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Abstract. This paper presents three different conditions for the additivity

of a map on a triangular ring T . First, we prove a map δ on T satisfying

δ(a1b1+b1a1) = δ(a1)b1+a1τ(b1)+δ(b1)a1+b1τ(a1) for all a1, b1 ∈ T and for

some maps τ over T satisfying τ(a1b1+ b1a1) = τ(a1)b1+a1τ(b1)+ τ(b1)a1+

b1τ(a1), is additive. Secondly, it is shown that a map T on T satisfying

T (a1b1) = T (a1)b1 = a1T (b1) for all a1, b1 ∈ T is additive. Finally, we show

that if a map D over T satisfies (m + n)D(a1b1) = 2mD(a1)b1 + 2na1D(b1)

for all a1, b1 ∈ T and integers m,n ≥ 1, then D is additive.
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1. Introduction

Let R be a ring. A map f : R → R is said to be additive if f(a1 + b1) =

f(a1) + f(b1) for all a1, b1 ∈ R. In 1957, Herstein [9] introduced Jordan derivation

over rings as an additive map τ : R → R satisfies τ(a2) = τ(a)a + aτ(a) for all

a ∈ R. He also proved that a Jordan derivation over some prime ring becomes

a derivation with some torsion restrictions. In 2003, Jing and Lu [10] introduced

generalized Jordan derivation and proved that every generalized Jordan derivation

is a generalized derivation over a 2-torsion-free prime ring. Recall that an additive

map δ : R → R is known as a generalized Jordan derivation if it follows the

condition δ(a2) = δ(a)a + aτ(a) for any a ∈ R and for some Jordan derivation

τ : R → R. In 1952, Wendel [15] introduced the concept of a centralizer. An

additive map T : R → R is said to be a left centralizer if T (a1b1) = T (a1)b1 for

every a1, b1 ∈ R. Similarly, we define the right centralizer over a ring. An additive

map T : R → R is said to be a two-sided centralizer if T is both left and right

centralizer. In 2014, Ali and Fošner [1] introduced the concept of (m,n)-derivation.

Let m,n ≥ 0 be integers. Then an additive map D : R → R is called an (m,n)-

derivation if (m + n)D(a1b1) = 2mD(a1)b1 + 2na1D(b1), for every a1, b1 ∈ R. In
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fact, for m = 1 and n = 1, D is a normal derivation on a 2-torsion free ring R. For

more results, reader can see [7,8].

Let n ≥ 2 be any integer. Then a ring R is called n-torsion free if na = 0 for

some a ∈ R implies a = 0. It is an interesting question that when a map over a

ring (satisfying some functional equations) is additive. The question was first raised

by Rickart [12] in 1948. He showed that any bijective and multiplicative mapping

of a Boolean ring B onto any arbitrary ring S is additive. In 1969, Martindale

III [11] proved that any multiplicative isomorphism of a ring R onto an arbitrary

ring S is additive under the existence of a family of idempotent elements in R
satisfying certain conditions. In 1991, by assuming Martindale’s conditions, Daif

[3] proved that any multiplicative derivation of a ring R is additive. Later, in

2009, Wang [13] proved that any n-multiplicative derivation d of R is additive by

using Martindale’s conditions where n > 1 is an integer. He proved that any n-

multiplicative isomorphism or n-multiplicative derivation of a standard operator

algebra A over a Banach space X with dim(X) ≥ 2, is additive. Again, in 2011,

Wang [14] proved that any n-multiplicative derivation d of a triangular ring T is

additive, with some assumptions on T . In 2014, Ferreira [5] proved that every m-

multiplicative isomorphism from an n-triangular matrix ring T onto any ring S is

additive with some assumptions on T where n,m > 1 are integers. He also showed

that every m-multiplicative derivation of T is additive. In 2015, Ferreira [6] again

revisit and proved that a map τ on a triangular ring T satisfying τ(a1b1 + b1a1) =

τ(a1)b1 + a1τ(b1) + τ(b1)a1 + b1τ(a1) for all a1, b1 ∈ T , is additive with some

assumptions on T . Moreover, if T is 2-torsion free, then τ is a Jordan derivation.

Ferreira’s result [6] motivated us to work to find out the conditions under which a

multiplicative generalized Jordan derivation is additive on a triangular ring. This

paper provides an affirmative answer to the above question. In 2023, Aziz et al.

[2] showed that under certain conditions, a generalized skew semi-derivation over a

ring is additive. In 2014, El-Sayiad et al. [4] proved that every map T on a prime

ring with a non-trivial idempotent satisfying

T (ab) = T (a)b (1)

for every a, b ∈ R, is additive. Note that a ring R is said to be a prime ring if

aRb = 0 for some a, b ∈ R implies either a = 0 or b = 0 and is said to be a semi-

prime ring if aRa = 0 for some a ∈ R implies that a = 0. Thus, every prime ring

is semi-prime, but the converse is not true. Motivated by the work of El-Sayiad et

al. [4], we prove that a map T on T satisfying

T (a1b1) = T (a1)b1 = a1T (b1),
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for all a1, b1 ∈ T , is additive.

Further, we prove that any map D on T which satisfies

(m+ n)D(a1b1) = 2mD(a1)b1 + 2na1D(b1),

for all a1, b1 ∈ T and for some integers m,n ≥ 1, is additive.

Throughout the work, we use the definition of triangular algebra given by Wang

[14].

Definition 1.1. Let M be an (A,B)-bimodule where A and B are two rings such

that

(1) M is faithful as a left A-module and a right B-module;

(2) If AmB = 0 for some m ∈ M , then m = 0.

Then the ring

T = Tri(A,M,B) =

{(
a1 m

b1

)
| a1 ∈ A, b1 ∈ B, m ∈ M

}
,

under usual matrix addition and multiplication is said to be a triangular ring.

Let T11 =

{(
a 0

0

)
| a ∈ A

}
, T12 =

{(
0 m

0

)
| m ∈ M

}
and T22 ={(

0 0

b

)
| b ∈ B

}
.

Then T = T11 ⊕ T12 ⊕ T22. Henceforth, tij ∈ Tij . Also, for j ̸= k, we have

tijtkl = 0 where j, k ∈ {1, 2}.
In ring theory, various maps have been defined and studied to understand the

structure of rings. Among them, generalized Jordan derivations, two-sided central-

izers, and (m,n)-derivations are important tools for investigating the properties of

rings. However, when we remove the additivity condition from their definitions, we

get multiplicative generalized Jordan derivation, multiplicative two-sided central-

izer, and multiplicative (m,n)-derivation. This raises the question of whether these

multiplicative maps become additive over some rings.

In this paper, we address this question and provide an affirmative answer for

triangular rings under certain conditions. In Section 2, we prove that every multi-

plicative generalized Jordan derivation over a triangular ring with certain conditions

becomes additive. We also explore an example where a particular condition is not

satisfied and leave the general case as a conjecture. In Section 3, we prove that every

multiplicative two-sided centralizer over a triangular ring with some conditions is

additive. Finally, in Section 4, we prove that every multiplicative (m,n)-derivation
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over a triangular ring with certain conditions is additive. Our results provide a

better understanding of the structures of rings and the behavior of these maps.

2. Generalized Jordan derivations on triangular rings

Theorem 2.1. Let T = Tri(A,M,B) be a triangular ring such that A and B are

rings with identity. (∗)
If a function δ : T → T satisfies

δ(a1b1 + b1a1) = δ(a1)b1 + a1τ(b1) + δ(b1)a1 + b1τ(a1),

for all a1, b1 ∈ T where τ : T → T satisfies

τ(a1b1 + b1a1) = τ(a1)b1 + a1τ(b1) + τ(b1)a1 + b1τ(a1),

for all a1, b1 ∈ T , then δ is additive. Moreover, if T is 2-torsion free, then δ is a

generalized Jordan derivation.

Since τ : T → T satisfies all the conditions in Theorem 3.1 of [6], τ is additive.

In this section, we frequently use all three conditions for the triangular ring T , the

conditions on the maps δ and τ described in Theorem 2.1, and the additivity of τ

without mentioning them. Note that δ(0) = 0. Before proving Theorem 2.1, we

first discuss several needful lemmas.

Lemma 2.2. Let a1 ∈ T11, b2 ∈ T22 and m ∈ T12. Then

(i) δ(a1 +m) = δ(a1) + δ(m);

(ii) δ(b2 +m) = δ(b2) + δ(m).
(2)

Proof. Let t2 ∈ T22. Then
δ[(a1 +m)t2 + t2(a1 +m)]

= δ(a1 +m)t2 + (a1 +m)τ(t2) + δ(t2)(a1 +m) + t2τ(a1 +m).
(3)

On the other hand,

δ[(a1 +m)t2 + t2(a1 +m)]

= δ(mt2) = δ(0) + δ(mt2 + 0)

= δ(a1t2 + t2a1) + δ(mt2 + t2m)

= δ(a1)t2 + a1τ(t2) + δ(t2)a1 + t2τ(a1)

+ δ(m)t2 +mτ(t2) + δ(t2)m+ t2τ(m).

(4)

Since τ is additive, comparing (3) and (4), we have

[δ(a1 +m)− δ(a1)− δ(m)]t2 = 0

=⇒ [δ(a1 +m)− δ(a1)− δ(m)]12t2 = 0

and [δ(a1 +m)− δ(a1)− δ(m)]22t2 = 0.

(5)
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Using condition (2) of Definition 1.1 and (∗) of Theorem 2.1, we have

[δ(a1 +m)− δ(a1)− δ(m)]12 = 0

and [δ(a1 +m)− δ(a1)− δ(m)]22 = 0.
(6)

Now, in order to prove [δ(a1 +m)− δ(a1)− δ(m)]11 = 0, let n ∈ T12. Then

δ[(a1 +m)n+ n(a1 +m)] = δ(a1n)

= δ(a1n+ na1) + δ(mn+ nm)

= δ(a1)n+ a1τ(n) + δ(n)a1 + nτ(a1) + δ(m)n+mτ(n) + δ(n)m+ nτ(m).

(7)

Also, we have

δ[(a1 +m)n+ n(a1 +m)]

= δ(a1 +m)n+ (a1 +m)τ(n) + δ(n)(a1 +m) + nτ(a1 +m)

= δ(a1 +m)n+ (a1 +m)τ(n) + δ(n)(a1 +m) + n(τ(a1) + τ(m)) (By additivity of τ).

(8)

Comparing the equalities (7) and (8),

[δ(a1 +m)− δ(a1)− δ(m)]11n = 0

=⇒ [δ(a1 +m)− δ(a1)− δ(m)]11 = 0 (by condition (1) of Definition 1.1).
(9)

Hence, δ(a1 + m) = δ(a1) + δ(m). Similarly, we can prove that δ(b2 + m) =

δ(b2) + δ(m). □

Lemma 2.3. Let a1 ∈ T11, b2 ∈ T22 and m,n ∈ T12. Then

δ(a1m+ nb2) = δ(a1m) + δ(nb2). (10)

Proof. Since a1m+nb2 = (a1 +n)(m+ b2)+ (m+ b2)(a1 +n), by Lemma 2.2 and

the additivity of τ , we have

δ(a1m+ nb2) = δ[(a1 + n)(m+ b2) + (m+ b2)(a1 + n)]

= δ(a1 + n)(m+ b2) + (a1 + n)τ(m+ b2)

+ δ(m+ b2)(a1 + n) + (m+ b2)τ(a1 + n)

= (δ(a1) + δ(n))(m+ b2) + (a1 + n)(τ(m) + τ(b2))

+ (δ(m) + δ(b2))(a1 + n) + (m+ b2)(τ(a1) + τ(n))

= δ(a1m+ma1) + δ(nb2 + b2n) + δ(mn+ nm) + δ(a1b2 + b2a1)

= δ(a1m) + δ(nb2).

(11)

□

Lemma 2.4. Let m,n ∈ T12. Then

δ(m+ n) = δ(m) + δ(n). (12)

Proof. Since we assume both A and B are rings with identity in Theorem 2.1,

putting a = 1 and b = 1 in Lemma 2.3, we have the desired result. □
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Lemma 2.5. Let a1, a2 ∈ T11 and b1, b2 ∈ T22. Then

(i) δ(a1 + a2) = δ(a1) + δ(a2);

(ii) δ(b1 + b2) = δ(b1) + δ(b2).
(13)

Proof. Let t2 ∈ T22. Then

δ(a1 + a2)t2 + (a1 + a2)τ(t2) + δ(t2)(a1 + a2) + t2τ(a1 + a2)

= δ[(a1 + a2)t2 + t2(a1 + a2)] = δ(0) = 0

= δ(a1t2 + t2a1) + δ(a2t2 + t2a2)

= δ(a1)t2 + a1τ(t2) + δ(t2)a1 + t2τ(a1)

+ δ(a2)t2 + a2τ(t2) + δ(t2)a2 + t2τ(a2).

(14)

Since τ is additive, from (14), we have

[δ(a1 + a2)− δ(a1)− δ(a2)]t2 = 0

=⇒ [δ(a1 + a2)− δ(a1)− δ(a2)]12t2 = 0

and [δ(a1 + a2)− δ(a1)− δ(a2)]22t2 = 0.

(15)

Using condition (2) of Definition 1.1 and (∗) of Theorem 2.1, we have

[δ(a1 + a2)− δ(a1)− δ(a2)]12 = 0

and [δ(a1 + a2)− δ(a1)− δ(a2)]22 = 0.
(16)

Now, to prove [δ(a1 + a2)− δ(a1)− δ(a2)]11 = 0, let m ∈ T12. Then

δ(a1 + a2)m+ (a1 + a2)τ(m) + δ(m)(a1 + a2) +mτ(a1 + a2)

= δ[(a1 + a2)m+m(a1 + a2)]

= δ[(a1m+ma1) + (a2m+ma2)]

= δ(a1m+ma1) + δ(a2m+ma2) (By Lemma 2.4)

= δ(a1)m+ a1τ(m) + δ(m)a1 +mτ(a1) + δ(a2)m+ a2τ(m) + δ(m)a2 +mτ(a2).

(17)

By (17) and the additivity of τ , we see that

[δ(a1 + a2)− δ(a1)− δ(a2)]m = 0

=⇒ [δ(a1 + a2)− δ(a1)− δ(a2)]11m = 0

=⇒ [δ(a1 + a2)− δ(a1)− δ(a2)]11 = 0 (by condition (1) of Definition 1.1).

(18)

Hence, δ(a1 + a2) = δ(a1)+ δ(a2). In a similar way, we can prove that δ(b1 + b2) =

δ(b1) + δ(b2). □

Lemma 2.6. Let a1 ∈ T11, b2 ∈ T22 and m ∈ T12. Then

δ(a1 +m+ b2) = δ(a1) + δ(m) + δ(b2). (19)
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Proof. Let t2 ∈ T22. Then

δ(a1 +m+ b2)t2 + (a1 +m+ b2)τ(t2) + δ(t2)(a1 +m+ b2) + t2τ(a1 +m+ b2)

= δ[(a1 +m+ b2)t2 + t2(a1 +m+ b2)]

= δ(mt2 + b2t2 + t2b2)

= δ(b2t2 + t2b2) + δ(mt2) (By Lemma 2.2)

= δ(b2t2 + t2b2) + δ(t2m+mt2) + δ(a1t2 + t2a1)

= δ(b2)t2 + b2τ(t2) + δ(t2)b2 + t2τ(b2) + δ(t2)m+ t2τ(m)

+ δ(m)t2 +mτ(t2) + δ(a1)t2 + a1τ(t2) + δ(t2)a1 + t2τ(a1)

=⇒ [δ(a1 +m+ b2)− δ(a1)− δ(m)− δ(b2)]t2 = 0 (Using additivity of τ)

=⇒ [δ(a1 +m+ b2)− δ(a1)− δ(m)− δ(b2)]12t2 = 0

and [δ(a1 +m+ b2)− δ(a1)− δ(m)− δ(b2)]22t2 = 0.

(20)

Using condition (2) of Definition 1.1 and (∗) of Theorem 2.1, we have

[δ(a1 +m+ b2)− δ(a1)− δ(m)− δ(b2)]12 = 0

and [δ(a1 +m+ b2)− δ(a1)− δ(m)− δ(b2)]22 = 0.
(21)

Let t1 ∈ T11. Then

δ(a1 +m+ b2)t1 + (a1 +m+ b2)τ(t1) + δ(t1)(a1 +m+ b2) + t1τ(a1 +m+ b2)

= δ[(a1 +m+ b2)t1 + t1(a1 +m+ b2)]

= δ(a1t1 + t1a1 + t1m)

= δ(a1t1 + t1a1) + δ(t1m) (By Lemma 2.2)

= δ(a1t1 + t1a1) + δ(t1m+mt1) + δ(b2t1 + t1b2)

= δ(a1)t1 + a1τ(t1) + δ(t1)a1 + t1τ(a1) + δ(t1)m+ t1τ(m)

+ δ(m)t1 +mτ(t1) + δ(b2)t1 + b2τ(t1) + δ(t1)b2 + t1τ(b2)

=⇒ [δ(a1 +m+ b2)− δ(a1)− δ(m)− δ(b2)]t1 = 0

=⇒ [δ(a1 +m+ b2)− δ(a1)− δ(m)− δ(b2)]11t1 = 0

=⇒ [δ(a1 +m+ b2)− δ(a1)− δ(m)− δ(b2)]11 = 0

(By condition (∗) of Theorem 2.1).

(22)

Hence, by (21) and (22), δ(a1 +m+ b2) = δ(a1) + δ(m) + δ(b2). □

Now, we are ready to prove Theorem 2.1.
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Proof of Theorem 2.1. Let t ∈ T and u ∈ T . Then t = t11 + t12 + t22 and

u = u11 + u12 + u22 where tij , uij ∈ Tij and i, j ∈ {1, 2}. Now,

δ(t+ u) = δ((t11 + t12 + t22) + (u11 + u12 + u22))

= δ((t11 + u11) + (t12 ++u12) + (t22 + u22))

= δ(t11 + u11) + δ(t12 + u12) + δ(t22 + u22) (By Lemma 2.6)

= δ(t11) + δ(u11) + δ(t12) + δ(u12) + δ(t22) + δ(u22)

(By Lemma 2.4 and 2.5)

= δ(t11) + δ(t12) + δ(t22) + δ(u11) + δ(u12) + δ(u22)

= δ(t11 + t12 + t22) + δ(u11 + u12 + u22) (By Lemma 2.6)

= δ(t) + δ(u).

(23)

Therefore, δ is additive.

Let T be 2-torsion free. By Theorem 3.1 of [6], τ is a Jordan derivation. For

any t ∈ T ,

2δ(t2) = δ(2t2) = δ(tt+ tt) = 2[δ(t)t+ tτ(t)]

=⇒ δ(t2) = δ(t)t+ tτ(t).
(24)

Thus, δ is a generalized Jordan derivation. □

The above motivates us to post Theorem 2.1 without assuming condition (∗) as
a conjecture.

Conjecture 2.7. Let T be a triangular ring. If a map δ : T → T satisfies

δ(a1b1 + b1a1) = δ(a1)b1 + a1τ(b1) + δ(b1)a1 + b1τ(a1),

for every a1, b1 ∈ T where τ : T → T satisfies

τ(a1b1 + b1a1) = τ(a1)b1 + a1τ(b1) + τ(b1)a1 + b1τ(a1),

for every a1, b1 ∈ T , then δ is additive. Moreover, if T is 2-torsion free, then δ

becomes a generalized Jordan derivation.

3. Two-sided centralizers on triangular rings

Theorem 3.1. Let T be a triangular ring with conditions:

(i) Aa1 = 0 for some a1 ∈ A implies a1 = 0;

(ii) b1B = 0 for some b1 ∈ B implies b1 = 0;

(iii) a1A = 0 for some a1 ∈ A implies a1 = 0.

If a map T : T → T satisfies

T (a1b1) = T (a1)b1 = a1T (b1),
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for all a1, b1 ∈ T , then T is additive. Moreover, T is a two-sided centralizer.

Lemma 3.2. Let a1 ∈ T11, b2 ∈ T22 and m ∈ T12. Then

(i) T (a1 +m) = T (a1) + T (m);

(ii) T (b2 +m) = T (b2) + T (m).
(25)

Proof. Let t2 ∈ T22. Now, we have

T [(a1 +m)t2] = T (a1 +m)t2. (26)

Also,
T [(a1 +m)t2] = T (mt2) = 0 + T (mt2)

= T (a1t2) + T (mt2)

= T (a1)t2 + T (m)t2.

(27)

Comparing identities (26) and (27),

[T (a1 +m)− T (a1)− T (m)]t2 = 0

=⇒ [T (a1 +m)− T (a1)− T (m)]12t2 = 0

and [T (a1 +m)− T (a1)− T (m)]22t2 = 0

=⇒ [T (a1 +m)− T (a1)− T (m)]12 = 0 (By condition (2) of Definition 1.1)

and [T (a1 +m)− T (a1)− T (m)]22 = 0 (By condition (ii) of Theorem 3.1).

(28)

Let n ∈ T12. We have

T [(a1 +m)n] = T (a1 +m)n. (29)

Also,

T [(a1 +m)n] = T (a1n) + 0 = T (a1n) + T (mn) = T (a1)n+ T (m)n. (30)

Comparing (29) and (30), we have

[T (a1 +m)− T (a1)− T (m)]n = 0

=⇒ [T (a1 +m)− T (a1)− T (m)]11n = 0

=⇒ [T (a1 +m)− T (a1)− T (m)]11 = 0 (By condition (1) of Definition 1.1).

(31)

Hence, by using (28) and (31), we get (i) of Lemma 3.2. Similarly, we can prove

(ii) of Lemma 3.2. □

Lemma 3.3. Let a1 ∈ T11, b2 ∈ T22 and m,n ∈ T12. Then

T (a1m+ nb2) = T (a1m) + T (nb2). (32)

Proof. Since a1m+ nb2 = (a1 + n)(b2 +m), we have

T (a1m+ nb2) = T ((a1 + n)(b2 +m))

= (a1 + n)T (b2 +m)

= (a1 + n)(T (b2) + T (m)) (By (ii) of Lemma 3.2).

(33)
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Also,

T (a1m) + T (nb2) = T (a1m) + T (nm) + T (nb2) + T (a1b2)

= a1T (m) + nT (m) + nT (b2) + a1T (b2)

= (a1 + n)T (m) + (a1 + n)T (b2)

= (a1 + n)(T (m) + T (b2)).

(34)

Comparing (33) and (34), we have the desired result. □

Lemma 3.4. Let b2 ∈ T22 and m,n ∈ T12. Then

T (mb2 + nb2) = T (mb2 + T (nb2). (35)

Proof. Let a1 ∈ T11. Then

T [a1((m+ n)b2)] = a1T ((m+ n)b2). (36)

Also,

T [a1((m+ n)b2)] = T (a1(mb2) + (a1n)b2)

= T (a1(mb2)) + T (a1(nb2)) (By Lemma 3.3)

= a1T (mb2) + a1T (nb2).

(37)

Comparing (36) and (37), we have

a1[T (mb2 + nb2)− T (mb2)− T (nb2)] = 0

=⇒ a1[T (mb2 + nb2)− T (mb2)− T (nb2)]11 = 0

& a1[T (mb2 + nb2)− T (mb2)− T (nb2)]12 = 0

=⇒ [T (mb2 + nb2)− T (mb2)− T (nb2)]11 = 0 (By condition (i) of Theorem 3.1)

& [T (mb2 + nb2)− T (mb2)− T (nb2)]12 = 0 (By condition (2) of Definition 1.1).

(38)

Let p ∈ T12. Then

T [p((m+ n)b2)] = pT ((m+ n)b2). (39)

Also,

T [p((m+ n)b2)] = T [p(mb2 + nb2)]

= T (0) = 0

= T (p(mb2)) + T (p(nb2))

= pT (mb2) + pT (nb2).

(40)

Comparing (39) and (40), we get

p[T (mb2 + nb2)− T (mb2)− T (nb2)] = 0

=⇒ p[T (mb2 + nb2)− T (mb2)− T (nb2)]22 = 0

=⇒ [T (mb2 + nb2)− T (mb2)− T (nb2)]22 = 0 (By condition (1) of Definition 1.1).

(41)

Thus, the result follows from (38) and (41). □
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Lemma 3.5. Let m1, n1 ∈ T12. Then

T (m1 + n1) = T (m1) + T (n1). (42)

Proof. Let b2 ∈ T22. Then

T ((m1 + n1)b2) = T (m1 + n1)b2. (43)

Now,

T ((m1 + n1)b2) = T (m1b2 + n1b2)

= T (m1b2) + T (n1b2) (By Lemma 3.4)

= T (m1)b2 + T (n1)b2.

(44)

By (43) and (44),

[T (m1 + n1)− T (m1)− T (n1)]b2 = 0

=⇒ [T (m1 + n1)− T (m1)− T (n1)]12b2 = 0

& [T (m1 + n1)− T (m1)− T (n1)]22b2 = 0

=⇒ [T (m1 + n1)− T (m1)− T (n1)]12 = 0 (By condition (2) of Definition 1.1)

& [T (m1 + n1)− T (m1)− T (n1)]22 = 0 (By condition (ii) of Theorem 3.1).

(45)

Let p ∈ T12. Then
T ((m1 + n1)p) = T (m1 + n1)p. (46)

Also,

T ((m1 + n1)p) = T (0) = 0 = T (m1p) + T (n1p) = T (m1)p+ T (n1)p. (47)

Comparing (46) and (47),

[T (m1 + n1)− T (m1)− T (n1)]p = 0

=⇒ [T (m1 + n1)− T (m1)− T (n1)]11p = 0

=⇒ [T (m1 + n1)− T (m1)− T (n1)]11 = 0 (By condition (1) of Definition 1.1).

(48)

By (45) and (48), we get the result. □

Lemma 3.6. Let a1, a2 ∈ T11 and b1, b2 ∈ T22. Then

(i) T (a1 + a2) = T (a1) + T (a2);

(ii) T (b1 + b2) = T (b1) + T (b2).
(49)

Proof. Let t2 ∈ T22. Then

T ((a1 + a2)t2) = T (a1 + a2)t2. (50)

Now,

T ((a1 + a2)t2) = T (0) = T (a1t2) + T (a2t2) = T (a1)t2 + T (a2)t2. (51)
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Comparing (50) and (51), we have

[T (a1 + a2)− T (a1)− T (a2)]t2 = 0

=⇒ [T (a1 + a2)− T (a1)− T (a2)]12t2 = 0

& [T (a1 + a2)− T (a1)− T (a2)]22t2 = 0

=⇒ [T (a1 + a2)− T (a1)− T (a2)]12 = 0 (By condition (2) of Definition 1.1)

& [T (a1 + a2)− T (a1)− T (a2)]22 = 0 (By condition (ii) of Theorem 3.1).

(52)

Let m ∈ T12. Then

T ((a1 + a2)m) = T (a1 + a2)m. (53)

Also,

T ((a1 + a2)m) = T (a1m+ a2m)

= T (a1m) + T (a2m) (By Lemma 3.5)

= T (a1)m+ T (a2)m.

(54)

Comparing (53) and (54), we get

[T (a1 + a2)− T (a1)− T (a2)]m = 0

=⇒ [T (a1 + a2)− T (a1)− T (a2)]11m = 0

=⇒ [T (a1 + a2)− T (a1)− T (a2)]11 = 0 (By condition (1) of Definition 1.1).

(55)

By (52) and (55), we have (i) of Lemma 3.6. Similarly, we can prove (ii) of Lemma

3.6. □

Lemma 3.7. Let a1 ∈ T11, b2 ∈ T22 and m ∈ T12. Then

T (a1 +m+ b2) = T (a1) + T (m) + T (b2). (56)

Proof. Let x1 ∈ T11. Then

T ((a1 +m+ b2)x1) = T (a1 +m+ b2)x1. (57)

Also,

T ((a1 +m+ b2)x1) = T (a1x1 +mx1 + b2x1)

= T (a1x1)

= T (a1x1) + T (mx1) + T (b2x1)

= T (a1)x1 + T (m)x1 + T (b2)x1.

(58)

By (57) and (58), we have

[T (a1 +m+ b2)− T (a1)− T (m)− T (b2)]x1 = 0

=⇒ [T (a1 +m+ b2)− T (a1)− T (m)− T (b2)]11x1 = 0

=⇒ [T (a1 +m+ b2)− T (a1)− T (m)− T (b2)]11 = 0

(By condition (iii) of Theorem 3.1).

(59)
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Let t2 ∈ T22. Then

T ((a1 +m+ b2)t2) = T (a1 +m+ b2)t2 (60)

Also,

T ((a1 +m+ b2)t2) = T (a1t2 +mt2 + b2t2)

= T (mt2 + b2t2)

= T (mt2) + T (b2t2) [By (ii) of Lemma 3.2 ]

= T (a1t2) + T (mt2) + T (b2t2)

= T (a1)t2 + T (m)t2 + T (b2)t2.

(61)

Comparing (60) and (61), we get

[T (a1 +m+ b2)− T (a1)− T (m)− T (b2)]t2 = 0

=⇒ [T (a1 +m+ b2)− T (a1)− T (m)− T (b2)]12t2 = 0

& [T (a1 +m+ b2)− T (a1)− T (m)− T (b2)]22t2 = 0

=⇒ [T (a1 +m+ b2)− T (a1)− T (m)− T (b2)]12 = 0 (By condition (2) of Definition 1.1)

& [T (a1 +m+ b2)− T (a1)− T (m)− T (b2)]22 = 0 (By condition (ii) of Theorem 3.1).

(62)

Thus, by (59) and (62), we have T (a1 +m+ b2) = T (a1) + T (m) + T (b2). □

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let t ∈ T and u ∈ T . Then t = t11 + t12 + t22 and

u = u11 + u12 + u22 where tij , uij ∈ Tij and i, j ∈ {1, 2}. We have

T (t+ u) = T ((t11 + t12 + t22) + (u11 + u12 + u22))

= T ((t11 + u11) + (t12 + u12) + (t22 + u22))

= T (t11 + u11) + T (t12 + u12) + T (t22 + u22) (By Lemma 3.7)

= T (t11) + T (u11) + T (t12) + T (u12) + T (t22) + T (u22)

(By Lemma 3.5 and 3.6)

= T (t11) + T (t12) + T (t22) + T (u11) + T (u12) + T (u22)

= T (t11 + t12 + t22) + T (u11 + u12 + u22) (By Lemma 3.7)

= T (t) + T (u).

(63)

Hence, T is additive and T is a two-sided centralizer. □

4. (m,n)-Derivations on triangular rings

Theorem 4.1. Let m > 0, n > 0 be integers and T be a triangular ring with

conditions:

(i) a1A = 0 for some a1 ∈ A implies a1 = 0;
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(ii) b1B = 0 for some b1 ∈ B implies b1 = 0;

(iii) Aa1 = 0 for some a1 ∈ A implies a1 = 0;

(iv) T is mn(m+ n)-torsion free.

If a mapping D : T → T satisfies

(m+ n)D(a1b1) = 2mD(a1)b1 + 2na1D(b1)

for all a1, b1 ∈ T , then D is additive. Moreover, D is an (m,n)-derivation.

In this section, we frequently use all four conditions for the triangular ring T ,

the condition on the map D described in Theorem 4.1 without mentioning them.

Note that D(0) = 0. Before proving Theorem 4.1, we have some lemmas.

Lemma 4.2. Let a1 ∈ T11, p ∈ T12 and b2 ∈ T22. Then

(i) D(a1 + p) = D(a1) +D(p);

(ii) D(b2 + p) = D(b2) +D(p).
(64)

Proof. Let c ∈ T22. Then

(m+ n)D((a1 + p)c) = 2mD(a1 + p)c+ 2n(a1 + p)D(c). (65)

Also,

(m+ n)D((a1 + p)c) = (m+ n)D(pc)

= (m+ n)[D(a1c) +D(pc)]

= 2mD(a1)c+ 2na1D(c) + 2mD(p)c+ 2npD(c).

(66)

Comparing (65) and (66), we get

2m[D(a1 + p)−D(a1)−D(p)]c = 0

=⇒ [D(a1 + p)−D(a1)−D(p)]c = 0 (By condition (iv) of Theorem 4.1)

=⇒ [D(a1 + p)−D(a1)−D(p)]12c = 0

& [D(a1 + p)−D(a1)−D(p)]22c = 0

=⇒ [D(a1 + p)−D(a1)−D(p)]12 = 0 (By condition (2) of Definition 1.1)

& [D(a1 + p)−D(a1)−D(p)]22 = 0 (By condition (ii) of Theorem 4.1).

(67)

Let x1 ∈ T11. Then

(m+ n)D((a1 + p)x1) = 2mD(a1 + p)x1 + 2n(a1 + p)D(x1). (68)

Also,

(m+ n)D((a1 + p)x1) = (m+ n)D(a1x1)

= (m+ n)[D(a1x1) +D(px1)]

= 2mD(a1)x1 + 2na1D(x1) + 2mD(p)x1 + 2npD(x1).

(69)
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Comparing (68) and (69), we have

2m[D(a1 + p)−D(a1)−D(p)]x1 = 0

=⇒ [D(a1 + p)−D(a1)−D(p)]x1 = 0 (By condition (iv) of Theorem 4.1)

=⇒ [D(a1 + p)−D(a1)−D(p)]11x1 = 0

=⇒ [D(a1 + p)−D(a1)−D(p)]11 = 0

(By condition (i) of Theorem 4.1).

(70)

By (67) and (70), we have (i) of Lemma 4.2. Similarly, we can prove (ii) of Lemma

4.2. □

Lemma 4.3. Let a1 ∈ T11, b2 ∈ T22 and p, q ∈ T12. Then

D(a1p+ qb2) = D(a1p) +D(qb2). (71)

Proof. Since (a1p+ qb2) = (a1 + q)(p+ b2) + (p+ b2)(a1 + q),

(m+ n)D(a1p+ qb2) = (m+ n)D((a1 + q)(p+ b2) + (p+ b2)(a1 + q))

= 2mD(a1 + q)(p+ b2) + 2n(a1 + q)D(p+ b2)

= 2m(D(a1) +D(q))(p+ b2) + 2n(a1 + q)(D(p) +D(b2))

(By Lemma 4.2)

= 2mD(a1)p+ 2na1D(p) + 2mD(q)b2 + 2nqD(b2)

+ 2mD(q)p+ 2nqD(p) + 2mD(a1)b+ 2naD(b2)

= (m+ n)[D(a1p) +D(qb2) +D(qp) +D(a1b2)]

= (m+ n)[D(a1p) +D(qb2)].

(72)

Using condition (iv) of Theorem 4.1 and the above identity (72), we get the desired

result. □

Lemma 4.4. Let b2 ∈ T22 and p, q ∈ T12. Then

D(pb2 + qb2) = D(pb2) +D(qb2). (73)

Proof. Let a1 ∈ T11. Then

(m+ n)D[a1((p+ q)b2)] = 2mD(a1)(p+ q)b2 + 2naD((p+ q)b2). (74)

Also,

(m+ n)D[a1((p+ q)b2)] = (m+ n)D[a1(pb2) + (a1q)b2]

= (m+ n)[D(a1pb2) +D(a1qb2)] (By Lemma 4.3)

= 2mD(a1)(pb2) + 2na1D(pb2) + 2mD(a1)(qb2) + 2na1D(qb2).

(75)
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Comparing (74) and (75), we have

2na1[D((p+ q)b2)−D(pb2)−D(qb2)] = 0

=⇒ a1[D((p+ q)b2)−D(pb2)−D(qb2)] = 0 (By condition (iv) of Theorem 4.1)

=⇒ a1[D(pb2 + qb2)−D(pb2)−D(qb2)]11 = 0

& a1[D((pb2 + qb2)−D(pb2)−D(qb2)]12 = 0

=⇒ [D(pb2 + qb2)−D(pb2)−D(qb2)]11 = 0 (By condition (iii) of Theorem 4.1)

& [D((pb2 + qb2)−D(pb2)−D(qb2)]12 = 0 (By condition (2) of Definition 1.1).

(76)

Let s ∈ T12. Then

(m+ n)D[s(pb2 + qb2)] = 2mD(s)(pb2 + qb2) + 2nsD(pb2 + qb2). (77)

Also,

(m+ n)D[s(pb2 + qb2)] = (m+ n)D(0)

= (m+ n)D(spb2) + (m+ n)D(sqb2)

= 2mD(s)pb2 + 2nsD(pb2) + 2mD(s)qb2 + 2nsD(qb2).

(78)

Comparing (77) and (78),

2ns[D(pb2 + qb2)−D(pb2)−D(qb2)] = 0

=⇒ s[D(pb2 + qb2)−D(pb2)−D(qb2)] = 0 (By condition (iv) of Theorem 4.1)

=⇒ s[D(pb2 + qb2 −D(pb2)−D(qb2)]22 = 0

=⇒ [D(pb2 + qb2)−D(pb2)−D(qb2)]22 = 0 (By condition (1) of Definition 1.1).

(79)

By (76) and (79), we have the desired result. □

Lemma 4.5. Let p, q ∈ T12. Then

D(p+ q) = D(p) +D(q). (80)

Proof. Let b2 ∈ T22. Then

(m+ n)D((p+ q)b2) = 2mD(p+ q)b2 + 2n(p+ q)D(b2). (81)

Also,

(m+ n)D((p+ q)b2) = (m+ n)(D(pb2) +D(qb2)) (By Lemma 4.4)

= 2mD(p)b2 + 2npD(b2) + 2mD(q)b2 + 2nqD(b2).
(82)

Comparing (81) and (82), we get

2m[D(p+ q)−D(p)−D(q)]b2 = 0

=⇒ [D(p+ q)−D(p)−D(q)]b2 = 0 (By condition (iv) of Theorem 4.1)

=⇒ [D(p+ q)−D(p)−D(q)]12b2 = 0

& [D(p+ q)−D(p)−D(q)]22b2 = 0

=⇒ [D(p+ q)−D(p)−D(q)]12 = 0 (By condition (2) of Definition 1.1)

& [D(p+ q)−D(p)−D(q)]22 = 0 (By condition (ii) of Theorem 4.1).

(83)



ADDITIVITY OF MULTIPLICATIVE GENERALIZED JORDAN MAPS 17

Let s ∈ T12. Then

(m+ n)D((p+ q)s) = 2mD(p+ q)s+ 2n(p+ q)D(s). (84)

Also,

(m+ n)D((p+ q)s) = (m+ n)D(0)

= (m+ n)(D(ps) +D(qs))

= 2mD(p)s+ 2npD(s) + 2mD(q)s+ 2nqD(s).

(85)

By (84) and (85), we have

2m[D(p+ q)−D(p)−D(q)]s = 0

=⇒ [D(p+ q)−D(p)−D(q)]s = 0 (By condition (iv) of Theorem 4.1)

=⇒ [D(p+ q)−D(p)−D(q)]11s = 0

=⇒ [D(p+ q)−D(p)−D(q)]11 = 0 (By condition (1) of Definition 1.1).

(86)

By (83) and (86), we get the desired result. □

Lemma 4.6. Let a1, a2 ∈ T11 and b1, b2 ∈ T22. Then

(i) D(a1 + a2) = D(a1) +D(a2);

(ii) D(b1 + b2) = D(b1) +D(b2).
(87)

Proof. Let t2 ∈ T22. Then

(m+ n)D((a1 + a2)t2) = 2mD(a1 + a2)t2 + 2n(a1 + a2)D(t2). (88)

Also,

(m+ n)D((a1 + a2)t2) = (m+ n)D(0)

= (m+ n)(D(a1t2) +D(a2t2))

= 2mD(a1)t2 + 2na1D(t2) + 2mD(a2)t2 + 2na2D(t2).

(89)

Comparing (88) and (89), we get

2m[D(a1 + a2)−D(a1)−D(a2)]t2 = 0

=⇒ [D(a1 + a2)−D(a1)−D(a2)]t2 = 0 (By condition (iv) of Theorem 4.1)

=⇒ [D(a1 + a2)−D(a1)−D(a2)]12t2 = 0

& [D(a1 + a2)−D(a1)−D(a2)]22t2 = 0

=⇒ [D(a1 + a2)−D(a1)−D(a2)]12 = 0 (By condition (2) of Definition 1.1)

& [D(a1 + a2)−D(a1)−D(a2)]22 = 0 (By condition (ii) of Theorem 4.1).

(90)

Let p ∈ T12. Then

(m+ n)D((a1 + a2)p) = 2mD(a1 + a2)p+ 2n(a1 + a2)D(p). (91)



18 SK AZIZ, ARINDAM GHOSH AND OM PRAKASH

Also,

(m+ n)D((a1 + a2)p) = (m+ n)D(a1p+ a2p)

= (m+ n)[D(a1p) +D(a2p)] (By Lemma 4.5)

= 2mD(a1)p+ 2na1D(p) + 2mD(a2)p+ 2na2D(p).

(92)

Using (91) and (92), we have

2m[D(a1 + a2)−D(a1)−D(a2)]p = 0

=⇒ [D(a1 + a2)−D(a1)−D(a2)]p = 0 (By condition (iv) of Theorem 4.1)

=⇒ [D(a1 + a2)−D(a1)−D(a2)]11p = 0

=⇒ [D(a1 + a2)−D(a1)−D(a2)]11 = 0 (By condition (1) of Definition 1.1)

(93)

By (90) and (93), we have (i) of Lemma 4.6. Similarly, we can prove (ii) of Lemma

4.6. □

Lemma 4.7. Let a1 ∈ T11, p ∈ T12 and b2 ∈ T22. Then

D(a1 + p+ b2) = D(a1) +D(p) +D(b2). (94)

Proof. Let x1 ∈ T11. Then

(m+ n)D((a1 + p+ b2)x1) = 2mD(a1 + p+ b2)x1 + 2n(a1 + p+ b2)D(x1). (95)

Also,

(m+ n)D((a1 + p+ b2)x1) = (m+ n)D(a1x1)

= (m+ n)[D(a1x1) +D(px1) +D(b2x1)]

= 2mD(a1)x1 + 2na1D(x1) + 2mD(p)x1

+ 2npD(x1) + 2mD(b2)x1 + 2nb2D(x1)

(96)

Comparing (95) and (96), we have

2m[D(a1 + p+ b2)−D(a1)−D(p)−D(b2)]x1 = 0

=⇒ [D(a1 + p+ b2)−D(a1)−D(p)−D(b2)]x1 = 0

(By condition (iv) of Theorem 4.1)

=⇒ [D(a1 + p+ b2)−D(a1)−D(p)−D(b2)]11x1 = 0

=⇒ [D(a1 + p+ b2)−D(a1)−D(p)−D(b2)]11 = 0

(By condition (i) of Theorem 4.1).

(97)

Let t2 ∈ T22. Then

(m+ n)D((a1 + p+ b2)t2) = 2mD(a1 + p+ b2)t2 + 2n(a1 + p+ b2)D(t2). (98)
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Also,

(m+ n)D((a1 + p+ b2)t2) = (m+ n)D(pt2 + b2t2)

= (m+ n)[D(pt2) +D(b2t2)] (By Lemma 4.2)

= (m+ n)[D(a1t2) +D(pt2) +D(b2t2)]

= 2mD(a1)t2 + 2na1D(t2) + 2mD(p)t2

+ 2npD(t2) + 2mD(b2)t2 + 2nb2D(t2).

(99)

Comparing (98) and (99), we have

2m[D(a1 + p+ b2)−D(a1)−D(p)−D(b2)]t2 = 0

=⇒ [D(a1 + p+ b2)−D(a1)−D(p)−D(b2)]t2 = 0

(By condition (iv) of Theorem 4.1)

=⇒ [D(a1 + p+ b2)−D(a1)−D(p)−D(b2)]12t2 = 0

& [D(a1 + p+ b2)−D(a1)−D(p)−D(b2)]22t2 = 0

=⇒ [D(a1 + p+ b2)−D(a1)−D(p)−D(b2)]12 = 0

(By condition (2) of Definition 1.1)

& [D(a1 + p+ b2)−D(a1)−D(p)−D(b2)]22 = 0

(By condition (ii) of Theorem 4.1).

(100)

By (97) and (100), we get the desired result. □

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let a, b ∈ T . Then a = a11 + a12 + a22 and b = b11 +

b12 + b22 where aij , bij ∈ Tij .

D(a+ b) = D(a11 + a12 + a22 + b11 + b12 + b22)

= D(a11 + b11 + a12 + b12 + a22 + b22)

= D(a11 + b11) +D(a12 + b12) +D(a22 + b22) (By Lemma 4.7)

= D(a11) +D(b11) +D(a12) +D(b12) +D(a22) +D(b22)

(By Lemma 4.5 and 4.6)

= D(a11) +D(a12) +D(a22) +D(b11) +D(b12) +D(b22)

= D(a11 + a12 + a22) +D(b11 + b12 + b22) (By Lemma 4.7)

= D(a) +D(b).

(101)

Hence, D is additive. Thus, D is an (m,n)-derivation. □
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