that for each integer k ∈ {1, 2, 3, 4}, exactly six out of the twelve terms in

r(1, 2)(3, 4) contain k as an index, moreover, three of these six are included in the

expression with a plus sign and three with a minus sign. This implies that xi,j is

orthogonal to r(1, 2)(3, 4). The case p = 2 can be considered in a similar manner.

Now we present n(n−3)
2 linearly independent elements among {r(i, j)(k, l)}. Con-

sider two sets of elements of D: B1 = {r(i, j)(n − 1, n) | 1 ≤ i < j < n − 1} and
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B2 = {r(1, n − 1)(i, n) | i ̸= 1, n − 1, n}. Suppose that the set B1 ∪ B2 is lin-

early dependent in M . Note that if (i, j) is a pair with 1 ≤ i < j < n − 1, then

r(i, j)(n − 1, n) is the only element of B1 ∪ B2 including bi,j in its expression. It

follows that if a non-trivial linear combination of elements of B1 ∪ B2 is equal to

0, then only elements from B2 have non-zero coefficients. On the other hand, if

i ̸= 1, n − 1, n, then r(1, n − 1)(i, n) is the only element in B2 including bi,n in its

expression and hence B2 is linearly independent; we arrive at a contradiction. Thus,

the set B1 ∪ B2 is linearly independent. Since |B1| = (n−2)(n−3)
2 , |B2| = n− 3, and

B1 ∩ B2 = ∅, we find n(n−3)
2 linearly independent elements in M⊥. This implies

that the set {r(i, j)(k, l)} spans the radical of M and as a basis we can take the

elements of B1 ∪ B2. □

5. Proof of the main theorem

In this section, we prove Theorem 1. Throughout, we suppose that F is a field

of characteristic zero. First we consider the case when the parameter η in Matsuo

algebra is not equal to 1
2 .

Lemma 5.1. Suppose that η ̸= 1
2 and M = Mη(G,D) is the Matsuo algebra for a

finite connected 3-transposition group (G,D). A factor of M by an ideal I ̸= M is

a Jordan algebra if and only if one of the following statements holds.

(i) G is the cyclic group of order 2 and I = (0);

(ii) η = 2, the product of every two distinct elements of D has order 3, I is

the span of elements d− e, where d and e run over D. In this case M/I is

one-dimensional.

Proof. Clearly, ifD = {d}, then G is the cyclic group of order 2 andM is generated

by d. So M is associative and one-dimensional. Therefore, we can assume that

|D| ≥ 2.

Assume that M/I is a Jordan algebra. Take any c ∈ D. Since (D) is connected

and |D| ≥ 2, there exists d ∈ D such that |cd| = 3. If x ∈ M , then denote by

x the image of x in M/I. Note that c is an idempotent in M/I. Denote by e

the third point on the line through c and d in the Fischer space Γ(G,D). Then

e · (c− d) = η
2 (e+ c− d− e− d+ c) = η(c− d) and hence e · (c− d) = η(c− d). It

follows from Lemma 3.2 that c = d. Since c is an arbitrary element of D and (D) is

connected, we infer that M/I is one-dimensional and spanned by d for each d ∈ D.

Suppose that there exist d, e ∈ D such that |de| = 2. Then 0 = d · e = d ·e = d
2
= d

and hence d ∈ I. All elements of D are conjugated in G, so this is true for all

elements of D; a contradiction. Therefore, the product of any two distinct elements
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of D has order 3. It remains to show that η = 2. Suppose that c and d are distinct

elements in D. By Proposition 3.3, I ⊆ M⊥ and hence c− d ∈ M⊥. On the other

hand, (c, c− d) = 1− η
2 and hence η = 2.

Conversely, suppose that η = 2 and the product of any two elements in D has

order 3. We show that for every c, d ∈ D, it is true that c− d ∈ M⊥. First, we see

that (c, c − d) = (d, c − d) = 1 − 1 = 0. If e ∈ D \ {c, d}, then (e, c) = (e, d) = 1

and hence (e, c−d) = 0. Since c−d is orthogonal to all elements in D with respect

to the Frobenius form, we infer that c − d ∈ M⊥. This implies that M/M⊥ is

1-dimensional and the result follows. □

Matsuo algebras M1/2(G,D), where (G,D) is a 3-transposition group, that are

Jordan algebras were classified in [2]. In particular, if (D) is connected, then

G ≃ Sym(n) or has the same central type as the Frobenius group 32 : 2. In view

of Theorem 2.2, the symmetric group has type PR2(a) and 32 : 2 has type PR1.

It follows from Corollary 3.5 and Theorem 2.4 that M1/2(G,D) is simple in these

cases. To prove Theorem 1 it remains to consider Matsuo algebras for η = 1
2 whose

radical is nontrivial.

Proposition 5.2. Suppose that (G,D) is a finite connected 3-transposition group

and the Matsuo algebra M = M1/2(G,D) has nontrivial radical M⊥. Then J =

M/M⊥ is a Jordan algebra if and only if one of the following statements holds.

(1) G ≃ 2•1 : Sym(m), where m ≥ 4 and dim J = m(m+1)
2 ;

(2) G ≃ 3•1 : Sym(m), where m ≥ 4 and dim J = m2;

(3) G ≃ O+
8 (2) and dim J = 36;

(4) G ≃ O−
6 (2) ≃ +Ω+

5 (3) and dim J = 21;

(5) G ≃ Sp6(2) and dim J = 28;

(6) G ≃ +Ω−
6 (3) and dim J = 36;

(7) G ≃ 2× SU4(2) ≃ +Ω−
5 (3) and dim J = 25;

(8) G ≃ SU5(2) and dim J = 45;

(9) G ≃ 4•1SU3(2)
′ and dim J = 28.

Proof. We sort out possibilities for G from Theorem 2.2. By Corollary 3.5, the

dimension of M⊥ equals the multiplicity of −4 in the spectrum of the diagram (D).

Therefore, we need to find allG such that−4 is in the spectrum of (D). According to

Table 1, G does not belong to typesPR1, PR2(c), PR7(a,b, c, e), PR8−PR12.

Now we consider the remaining cases.

Assume that the type of G is PR2(a). According to Table 1, we see that

−2h+1 = −4 and hence h = 1. Therefore, G = 2•1 : Sym(m) ≃ Wr(2,m),
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|D| = m(m − 1), dimM⊥ = m(m−3)
2 , and dimJ = m(m−3)

2 . We claim that J is a

Jordan algebra in this case. By Lemma 3.1, this is true if and only if all a, b, c, d ∈ D

satisfy the following:

w(a, b, c, d) = (a · d, b, c) + (d · c, b, a) + (c · a, b, d) ∈ M⊥.

We use the description of D as in Section 4, so each a ∈ D is equal to some xi,j ,

where 1 ≤ i ̸= j ≤ m and x ∈ {′b′,′ c′}. In this notation, expressions for elements

a, b, c, d include no more than 8 distinct indices i, j, so we can consider a, b, c,

and d as elements of Hk = Wr(2, k) with k ≤ 8 after renumbering indices in the

corresponding elements xi,j . Using GAP2 [7], we verify that the element w(a, b, c, d)

for all 3-transpositions a, b, c, d from Hk lies in the radical of the Frobenius form of

the Matsuo algebra for Hk, where 4 ≤ k ≤ 8. Note that the following enlargement

property is true for the radical in these cases: elements from Lemma 4.4 that span

M⊥
k belong to M⊥

n for all n ≥ k. This implies that w(a, b, c, d) ∈ M⊥ for all

a, b, c, d ∈ D; as claimed.

Assume that the type of G is PR2(b). Then −3h − 1 = −4 and hence h = 1.

So |D| = 3m(m−1)
2 , G = 3•1 : Sym(m) ≃ Wr(3,m) and dimM⊥ = m(m−3)

2 . So

dim J = 3m(m−1)
2 − m(m−3)

2 = m2. We verify that J is a Jordan algebra in the same

way as in the previous case. Namely, we use GAP to verify the linearized Jordan

identity from Lemma 3.1 for all m with 4 ≤ m ≤ 8. The general case follows

from the description of a basis of M⊥ in Lemma 4.4 since this basis satisfies the

enlargement property with increasing m.

Assume that the type of G is PR2(d). Then −4h = −4 and hence h = 1.

According to [1, Example PR2], G has the same central type as Wr(Alt(4),m). By

the wreath product construction, we can assume that Wr(Alt(4),m) is a subgroup

Wr(Alt(4), n) if m ≤ n and hence there is also an embedding of the corresponding

Matsuo algebras. Clearly, if a factor of an algebra A by its ideal is a Jordan

algebra, then all subalgebras of A also have factors that are Jordan algebras. Using

GAP and Lemma 3.1, we verify that the factor algebra of the Matsuo algebra

for Wr(Alt(4), 4) by its radical is not a Jordan algebra. Therefore, this case is

impossible.

Assume that the type of G is PR3. Recall that m ≥ 3 and (m, ϵ) ̸= (3,+).

If ϵ = +, then −2h+m−2 = −4. This implies that h = 0 and m = 4. Then

|D| = 27 − 23 = 120, dimM⊥ = (28 − 4)/3 = 84, and dim J = 36. If ϵ = −, then

−2h+m−1 = −4, so h = 0 and m = 3. Therefore, we see that |D| = 25 + 22 = 36,

2All verifications in GAP related to this proof can be found at the following

link:https://github.com/AlexeyStaroletov/AxialAlgebras/blob/master/JordanFactors/Groups
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dimM⊥ = (23 + 1)(22 + 1)/3 = 15, and dim J = 21. Using GAP, we verify that in

both cases J is a Jordan algebra.

Assume that the type of G is PR4. Then −2h+m−1 = −4. Since m ≥ 3, we

infer that h = 0 and m = 3. According to Table 2.4, we find that |D| = 26−1 = 63,

dimM⊥ = 25 + 22 − 1 = 35, dim J = 28. Using GAP, we verify that J is Jordan.

Assume that the type of G is PR5. If m is odd, then −3(m−3)/2+h − 1 = −4, so

m = 5 and h = 0. According to [1, Example 1.5], it is true that +Ω−
5 (3) ≃ 2×SU4(2)

and +Ω+
5 (3) ≃ O−

6 (2). The algebra J is considered in the corresponding cases for

G ∈ {SU4(2), O
−
6 (2)}. Suppose that m is even. According to Table 2.4, we see

that ϵ = − and −3(m−4)/2+h − 1 = −4. This implies that m = 6 and h = 0. Then

|D| = (35 + 32)/2 = 126, dimM⊥ = (36 − 9)/8 = 90, and dim J = 36. Using GAP,

we verify that J is a Jordan algebra.

Assume that the type of G is PR6. If m is even, then −22h+m−2 = −4, so m = 4

and h = 0. Therefore, |D| = (27−1+23)/3 = 45, dimM⊥ = 4(25−1+7·2)/9 = 20,

and hence dim J = 25. Using GAP, we see that J is a Jordan algebra. If m is odd,

then either m = 5 and h = 0 or m = 3 and h = 1. In the first case, we find that

|D| = (29 − 1 − 24)/3 = 165, dimM⊥ = 8(27 − 1 + 23)/9 = 120, and dim J = 45.

In the second case, |D| = 4(25 − 1 − 22)/3 = 36, dimM⊥ = 8(23 − 1 + 2)/9 = 8,

dim J = 28. Using GAP, we see that J is a Jordan algebra in these cases.

Assume that the type of G is PR7(d). In this case, |D| = 360, dimM⊥ = 252,

and dim J = 108. We use the defining relations of G from the Appendix of [15] to

do the calculations with J . Using GAP and Lemma 3.1, we verify that J is not a

Jordan algebra in this case. □

Consider a Matsuo algebra M = M1/2(G,D). If we calculate the expression

(xz, y, w)+(zw, y, x)+(wx, y, z) from the linearized Jordan identity for all elements

x, y, z, w ∈ D and take the ideal I generated by all obtained elements in M , then

I is the smallest ideal of M such that M/I is a Jordan algebra. Proposition 5.2

describes all G such that M/I ̸= 0. We conclude this section with the following.

Problem 5.1. In each case of Proposition 5.2 find the smallest ideal I such that

M/I is Jordan and identify the corresponding Jordan factors.

6. Octonion and Albert algebras

Throughout this section we suppose that F is a field of characteristic not 2 and 3.

Recall that an octonion algebra over F is a composition algebra that has dimension

8 over F. This means that it is a unital non-associative algebra O over F with

a non-degenerate quadratic form N such that N(xy) = N(x)N(y) for all x and
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y in O. For a given field F, there may exist several octonion algebras, but if F
is algebraically closed field, then all octonion algebras over F are isomorphic. We

use the construction of an octonion algebra from [24, Section 4.3.2], which is a

generalization of the real octonion algebra, also known as the Cayley numbers.

Take 7 mutually orthogonal square roots of −1, labeled i0, . . . , i6 (with subscripts

understood modulo 7), subject to the condition that for each t, the elements it,

it+1, it+3 satisfy the same multiplication rules as i, j, and k (respectively) in the

quaternion algebra: ij = k = −ij, jk = i = −kj, ki = j = −ik. Their pairwise

products can be found in [24, Table 4.18].

Now we define the Albert algebra A(F) corresponding to O. Elements of A(F)
are 3× 3 Hermitian matrices (i.e., matrices x such that xT = x) over the octonion

algebra O. For brevity let us define

(d, e, f | D,E, F ) =


d F E

F e D

E D f

 ,

where d, e, f lie in F and denotes the octonion conjugation, i.e., the linear map

fixing 1 and negating in for all n. Multiplication of such matrices makes sense, and

the Jordan product X ◦Y = 1
2 (XY +Y X) for every X,Y ∈ A(F) allows to consider

A(F) as a simple Jordan algebra.

Proposition 6.1. The Albert algebra A(F) is an axial F-algebra of Jordan type 1
2

generated by four primitive axes a, b, c, d, where

a =
1

2
(1, 1, 0 | 0, 0, i0) =

1

2


1 i0 0

−i0 1 0

0 0 0

 , b =
1

2
(1, 0, 1 | 0, i1, 0)

=
1

2


1 0 −i1

0 0 0

i1 0 1

 , c =
1

2
(0, 1, 1 | i2, 0, 0) =

1

2


0 0 0

0 1 i2

0 −i2 1

 ,

d =
1

9
(1, 4, 4 | 4i4, 2i3, 2i6) =

1

9


1 2i6 −2i3

−2i6 4 4i4

2i3 −4i4 4

 .
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Proof. We claim that as a basis of A(F) we can take the following 27 elements:

a, b, c, d, ab, ac, ad, bc, bd, cd, a(bc), b(ac), c(ab), a(bd), a(cd), b(ad), b(cd),

c(ad), c(bd), (ab)(cd), (ac)(bd), d(a(bc)), d(b(ac)), a(b(cd)),

(ab)(c(ad)), (ab)(c(bd)), (ac)(b(cd)).

All calculations are straightforward and can be done by hand or by computer3.

Now one can write 27×27 matrix of coefficients of these 27 elements with respect

to the standard basis of A(F) (i.e., (1, 0, 0 | 0, 0, 0), . . . , (0, 0, 0 | 0, 0, i6)). Using GAP,

we find that the determinant of this matrix equals 1
278·336 and hence 27 elements

form a basis of A(F).
Since A(F) is known to be a Jordan algebra and a, b, c, d are its idempotents,

Lemma 3.2 implies that each of these elements gives a Peirce decomposition of the

algebra. According to [17, Section 4], an idempotent e in A(F) is a primitive axis iff

Tr(e) = 1, where Tr means the trace of e, i.e., the sum of elements on its diagonal.

Therefore, we infer that a, b, c, d are primitive axes generating A(F). This completes

the proof of the proposition. □

Corollary 6.2. If the characteristic of F equals zero, then A(F) is not a factor of

any of the Matsuo algebras.

Proof. Suppose (G,D) is a 3-transposition group andM = Mη(G,D) is its Matsuo

algebra for η ∈ F \ {0, 1} such that A(F) is a factor of M . Since A(F) is simple,

we can assume that (D) is connected. Now dimF A(F) = 27 and the result follows

from Proposition 6.1 and Theorem 1. □
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