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A New Deinterleaving Approach Based On Clustering and PRI 

Type Recognition 

 

Highlights 

❖ OPTICS clustering for deinterleaving of radar signals in frequency-pulse width plane  

❖ Introducing a simulation datasets for PRI type recognition and DTOA-based PRI value(s) finding  

❖ Rule-based PRI modulation recognition for detection of fixed, agile, stepped and dwell&switch PRI types 

 

Graphical Abstract 

In this study, a new PRI Type detection method that employs clustering, histogram and rule-based alogirthms is 

presented. 

 

 

Figure. Graphical summary of the PRI modulation type recognition method 

 

Aim 

Deinterleaving of radar signals and PRI modulation type recognition  

Design & Methodology 

First, the PDWs of the radars are clustered in the frequency-pulse width plane using OPTICS, and then PRI 

modulation recognition is performed separately for each cluster. 

Originality 

A new rule-based approach is proposed for recognition of PRI modulation type. For the first time, OPTICS clustering 

algorithm was used for frequency-pulse width decomposition of radar signals. 

Findings 

Based on the experiments, the proposed method achieves the accuracy of 98% in agile, 97% in constant, and 89% in 

stagger, and dwell&switch PRI types. 

Conclusion  

The proposed method is able to deinterleave multiple radar signals in the environment according to their frequency, 

pulse width parameters, and recognize the PRI modulation of each of the clustered radars. 

Etik Standartların Beyanı (Declaration of Ethical Standards) 

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee 
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ABSTRACT 

In an electronic warfare environment, numerous radars operate, each designed with distinct signal waveforms tailored to fulfill 

specific missions. The deinterleaving of radars is a fundamental function of an electronic warfare system. Following deinterleaving, 

identifying the Pulse Repetition Interval (PRI) modulation type becomes essential for enhanced radar recognition and understanding 

of its function. In this study, a new clustering and rule-based method is proposed to deinterleave radar pulses and recognize the 

PRI modulations. Ordering Points to Identify Clustering Structure (OPTICS) method is employed to cluster the radar signals. 

Difference of Time of Arrival (DTOA)-based method is employed to find the PRIs in the clustered data. A rule-based method is 

used to determine the PRI type from the obtained PRI values. In the experiments, the clustering and PRI type recognition phases 

were analyzed separately. The performance of K-means and OPTICS were tested under different conditions: (i) high cluster counts, 

(ii) close proximity of clusters, (iii) different cluster densities and forms. The PRI type detection performance was also tested on a 

simulation dataset consisting of 4 different PRI types (constant, agile, stagger and dwell&switch). The results indicate that the new 

method is effective in determining the PRI modulations.   

Keywords: Deinterleaving, clustering, OPTICS, pulse repetition interval modulation, electronic warfare. 

Kümeleme ve PRI Tip Tanımaya Dayalı Yeni Bir 

Ayrıştırma Yaklaşımı 

ÖZ 

Bir elektronik savaş ortamında, her biri belirli görevleri yerine getirmek için özel olarak tasarlanmış farklı sinyal dalga formlarına 

sahip çok sayıda radar çalışır. Radarların ayrıştırılması bir elektronik harp sisteminin temel ve önemli bir işlevidir. Ayrıştırma 

işleminin ardından Darbe Tekrarlama Aralığı (DTA) modülasyon tipinin belirlenmesi, radarın tanınması ve işlevinin anlaşılması 

için çok önemlidir. Bu çalışmada, radar darbelerini ayrıştırmak ve DTA modülasyonunu tanımak için yeni bir kümeleme ve kural 

tabanlı yöntem önerilmiştir. Radar sinyalini kümelemek için Kümeleme Yapısını Tanımlamak için Noktaları Sıralama (OPTICS) 

yöntemi uygulanmıştır. Kümelenmiş verilerdeki DTA'yı bulmak için darbelerin geliş zamanı farkı kullanılmıştır. Geliş zamanı 

farkı temelli yöntem sonucunda elde edilen DTA değerlerinden DTA tipini belirlemek için kural tabanlı bir yöntem kullanılmıştır. 

Deneylerde, kümeleme ve DTA tipi tanıma aşamaları ayrı ayrı analiz edilmiştir. K-means ve OPTICS'in performansları (i) yüksek 

küme sayıları, (ii) kümelerin yakınlığı, (iii) farklı küme yoğunlukları ve formları gibi farklı koşullar altında test edilmiştir. DTA 

tipi bulma performansı da 4 farklı DTA türünden (sabit, çevik, kademeli ve bekle&değiştir) oluşan bir simülasyon veri kümesi 

üzerinde test edilmiştir. Sonuçlar, yeni yöntemin bir radar sinyalinin PRI türlerini belirlemede etkili olduğunu göstermektedir. 

Anahtar Kelimeler: Ayrıştırma, kümeleme, OPTICS, darbe tekrarlama aralığı modülasyonu, elektronik harp. 

 

1. INTRODUCTION 

Electronic Warfare (EW) systems primarily detect the 

existence and functioning of all radar systems in the 

environment and are named as Electronic Support (ES). 

There are many radars and each of them may have 

different and specific functions. The radar functions can 

be early warning, search, acquisition, track, and missile 

guidance [1]. EW systems detect radars and their 

functions that may pose a threat to them. After detecting 

the presence and function of the radar systems, EW 

systems may apply electronic attack using some 

parameters of the radars. Electronic attacks are used to 

protect critical platforms and people. When the EW 

system in a platform cannot properly apply electronic 

attack techniques, the platform is more visible to the 

target radar. So, deinterleaving of the radar systems in the 

environment has become a critical issue. 

There are many imperfections to affect the received radar 

pulses such as missing pulses, clutter effects, and 

measurement errors. Additionally, the interleaving of 

many radar signals due to the dense environment 

increases the difficulty of the deinterleaving process. The 

input parameters for deinterleaving are Pulse Descriptor 

Words (PDWs). PDW mainly contains frequency, Pulse 

Duration/Width (PD/PW), Time Of Arrival (TOA), Pulse 

Amplitude (PA), and Angle Of Arrival (AOA). 

Deinterleaving process can be applied using all or some 

of these parameters. Also, deinterleaving can be applied 

in one step or more than one step. In some approaches, 

deinterleaving can be applied in two steps such as 
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clustering and Pulse Repetition Interval (PRI) type 

recognition. 

The PRI types basically used in literature are constant, 

agile, stagger, and dwell&switch. Radars commonly use 

the constant PRI type for search and track operations [2]. 

Agile PRI type is used for anti-reconnaissance and anti-

jamming. Stagger PRI type is used to determine blind 

speeds in radars. The dwell&switch PRI type is 

employed to resolve range and velocity ambiguities. The 

mainly used frequency types are constant and agile. The 

agile frequency type is used by radars as protection when 

an electronic attack is applied to it. 

Different methodologies have been carried out in the 

literature for deinterleaving and PRI type recognition. 

Kauppi et. al. suggested a set of features to recognize the 

PRI modulations which are constant, stagger, jittered, 

sliding, dwell&switch, and periodic [3]. A multi-layer 

neural network was applied to cluster the PRI 

modulations, after features are extracted. It is given that 

for each PRI modulation, over 99% perfect classification 

is reached. Han et al. applied simultaneously 

deinterleaving and PRI modulation recognition using 

multi-task learning with a Convolutional Neural Network 

(CNN) [4]. The Continuous Wavelet Transform (CWT) 

is used in the preprocessing stage to find PRI 

modulations with constant, jitter, sliding up, sliding 

down, and wobbulated PRI modulations. The method is 

compared with traditional CWT for different window 

sizes. It is stated that the method is better in the cases of 

deinterleaving precision versus spurious pulses rate up to 

30% and missing pulses rate up to 30%. Also, the 

modulation recognition performance of the method for 

the spurious pulses up to 30%, missing pulses up to 30% 

is given. Cheng et al. performed deinterleaving of mixed 

radar signals only using the TOA parameter in four steps 

[5]. These steps are Correlation Matching Method 

(CMM), improved PRI transform, the sequence retrieval 

algorithm, and difference histogram method, 

sequentially. By applying these operations, constant, 

stagger, and jitter PRI modulations are estimated. Also, 

the proposed method is compared with Discrete Fourier 

Transform (DFT) and improved Sequential Difference 

(SDIF) histogram approaches. The mean PRI estimation 

errors according to missing pulse rate up to 15% and jitter 

bound rate of PRI up to 12% are analyzed. Mottier et al. 

performed the deinterleaving and clustering of radar 

signals using pulse amplitude, time of arrival, frequency, 

and pulse width parameters [6]. Clustering was done with 

the Hierarchical Density-Based Spatial Clustering 

(HDBSCAN) method using pulse width and frequency 

parameters. Then, hierarchical clustering with optimal 

transport distance applied for agglomerating clusters 

belonging to a radar system. It is not aimed to find the 

PRI modulations in used data. Only the results of the 

synthetic data they created are given. Hasani et al. used 

two sequential approaches which are PRI finding based 

on TOA and sequence search (pulse sorting) by using 

pulse width and frequency [7]. SDIF algorithm used for 

PRI finding. After the potential PRI values are found, 

they are categorized as jittered and non-jittered PRI. Two 

different sequence search techniques applied for these 

two categories. For the sequence searching part, the two 

operations classification by using carrier frequency and 

pulse width and assigning the suitable PRIs within the 

TOA values of the pulses were used, simultaneously. 

Constant, stagger, and jitter PRI types found by applying 

this approach. The performance of accurate pulse 

separation versus number of emitters up to 16 was given 

for both the proposed method and an only TOA based 

method. Kang et al. proposed the hierarchical automaton 

for pulse group recognition that has a two-layer structure 

[8]. The bottom layer actualized the recognition of pulse 

subgroups. At the top layer, the sequential input of pulse 

subgroups and recognition of pulse groups actualized. 

The aim of the proposed technique was pulse group 

signal waveforms of multi-function radars. The used PRI 

types in pulse groups are constant and stagger. The 

recognition accuracy was given for different pulse 

missing rates and interferential pulse rates. Based on the 

experiments, when missing pulse rate or interferential 

pulse rate was increasing, the recognition accuracy was 

also decreasing down to 80%. 

Chao et al. applied semantic segmentation with neural 

networks for deinterleaving [9]. It has some advantages 

like no need for PRI value and modulation type. 

However, this method does not distinguish radars having 

same PRI modulations and radars having similar PRI 

values. As a continuation of the work, Chao et al. 

proposed a new method which is named Bidirectional 

Gated Recurrent Unit (BGRU) as multi parameter-based 

deinterleaving [10]. Unlike other studies, different types 

of PRI, RF, PW, and PA could be found by using BGRU. 

BGRU compared SDIF, PRI transform, and Semantic 

Segmentation Deinterleaving (SSD) with only PRI 

parameter methods, and it gave good results. The SSD-

Multiparameter method gave better accuracy results 

under the conditions of pulse loss rate up to 50% and 

noise to target ratio up to 50%. These results obtained for 

four different data sets that have measurement errors. Xie 

et al. suggested a method that is first‐order difference 

curve based on sorted TOA difference sequence (FDC‐

DTOA) [11]. For this approach, only the TOA parameter 

was used. It has been stated that this approach has good 

results for missing pulses cases up to 45% and PRI jitter 

modulation type that has jitter boud up to 16%. FDC‐

DTOA compared with classical and enhanced versions of 

Cumulative Difference of Histogram (CDIF), PRI 

transform, SDIF methods, and successful results 

obtained compared to them. Feng et al. applied the 

domain-adaptive few-shot learning and combined net 

method for PRI modulation types of constant, jitter, 

sliding, wobbulated, stagger, and dwell&switch [12]. It 

gives better results than CNN and Temporal 

Convolutional Network methods according to missing 

rate up to 60% and spurious rate up to 60%. 

Cheng et al. presented a clustering-based Square Sine 

Wave Interpolation (SSWI) method and a threshold 

criterion for deinterleaving stagger and jitter PRI types 



 

 

[13]. SSWI, which used only the TOA parameter, 

compared with the Correlation Matching Method 

(CMM) and sequence correlation. As a result of the 

comparison, SSWI achieved the fastest execution time, 

gave better results with a loss rate of up to 15%, and jitter 

rates of up to 12% for different data sets. Mottier et al. 

proposed two different methods named as normal and 

improved hierarchical agglomerative clustering merged 

with optimal transport distances (HACOT-IHACOT) 

[14]. In HACOT, HDBSCAN is used for clustering by 

using pulse width and frequency parameters; while in the 

improved form of the method, HDBSCAN is used for 

frequency, pulse width and TOA parameters. As a last 

part of these two approaches, agglomeration is used for 

the clusters that have similar temporal characteristics, 

according to optimal transport distances. The aim of the 

methods was deinterleaving of complex emitters ignoring 

the PRI modulation. The IHACOT method is checked 

against with PRI histogram and PRI transform methods; 

and it is stated that it gives better results in most cases. 

Nuhoglu et al. produced a method Combined PRI 

Transform (CPRIT) which is a hybrid method based on 

the PRI transform technique [15]. Unlike approaches 

based on sequential processes such as first clustering and 

then finding PRI, CPRIT advocates performing these two 

operations simultaneously. It is mentioned that CPRIT 

gave good results at the point of correct detection rate and 

false alarm rate according to the SDIF and PRI transform. 

The CPRIT had also excellent performance for the 

deinterleaving of constant, stagger, jitter, pulse group 

constant, and pulse group jitter PRI types. Mao et al. used 

the Sep-RefineNet semantic segmentation network 

technique to deinterleave constant, jitter and stagger PRI 

modulations [16]. It is compared with SDIF, CDIF, and 

PRI transform. Based on the experiments, the Sep-

RefineNet semantic segmentation network technique 

produces better F1-score results according to 

benchmarked techniques in the cases of missing pulse 

and aliasing pulse rates up to 20%. 

In this study, a new method is presented based on a 

combination of clustering and rule-based PRI modulation 

recognition approaches. In clustering, the Ordering 

Points to Identify the Clustering Structure (OPTICS) 

algorithm is used.  The DTOA based PRI detection is 

realized. Additionally, a new rule-based method is 

proposed to classify PRI types. According to the results 

of the proposed approach, 4 different PRI types are 

correctly recognized even if numerous emitters/radars 

exist at the same time. 

The rest of the study is presented as follows. In Section 

2, K-means and OPTICS clustering methods are 

presented as background knowledge. In Section 3, the 

introduced method with all steps is defined. In Section 4, 

datasets used in simulation are explained, experimental 

results and discussions are given. In Section 5, the 

concluding remarks and future aspects are specified. 

 

 

2. BACKGROUND 

2.1. K-means 

K-means is an unsupervised and simple partitioning-

based clustering method [17]. It partitions a group of data 

sets into K different clusters where K is a positive integer 

number [18]. K-means has a wide range of applications 

in image processing, pattern recognition, unsupervised 

learning of neural networks, artificial intelligence, 

machine vision, classification analysis, and many other 

fields [19]. 

K-means clustering allocates data points to one of the K 

clusters based on their distances from the cluster centers. 

Initially, it places the centroids of the clusters randomly 

in the space. Each data point is then mapped to the cluster 

whose centroid is closest to it. After assigning each point 

to a cluster, new centroids are calculated. This iterative 

process continues until a satisfactory set of clusters is 

found [20]. The clustering is accomplished by reducing 

the sum of squares of the distances between the data and 

the relevant cluster center. [20, 21].  

The K-means clustering method works as follows: 

1. Select K which is the cluster number 

2. Select randomly K centroids or points 

3. Appoint each data point to their nearest center to 

form K predefined clusters 

4. Compute the variance and set a new center points 

of each cluster 

5. Repeat step three to reappoint each data point to 

the new nearest centroid of each cluster. 

6. If any reappointment occurs, back to step-4. If not, 

the process ends. 

2.2. Ordering Points to Identify Clustering Structure 

(OPTICS) 

OPTICS is a clustering algorithm to determine density-

based clusters for spatial data [22]. OPTICS is also an 

enhanced version of Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN). The flexible 

epsilon feature makes the OPTICS algorithm advanced 

for clusters in data of changing density. Let the point set 

be 𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑗}. Some definitions related with 

the OPTICS clustering algorithm are defined as follows 

[23]: 

1. ϵ - domain: For 𝑚𝑗 𝜖 𝑀, its ϵ - domain is a subset 

of 𝑀 containing points whose distance from 𝑚𝑗 is 

not greater than ϵ. That is, 𝑁𝜖(𝑚𝑗) =

{𝑚𝑖𝜖𝑀 | 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑖 , 𝑚𝑗) ≤ 𝜖} The number of 

points in 𝑁𝜖(𝑚𝑗) is noted as | 𝑁𝜖(𝑚𝑗  |. Usually, 

eps is used to represent the clustering radius ϵ. If 

the maximum eps is too small, the algorithm may 

not correctly cluster all points that belong to the 

same cluster and it causes multiple small clusters 

instead of a single large cluster [22]. Conversely, 

if the maximum eps is too large, the algorithm 

may join different clusters as one cluster.  



 

   

 
 

2. Core point: For any 𝑚𝑗 𝜖 𝑀, 𝑚𝑗 is a core point if 

| 𝑁𝜖(𝑚𝑗)| ≥ 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠, where min_samples 

is an integer constant. 

3. Core distance: the minimum radius that makes a 

point m a core point is called the core distance of 

m. 

4. Reachability distance: The reachability distance 

of a point p with respect to a core point m denoted 

as 𝑟𝑑(𝑝, 𝑚) is the maximum value between the 

actual distance of m to p and the core distance of 

m. The reachability distance is not defined if p is 

not a core point. 

The OPTICS algorithm is basically based on building a 

reachability graph [22]. It ranks the points in the dataset 

according to their reachability distances, then constructs 

the reachability graph.  

The ranking is done by starting from a random point and 

finding its nearest neighbor. Then, the algorithm 

determines the reachability distance between two points 

and adds the point with the highest reachability distance 

to the ranking list. The procedure is repeated for the next 

point in the list. The procedure stops when all points are 

ranked. After the points are sorted, the reachability 

distance graph is generated. 

 

3. PROPOSED METHOD 

The deinterleaving processes that use only the TOA 

parameter of the pulses have high complexity and they 

are generally time consuming approaches. To simplify 

the process and gain more reliable results, the 

deinterleaving operation is performed in three main steps. 

These are clustering, PRI finding, and PRI modulation 

detection. 

   

     (a)                  (b)  

  
    (c)               (d)  

Figure 1. Different PRI types (a) Constant (b) Agile (Jitter) (c) Stagger (d) Dwell&switch 

 

Various data types for deinterleaving process are 

generated. Firstly, the single emitter PDWs are generated 

according to parameter types and values. The generated 

frequency types are fixed and agile; PRI types are fixed, 

agile (jitter), stagger, and dwell&switch; pulse width 

types are fixed and agile. For fixed types of all these 

PDW parameters there is also a small agility. Then, the 

single emitters are combined and sorted in time. The 



 

 

types of PRI used and produced are visualized in Figure 

1. The difference between constant and jitter PRIs is the 

jitter amount. For constant PRI type, the jitter amount is 

smaller or nearly zero compared to the jitter PRI type. In 

Figure 1(a), the constant PRI has the mean value of 407 

and the jitter value is +/- 1 µs. In Figure 1(b), the agile 

(Jitter) PRI has the mean value of 566 and the agility 

value is +/- 6 µs. Stagger PRI has three properties which 

are PRI levels, level number, and sequence. Level 

number is the number of unique PRI values of stagger 

PRI type. Sequence is the order of the stagger levels, and 

it is also called Pulse Group Repetition Interval (PGRI). 

In Figure 1(c), stagger levels are [323(A), 331(B), 

347(C), 353(D), 367(E)], level number is 5, and sequence 

is ABCDE (or 323-331-347-353-367). The 

dwell&switch PRI type has four properties which are PRI 

levels, level numbers, sequence, and dwell count (or 

dwell time). The only difference between stagger and 

dwell&switch PRIs is dwell count. The dwell count (or 

dwell time) is the repetition number (or duration) of the 

one PRI level. In Figure 1(d), PRI levels are [111(A), 

121(B), 131(C)], level number is 3, sequence is ABC (or 

111-121-131), and dwell count is 10 pulses per level. 

Clustering is the grouping of the data points according to 

similarities. It has therefore been used for pre-processing 

step in machine learning methods and for grouping data 

from many different fields such as medicine, materials, 

environment [24-32]. The criteria for determining the 

similarities in clustering are smallest distances, graphs, 

density of data points, or various statistical distributions. 

A clustering algorithm generates clusters where the 

similarity of within-cluster is quite high. In the meantime, 

the similarity between clusters is much less. Cluster 

analysis has a wide range of applications such as data 

mining, statistics, image processing, machine learning. 

[33-36]. 

OPTICS clustering is a density-based approach that 

determines clusters based on the density and connectivity 

of data points [22]. OPTICS clustering does not require a 

predefined number of clusters as in the K-means method. 

Clusters can have different densities and any shape 

including non-spherical. It can also identify noise data as 

outlier. 

In this study, the input variables used in clustering are 

frequency and pulse width. They have different units and 

value ranges. The unit of frequency is megahertz (MHz) 

and its value ranges between 2000-18000 MHz. The unit 

of pulse width is microseconds (µs) and its value ranges 

between 0.1-300 µs. For these differences, the min-max 

normalization method is applied to these variables and 

the variables are scaled to the range between 0 and 1. 

The PRI finding is the second part of the deinterleaving 

process. After clustering of the two dimensional 

frequency versus pulse width data, the DTOA-based PRI 

finding method is employed to find candidate PRIs. The 

DTOA values are calculated for each cluster by taking 

differences of the sequential TOA values. Then, the 

unique values of the DTOAs are found and they are 

ranked from smallest to largest. After that, the neighbors 

of the ranked DTOAs are checked according to a rule. 

The rule merges DTOAs if neighboring DTOAs are 

closer than 4 us to each other. The value of 4 us comes 

from the constant PRI acceptance condition. The DTOAs 

obtained after this check are considered as candidate 

PRIs. All the candidate PRIs are checked for harmonics 

and minimum repetition number of candidate PRI values. 

Candidate PRIs that pass these checks are designated as 

PRIs. In this study, it is assumed that each cluster has one 

emitter or in other words each cluster has one type of PRI 

modulation type. 

A rule-based sequence search is performed based on PRIs 

and their positions in each cluster. There are rules for 

sequence search to find PRI type. Rules are given below. 

A rule-based sequence search is performed based on PRIs 

and their positions in each cluster. There are rules for 

sequence search to find PRI type. Rules are given below. 

● If there is one PRI in a cluster, jitter value is 

calculated. 

○ If the jitter value is equal or less than 

±2 µs, the PRI type is constant. 

○ If the jitter value is greater than ±2 µs, 

the PRI type is agile. 

● If there are 2 or more than 2 PRI values in a 

cluster, the first 100 PRI values in the cluster are 

used and named as a test array. 

● If the PRI number in the cluster is equal to the 

unique PRI numbers in the test array, PRI type 

may stagger or dwell&switch. 

● After that, the first and second PRI indexes in 

the text arrays are found and the difference 

between the first PRI indexes and the second 

PRI indexes are calculated. 

○ If the differences are mainly 1, the PRI 

type is stagger. 

○ If the differences are mainly 5 or more 

than 5, the PRI type is dwell&switch. 

● If PRI numbers in the cluster is greater than the 

unique PRI numbers in the test array, PRI type 

is dwell&switch. 

The flowchart of the introduced method is given in 

Figure 2.  



 

   

 
 

 

Figure 2. Flowchart of the presented method 

 



 

 

4.  RESULT AND DISCUSSION 

4.1. Data Generation 

In this study, three different synthetic data sets are 

generated to evaluate the performance of the presented 

method.  In generation, some limitations are accepted for 

the data.  The level numbers are between 2 and 16 for the 

stagger PRIs. The level numbers are between 2 and 10 

for dwell&switch PRIs. The minimum value of dwell 

count is 5 pulses and the maximum value of dwell count 

is 100 pulses. Each emitter (or radar) in the data sets has 

a different number of pulses varying between 400 and 

2520. The number of emitters in a group is selected 

differently from 6 to 15. In addition, different 

unintentional jitter amounts are added to the frequency, 

pulse width and PRI (or TOA) values for each emitter. 

The details about the synthetic data sets are given in 

Table 1. 

Table 1. Details of the data sets for clustering 

 

Emitter 

No 

Frequency 

Type 

Frequency 

Value (GHz) 

Pulse Width 

(us) PRI Type 

Level 

Number PRI Value (us) and Jitter Value 

        

Data 

Set 1 

1 Constant 8(+-2 MHz) 3.5(+-0.1 us) 

Dwell&Switch 

(10-pulse count 

per dwell) 3 

111-121-131 

(+-2 us) 

2 Agile 

8.035  

(+- 20 MHz) 4.3(+-0.6 us) Stagger 3 

277-283-291 

(+-2 us) 

3 Constant 8(+-4 MHz) 4.3(+-0.6 us) Stagger 2 511-531(+-2 us) 

4 Agile 

8.035  

(+- 30 MHz) 3.5(+-0.1 us) Stagger 5 

323-331-347-353-367 

(+-1 us) 

5 Agile 

8.015  

(+- 15 MHz) 5.1(+-0.1 us) Agile 1 407(+-12 us) 

6 Agile 

8.015  

(+- 15 MHz) 6.1(+-0.8 us) Constant 1 419(+-2 us) 

        

Data 

Set 2 

1 Constant 8(+-6 MHz) 8.1 (+-0.1 us) Constant 1 300 (+-1.8 us) 

2 Agile 

8.035  

(+- 20 MHz) 8.3(+-0.6 us) Stagger 4 

115-127-133-141  

(+-2 us) 

3 Constant 8(+-10 MHz) 9.5(+-0.6 us) Agile 1 577 (+-15 us) 

4 Agile 

8.045  

(+- 30 MHz) 9.5(+-0.1 us) 

Dwell&Switch 

(20-pulse count 

per dwell) 2 

657-667  

(+-2 us) 

5 Agile 

8.015  

(+- 15 MHz) 7.2 (+-0.1 us) Agile 1 230 (+-11 us) 

6 Agile 

8.015  

(+- 15 MHz) 11.5(+-0.8 us) 

Dwell&Switch 

(15-pulse count 

per dwell) 4 

521-529-535-543 

 (+-2 us) 

7 Agile 

8.070  

(+- 30 MHz) 12(+-1.8 us) 

Dwell&Switch 

(18-pulse count 

per dwell) 3 135-150-163 (+-2 us) 

        

Data 

Set 3 

1 Agile 4(+-20 MHz) 2(+-0.5 us) Stagger 11 

305-315-325-335-345-355-365-

375-385-395-405(+-2 us) 

2 Constant 4(+-9 MHz) 8(+-1.5 us) 

Dwell&Switch 

(12-pulse count 

per dwell) 7 

654-666-680-690-702-714-722(+-

1.9 us) 

3 Constant 4(+-8 MHz) 20(+-3 us) Constant 1 740(+-1.9 us) 

4 Agile 

4.1 

(+-20 MHz) 2(+-0.5 us) Agile 1 

800 

(+-8 us) 

5 Constant 

4.1 

(+-10 MHz) 8(+-1.7 us) Stagger 15 

433-444-456-467-479-488-499-

510-522-530-541-553-565-577-

588 

(+-1.8 us) 

6 Agile 

4.1 

(+-20 MHz) 15(+-2 us) 

Dwell&Switch (6-

pulse count per 

dwell) 10 

124-134-146-156-168-180-194-

206-216-230 

(+-1.6 us) 

7 Agile 

4.2 

(+-20 MHz) 5(+-0.8 us) Constant 1 

275 

(+-1.5 us) 

8 Constant 

4.225 

(+-10 MHz) 20(+-2.8 us) Agile 1 

594 

(+-6 us) 

9 Agile 

4.5 (+-30 

MHz) 7.5(+-1 us) Stagger 7 

210-220-230-240-250-260-270(+-

3 us) 



 

   

 
 

Table 1. (Cont.) Details of the data sets for clustering  

 

Emitter 

No 

Frequency 

Type 

Frequency 

Value (GHz) 

Pulse Width 

(us) PRI Type 

Level 

Number PRI Value (us) and Jitter Value 

        

Data 

Set 3 

10 Agile 

4.5 (+-35 

MHz) 17(+-1.5 us) 

Dwell&Switch (8-

pulse count per 

dwell) 5 331-339-347-355-361 (+-2 us) 

11 Agile 

4.15 (+- 25 

MHz) 22(+-2.4 us) Agile 1 150 (+-9 us) 

12 Agile 

4.03 (+- 25 

MHz) 13(+- 1 us) Stagger 5 750-759-765-771-781 (+-2 us) 

13 Agile 

4.2 (+- 32 

MHz) 12(+- 1.6 us) Constant 1 189 (+-1.7 us) 

14 Agile 

4.25 (+- 36 

MHz) 8(+- 0.9 us) Agile 1 380 (+-8 us) 

15 Agile 

4.28(+-30 

MHz) 15(+-2 us) Agile 1 782(+-7 us) 

        

 

4.2. Clustering Results 

In this section, the clustering results of the method are 

analyzed in different conditions with the synthetic 

datasets. K-means and OPTICS clustering results for 

generated 3 different data sets, whose details are given in 

Table 1. K-means and OPTICS clustering results for 3 

different data groups in the Data Generation section are 

given in Figure 3. The important point is that the OPTICS 

gives better results than K-means for different sizes and 

different densities of clusters. Also, different numbers of 

emitters and at least 1 each of constant, agile, stagger, and 

dwell&switch PRI types are used for each data group. 

Data set 1 consists of 6 different clusters. In this data set, 

the condition of the radar signals which are so close in 

frequency and pulse width is examined. K-means 

clustering result of data set 1 is given in Figure 3(a). The 

radar signals in data set 1 are not clustered perfectly. In 

the figure, clusters 1, 2, 3, and 4 are divided into more 

than one cluster. The cluster 5 and 6 also included data 

points belonging to different neighboring clusters 1-2-3 

and 2-4, respectively. Because clusters have different 

densities and they are very close to each other. OPTICS 

clustering result of data set 1 is given in Figure 3(b). As 

can be seen from the figure, the radar signals forming the 

cluster are successfully separated from each other 

(although they are very close to each other). It was 

observed that 2 different points (colored red color) 

located between two neighboring cluster pairs (cluster 1 

and 2, cluster 2 and 3) did not belong to any of the 

relevant clusters and were successfully determined as 

outliers by the algorithm. 

The data set 2 has 7 different clusters. All clusters have 

different shapes and distributions. K-means clustering 

results of the algorithm for data set 2 is in Figure 3(c). It 

divides cluster 1 into 3 different clusters. Cluster 2-3 and 

4-5 were merged and they create two cluster. Only, 

cluster 6 and 7 are clustered correctly in this data set. In 

data set 1, no cluster was correctly separated, while in 

data set 2, 2 clusters were correctly clustered. The reason 

for this improvement is that the distances between the 

clusters are farther than in data set 1. OPTICS clustering 

result of the algorithm for data set 2 is in Figure 3(d). For 

example, cluster number 1 has a big shape and large 

amount of distribution while cluster number 2 has a small 

shape and small amount of distribution. The result shows 

that the algorithm exhibits good performance for the 

different shapes and different distributions. 

In data set 3, there are 15 clusters and they have different 

properties. The different types (constant and agile) of 

frequency and pulse width are also created in the clusters. 

The frequency, pulse width, and PRI parameters have 

different properties and combinations in all clusters. 

Also, the clusters have different shapes and densities. K-

means clustering results of data set 3 is given in Figure 

3(e). Cluster 1 and 2 are divided into two clusters by a 

false division, as can be seen by eye. Cluster 3 was 

labelled not as one cluster but as two clusters. Cluster 4 

and 5 should be two separate clusters, but they were 

found as a single cluster. Cluster 6 is almost correctly 

categorized. Other 9 clusters are detected correctly. 

OPTICS clustering results of data set 3 is given in Figure 

3(f). It was clearly observed that the algorithm achieves 

good results in the cases of higher number of clusters and 

different cluster shapes and densities. As can be seen 

from the analysis of the OPTICS algorithm from different 

datasets, it achieves good results for different sizes and 

different densities of clusters. 



 

 

  

               (a)                   (b)  

  

               (c)                   (d)  

  

               (e)                   (f) 

Figure 3. Clustering results: (a) K-means and (b) OPTICS results of Data set 1 (c) K-means and (d) OPTICS results of Data set 2 

(e) K-means and (f) OPTICS results of Data set 3 

 

4.2. PRI Modulation Results 

After obtaining the satisfactory results from the 

clustering of the 5 different data sets which simulates the 

different radar waveform types, the PRI type 

classification performance of the presented algorithm is 

analyzed. For this purpose, a new synthetic data set is 

generated to assess the performance of the presented 

algorithm. This dataset comprises of a total of 400 

different radar signals, including 100 radar data for each 

of the 4 PRI types. The performance of the presented 



 

   

 
 

method is given in the form of a confusion matrix in 

Figure 4. 

 

Figure 4. Confusion matrix of the proposed method 

 

As can be observed from Figure 4, the method gives good 

results in identifying agile and constant PRI types. 

However, the detection performance of the method 

decreases for dwell&switch and stagger PRI types. If the 

difference between the close extreme values of 

neighboring PRI levels is less than 2 µs for stagger and 

dwell&switch PRI types, the algorithm gives the PRI 

type result as agile or constant. Because the algorithm 

finds these two levels as one level, and then calculates the 

jitter value for the new one level. According to the jitter 

value (if jitter value is less than 2 µs result is constant, if 

jitter value is more than 2 µs result is agile), the algorithm 

finds the PRI type as constant or agile. If the PDW’s 

number in the data set is not adequate to find the correct 

PRI type and generated PRI levels that have random 

distribution are concentrated around certain values, the 

algorithm can find the result as dwell&switch PRI.  

Based on the results of the overall proposed method, if 

the erroneous result occurs in one of the early steps of the 

proposed method, it directly affects the last step. Despite 

this situation, the proposed method produced highly 

accurate results in different circumstances. 

 

Figure 5. Confusion matrix of the proposed method 

 

In order to validate the performance of the proposed 

method and evaluate its success, it is compared with the 

method presented in the paper by Kauppi et al. [3]. The 

dataset presented in this study was used to evaluate both 

the proposed and compared methods under the same 

conditions. Unlike this study, the compared study 

assumes that the PRI signal is deinterleaved before PRI 

modulation detection. Hence, the dataset presented in the 

study was clustered with the OPTICS method. Then, 5 

unique features, namely single histogram peak, pulse 

interval changes, local extrema of pulse intervals, 

directional pulse interval changes, and stable sum. These 

are extracted from the clustered data set in accordance 

with the article. Subsequently, a multilayer perceptron 

(MLP) network was applied to classify 6 different types 

of PRI: constant, dwell and switch, stagger, sliding, jitter, 

and periodic PRI. MLP networks consist of 5 input 

features extracted from the data set, a hidden layer with 

3 neurons and an output with 6 neurons that classifies the 

data set into 6 PRI types. However, the proposed work 

aims to recognize 4 different types of PRIs from the 

dataset, so the number of output neurons was reduced 

from 6 to 4. According to the article, the dataset is 

separated into training and test sections with a 50:50 

ratio. The MLP network was trained for 20 epochs with 

randomly shuffled training and test sets. This process is 

repeated three times and the average of the results specify 

the performance of the model. In order to repeat this 

process, the benchmarking algorithm was run 3 times and 

the confusion matrix of the best performing model is 

given in Figure 5. According to the results in Figure 5, 

the compared algorithm recognizes the constant and 

dwell&switch types better than the agile and stagger 

types. The constant and stagger PRI types mainly false 

detected as agile. On the other hands, dwell&switch and 

agile types are mainly false detected as stagger. However, 

overall performance of the presented method is better 

than the benchmarking algorithm for our data set. 

Furthermore, performance metrics derived from the 

confusion matrix are computed for both the proposed 

model and the benchmark model. In the benchmarked 

algorithm, the average of 3 consecutive runs of the 

algorithm is presented. Table 2 shows the evaluation 

results of both methods in terms of accuracy, macro F1-

score, macro-averaged recall and macro-averaged 

precision performance. The results clearly indicate the 

superiority of the proposed method over the benchmark 

method in classifying 4 different PRI Types. According 

to the experimental results, the proposed methods 

provide a performance improvement of 73.74% in 

accuracy, 79.28% in macro F1-score, 71.90% in acro-

averaged precision, and 71.48% in macro-averaged recall 

metrics. In our proposed method, some elimination 

methods such as harmonic control and repetition count 

control are applied in the PRI calculation stage. Thanks 

to these eliminations, the values that do not belong to the 

real sequence are eliminated and only the values with a 

high probability of being PRI are used in the type finding 

process. Therefore, it is thought that these eliminations 

are effective in giving more accurate results of the 

proposed method. 

 

 



 

 

Table 2. Performance metrics  

Performance metric This study [3] 

Accuracy 0.9325 0.5367 

Macro F1-score 0.9328 0.5203 

Macro-averaged precision 0.9377 0.5455 

Macro-averaged recall 0.9325 0.5438 

 

6. CONCLUSION 

In this study, a new method is proposed to recognize the 

4 different PRI types which are constant, agile, stagger 

and dwell&switch. Proposed method operates in three 

stages. Initially, clustering is performed with the OPTICS 

method. OPTICS clusters the radar PDWs by using 

frequency and pulse width. The method operates well in 

simulations for a large number of clusters, clusters with 

different densities and distributions. Then, a DTOA-

based PRI detection method is used to find the PRI’s in 

the clustered data. Lastly, a rule-based system is 

employed to find the PRI types. Based on the 

experiments, the proposed method achieves the accuracy 

of 98% in agile, 97% in constant, and 89% in stagger and 

dwell&switch PRI types. 

The combination of clustering, PRI finding and PRI 

modulation recognition to accomplish the deinterleaving 

gives good results in this study. In the clustering stage, 

the OPTICS method distinguished all combinations of 

fixed and agile types of frequency and pulse width 

parameters. In the PRI modulation recognition stage, PRI 

finding and identifying 4 different PRI modulations, even 

with different characteristics, are performed. As a result, 

the proposed method is able to deinterleave multiple 

radar signals in the environment according to their 

frequency and pulse width parameters and recognize the 

PRI modulation of each of the clustered radars. Also, the 

clustering performances of K-means and OPTICS for a 

given data set are compared. The results show that 

OPTICS clustering gives better results in the cases of 

close proximity of clusters and different cluster densities 

and shapes. 

The algorithm proposed in this article is open to 

improvement in some aspects. One cluster may contain 

more than one emitter. Additionally, for simulation 

simplicity, we do not use missing and spurious pulses, 

but to work in a real environment, one must work with 

data sets that include these factors. 
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