

NanoEra

Mahmut
YEŞİLYURT 1

1 Department of Computer Technologies, İzmir

Kavram Vocational School, İzmir, Türkiye

Yusuf Ziya AYIK 2,3
2 Department of Management Information

Systems, Graduate School of Social Sciences,

Atatürk University, Erzurum, Türkiye
3 Department of Computer Technologies,

Vocational School of Technical Sciences,

Atatürk University, Erzurum, Türkiye

 Research Article DOI: 10.5281/zenodo.12547651

Comparison of C# and Python programming languages in terms of performance

and coding on SQL server DML operations

 ABSTRACT
Nowadays, there are several computer programming languages and database management systems, and
they have advantages and disadvantages one over another. Databases are essential components of
computer programs, regardless of their language. Thanks to databases, computer programs record the
data that they need or produce and perform the given tasks by retrieving these data when necessary. For
a computer program to run efficiently and quickly, it is essential that both the database and the computer
program are well structured. In this study, C# and Python languages, which are among the most widely
used programming languages out of these various programming languages, have been evaluated in terms
of transaction performance and the amount of code that needs to be written to perform SQL DML (Data
Manipulation Language) operations such as INSERT, SELECT, UPDATE, DELETE operations and print the
results of the operation on the screen via MSSQL database,1 which is one of the most widely used database
management systems. In terms of processing performance, it was observed that neither programming
language provided a significant superiority over the other, although mathematically Python language
seems to have performed better when looking at the processing times. In terms of code size and
readability, although C# is generally considered to be a more readable language in terms of code
readability, in the context of the programs written for this study, there was no difference between the two
programming languages in terms of code readability. In terms of code size, Python provided a clear
superiority. As a result, it has been determined that both languages have superior features compared to
each other, and that there is no definite superiority between these two languages that can be a reason for
preference over each other in DML operations. The choice of language should be based on the
requirements of the project, the ecosystem and the skills of the team.
 Keywords: C#, Python, MSSQL, DML Operations, Code Writing, Performance

INTRODUCTION
Today, information and communication technologies such as computers, mobile devices, the internet,
and many other digital communication tools are widely used, and these technologies deeply affect
social, cultural, economic, and social life. One of the first concepts that comes to mind when it comes
to information and communication technologies is data, and the other is computer software. For this
reason, storing data in a database system through computer software, and retrieving, correcting, or
deleting data when necessary constitutes the basis of information and communication technologies.
In modern software development processes, performing database operations effectively and
efficiently is a critical factor affecting the performance and reliability of applications. Therefore, the
choice of programming language has a direct impact on the effectiveness of the tools used to perform
database operations. C# and Python are currently among the most widely used programming
languages, and both are used to interact with relational database management systems such as SQL
Server. This study aims to make a comparison between C# and Python programming languages in
terms of performance and code writing efficiency in SQL Server Data Manipulation Language (DML)
operations.
One of the main goals of this study is to compare the performance of C# and Python in SQL Server
DML transactions, to determine the impact of each language in terms of transaction execution time,
and to evaluate the impact of each language in terms of performance and code quality, such as code
readability, flexibility, and error handling capabilities.
Based on the results obtained, it will be possible to identify the advantages and disadvantages of C#
and Python in the creation and execution of queries for SQL Server DML transactions and analyze
whether each language is more suitable in specific use cases.

DATABASE MANAGEMENT SYSTEMS
Today, human life is intertwined with information technologies and there is almost no area where
information devices are not available. From daily activities to working life, from health to
entertainment, computers, software and therefore databases and computer programs are integrated
with human beings. This integration has led to many differences in the quantity and quality of data to
be stored and used, and in the way data is retrieved. This has led to different approaches and systems

Received

Accepted

Publication Date

03.06.2024

24.06.2024

30.06.2024

Corresponding author:

Mahmut YEŞİLYURT

E-mail:

umyesilyurt@gmail.com

Cite this article: Yeşilyurt M, Ayık Y S.
Comparison of C# and Python

programming languages in terms of

performance and coding on SQL server

DML operations. NanoEra.

2024;4(1):23-33

Content of this journal is licensed under a

Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License.

https://orcid.org/0000-0001-7318-2878
https://orcid.org/0000-0002-7857-9417

24

NanoEra

in database systems and data models.
Database Management System (DBMS) is a collection of data
categorized in a table or several tables integrated with each
other and an application program that regulates how to access
this data.2 This collection of data is often called a database. The
main purpose of DMS is to provide a way to quickly store and
retrieve the information in the database. Databases allow stored
data to be queried in relation to other data that is related to that
data. In a relational database, data is stored in the form of
relationships or two-dimensional tables, and there is a data
relationship between the tables.3
While the amount of data to be stored is increasing day by day,
the structure of the data to be stored is of great importance in
database design. In addition to the structured data stored in a
certain template, the widespread use of the internet today has
disrupted the traditional data structure and led to the
emergence of unstructured databases. In this context, it would
be more accurate to examine the database model in two groups:
relational databases, where structural data is stored within a
template, and non-relational databases, where data that is not
within a certain template is stored, or, in other words, NoSQL
databases, which do not have to be relational.
Relational Database Systems
Relational Database Systems (RDMS) Organization based on the
relational data model, first proposed by Edgar Frank Codd in
1970 are various software systems used to manage database
systems.4 Although traditional database systems such as the
network data model and the hierarchical data model were used
before relational databases, their use has declined with the
development and more widespread use of relational database
systems.
Relational database systems are the most preferred database
management system for storing structured data whose
structure is defined on a specific template.4 In relational
database systems, data is stored in tables consisting of rows and
columns. Each transaction in relational databases is defined as a
transaction, and these transaction operations work in an all-or-
nothing context. Each transaction must have basic properties
known as ACID. Transactions that do not have ACID basic
properties are not executed and are rolled back. ACID stands for
Atomic, Consistent, Isolated, and Durable.5
ACID principles;5

• Atomic: guarantees the successful completion of an
operation in the database, such as Insert, Update or Delete.
The initial operation cannot be split; it must either be
committed, i.e., applied, or rollback, i.e., canceled.

• Consistent: it guarantees that the data stored in the
database conforms to the predetermined template, that is,
its consistency. When a transaction is committed or
rollbacked, the database must maintain its consistency. If
the transaction completes successfully, the changes are
applied to the database, if it fails, it is automatically rolled
back.

• Isolation: each transaction operation is performed in
isolation, meaning that no other transaction operation can

access the result of this transaction operation until the
transaction is finalized.

• Durable: when a transaction is successfully completed, i.e.,
committed, the result of the transaction is persistent in the
database, no matter what.

The most popular relational databases worldwide are Oracle,
MySQL, Microsoft SQL Server and PostgreSQL.6
NoSQL Database Systems
NoSQL database Systems process large volumes of rapidly
changing data in unstructured form in ways that differ from a
relational database containing rows and tables. NoSQL
technologies have been used under various names since the
1960s. Due to the changes in the data environment, the
popularity of NoSQL database systems is increasing day by day
as software developers have to work with large volumes and a
wide variety of data generated by cloud technologies, social
media platforms, and mobile devices and have to adapt to
change.7
Data from different types of data-sending sources, such as social
media applications, third-party databases, mobile devices, and
smart sensors, is not suitable for storage in a relational model
database system, and this is where non-relational NoSQL
database systems come into play.8
The term "Not only SQL" is a phrase often used for NoSQL
databases. This term emphasizes an approach that is not limited
to SQL queries only, as in traditional relational database
systems. In this way, it aims to take full advantage of the
flexibility that NoSQL databases offer.
NoSQL database systems operate on the basis of certain
principles to meet the requirements of big data and distributed
systems, called BASE which represent the following concepts.9

• Basically Available: This principle emphasizes the flexibility
of the system. NoSQL databases usually offer extensibility
at a high scale and provide extensibility with the flexibility
to work in the system. Certain data records may sometimes
be temporarily unavailable, but generally, the system will
be functional.

• Soft state: This principle refers to consistency and
flexibility. NoSQL databases offer a more flexible approach
to consistency and do not require immediate
synchronization between copies of data. This is critical for
expansion on a larger scale.

• Eventually Consistent: This policy complements the
consistency and flexibility of NoSQL databases. It states
that consistency will eventually be achieved after changes,
but this process may not happen instantly. In this case,
there may be temporary inconsistency between copies of
data, but eventually the system will reach the desired state
of consistency.

These features demonstrate that NoSQL databases offer a
different approach than traditional relational databases and are
better suited to modern applications that require scalability and
flexibility.

25

NanoEra

NoSQL Database Types

• Document-based NoSQL Databases: These types of
databases are used to store and query data in the form of
documents. For example, MongoDB stores documents in
JSON or BSON format. These types of databases usually
allow flexible data structures and dynamic schemas.

• Column-based NoSQL Databases: Column-based databases
are ideal for large amounts of horizontally scaled data.
Examples such as HBase and Cassandra are column-based
databases. They are designed to provide high performance
and scalability.

• Key-value based NoSQL Databases: These types of
databases store data in the form of simple key-value pairs
and are ideal for applications that require fast access.
Databases such as Redis and Amazon DynamoDB are key-
value-based NoSQL solutions.

• Graph-based NoSQL Databases: These databases are used
to store and query relational data. Neo4j is an example of
this type of database. Graph-based databases are ideal for
effectively managing complex relationships and
connections.

• Each type of NoSQL offers different advantages for specific
use cases and requirements. It is important to choose the
most suitable one according to the needs of the application
and the data structure.

• The most popular relational databases worldwide are
MongoDB, Redis, Cassandra, Neo4j .1,10

What Are The Most Used DMSs?
Stack Overflow, a question-and-answer website about computer
programming with more than 50 million users worldwide,

published the following graph about the most commonly used
DMSs in the most popular technologies section of the
"Developer Survey" conducted in 2022.
As seen in this survey of 63,327 computer programmers (Fig 1),
in which participants can choose more than one database
system, the database systems with the highest preference rates
are MySQL, PostgreSQL, SQLite, MongoDB and Microsoft SQL
Server.

Python and C# Programming Languages
Python Programming Language
Python Overview
Python is a general-purpose, interactive, and high-level
programming language. It was started to be developed by Guido
van Rossum in 1991. Its basic philosophy is code readability and
simplicity.11
Python is a programming language that has been accepted
worldwide and has had a wide user base since its first release. It
is used both in academia and industry, from scientific research
to financial analysis.
Technology giants frequently use Python in areas such as
product development and data analysis. Python's popularity is
also supported by the fact that it has become part of university
courses. Its use as a core language in programming courses
encourages students to learn Python and familiarize themselves
with its use in their future professional lives.
Python's powerful standard library and wide module support
make it usable in a variety of fields. Thanks to these features, it
can be used effectively in data analysis, web development,
machine learning, and artificial intelligence, and many more.
Python's flexibility and easy readability make it preferable for
both experienced developers and beginners.12

Fig 1.Survey of the most popular database systems (May-22)1

26

NanoEra

Fig 2. Survey of the most popular programming languages (May-22)1

Figure 2. as can be seen in 'Python', Python has become one of
the most popular programming languages.
We can attribute this to the following features of the Python
programming language.

• Simple and Readable Syntax: Python's simple and
organized syntax makes the code easy to understand.

• High Level Python is a high-level programming language,
meaning that it is user- friendly and does not require
dealing with complex details.11

• Various Modules and Libraries: Python has a very rich
standard library and a large ecosystem of third-party
libraries that can be used in various domains.13

• Portability: Python can run on many platforms (Windows,
Linux, macOS) and offers flexibility in portability.14

• Object Oriented: Python supports the object-oriented
programming paradigm, meaning it can use classes and
objects to model real-world entities.15

• Broad Community Support: Python has a large and vibrant
community of users worldwide, enabling questions to be
answered quickly and solutions to be found.15

Areas of Use
Python's use cases are quite brad and include.12

• Web Development (Django, Flask)

• Data Science and Artificial Intelligence (NumPy, Pandas,
TensorFlow, PyTorch)

• Machine Learning (Scikit-learn)

• Computer Vision (OpenCV)

• Game Development (Pygame)

• REST API and Web Framework Creation

• Python

• Network Programming

• Automation and Scripting

• Scientific Calculations

• Financial Analysis

• Web Reset (Beautiful Soup, Scrapy)

Advantages and Disadvantages Compared to Other
Programming Languages
Advantages of Python:

• Readable and simple syntax

• Extensive library and module support

• Usability on various platforms

• Ideal for rapid prototype development

• It has a large and active community

Disadvantages of Python:

• Slow execution speed: May run slower than languages like
C or C++

• Not suitable for mobile application development

• There is no strong type system, so error detection can be
difficult in large- scale projects

C# PROGRAMMING LANGUAGE
C# Overview
C# is a powerful and modern programming language developed
by Microsoft with an open-source development environment
and is typically used for the Windows platform. C# was
developed by Microsoft in the late 1990s, inspired by Java, C++
and other programming languages, and became the core
language of the .NET platform. Developed by Anders Hejlsberg
and his team, who also partially founded the Delphi language,
the language was officially released as C# 1.0 in 2002.16 C# 2.0
was released with Visual Studio 2005, especially with the

27

NanoEra

language's extended language features, generics, nullable types,
anonymous methods, and other enhancements. C# 3.0 was
released with the .NET Framework 3.5 with the Language
Integrated Query (LINQ) feature, which makes data
manipulation easier and more natural. C# 5.0 in 2012 and C# 7.2
in 2017 included important language improvements such as
async/await, pattern matching, nullable reference types, and
local functions. Since 2019, this language has continued to
evolve and is now used as C# 13, which was released with the
current version .NET 9.17
Here are some of the features that make the C# language
powerful;17

• Object Oriented Programming (OOP): C# is based on the
object-oriented programming paradigm. This refers to an
approach where data and functions are organized into
classes, and interaction between these classes is enabled.
OOP principles increase code reusability, maintainability,
and extensibility.

• Extensive Library Support: C# comes with a rich standard
library. This library can be used to perform a variety of
tasks, such as file processing, network programming,
database access, GUI development and more. Also, the
.NET platform has a large ecosystem of third-party libraries
and tools.

• Advanced Language Features: C# is constantly evolving as
a modern programming language. Features added in
recent years include async/await, LINQ (Language
Integrated Query), nullable reference types. These
features make code more readable, secure, and
performant.

• Comprehensive Development Tools: Comprehensive
integrated development environments (IDEs) such as
Microsoft Visual Studio are available for C# development.
These IDEs facilitate development processes such as
writing, debugging, testing, and deploying code.

As seen in the
Fig, C# has become one of the most popular programming
languages among the most popular programming languages.

Areas of Use
C# is a powerful programming language with broad industrial
and academic support. Its high performance, reliability, and
broad library support allow developers to build complex and
scalable applications on a variety of platforms.17

• Web Development and Web Services: C# is used in
conjunction with technologies such as ASP.NET and
ASP.NET Core to develop web applications and websites.
These technologies offer a powerful infrastructure and
extensive library support.

• Mobile Application Development: C# is used in conjunction
with frameworks such as Xamarin to develop mobile
applications. This enables app development for Android
and iOS platforms in a single code base.

• Game Development: C# is used in conjunction with the
Unity game engine for game development. Since C# is

powerful, the famous game development platform, Unity,
is preferred by many indie and professional game studios.

• Desktop and Console Applications: C# is used in
conjunction with technologies such as Windows
Presentation Foundation (WPF) and Windows Forms to
develop desktop and console applications. This enables the
creation of user-interface-oriented applications for the
Windows operating system.

• Data Science and Analytics: C# is used to perform various
data science and analytics operations on the .NET platform.
In particular, programs written in C# can be used to process
and analyze large data sets.

• Financial Applications: C# is widely used in the
development of financial applications. In particular, it
enables the creation of reliable and performant
applications in the banking and finance sectors.

• Software Agents and Systems: C# is used in the
development of automation tools, system tools,
management tools, and other software tools. This enables
the creation of easy-to-use and powerful tools in many
different industries and business areas.

Advantages and Disadvantages Compared to Other
Programming Languages
Advantages

• Integration with .NET Platform

• Object Oriented Programming (OOP) Support

• Extensive Library Support

• Advanced IDE Support

Disadvantages:

• Platform Dependency

• Learning Curve

• Strict Dependency

• Performance Issues

TEST ENVIRONMENT AND METADOLOGY
Data Preparation
The data that to be loaded into the database with SQL DML
operations is prepared in accordance with the following
guidelines:

• The data was saved in JSON format as 20,000 randomly
generated person data with 10 columns including ItemID,
ItemGuid, Ad, Soyad, Doğum Tarihi, Adres, Telefon,
LisansID, Numara, Özgeçmiş.

• Columns are created in int, uniqueidentifier, datetime,
decimal, and nvarchar data types, which are commonly
used in every database.

• The data is generated using a library called Faker, which
has both a C# and Python library for generating random
data.18 The library and the same data were taken from the
same file and used in both programs.

The generation of the data was done with the following code
snippets.

28

NanoEra

1. List<Kisi> kisiler;
 2. public void Olustur()
 3. {
 4. string sayi, path = string.Empty;
 5. Console.WriteLine("Lütfen oluşturulacak kişi sayısı girin.");
 6. sayi = Console.ReadLine();
 7. int ksayi;
 8. if (int.TryParse(sayi, out ksayi))
 9. {
10. Console.WriteLine("Lütfen kişilerin kayıt edileceği dosya yolunu girin.");
11. path = Console.ReadLine();
12. int i = 1;
13. kisiler = new List<Kisi>();
14. while (i <= ksayi)
15. {
16. Kisi data = new Kisi
17. {
18. ItemID = i,
19. ItemGuid = Guid.NewGuid(),
20. Ad = Faker.Boolean.Random() == true ? Faker.Name.First() : Faker.Name.First() + " " + Faker.Name.Middle(),
21. Soyad = Faker.Name.Last(),
22. Adres = Faker.Address.StreetAddress(Faker.Boolean.Random()) + " / " + Faker.Address.City() + " - " + Faker.Address.Country(),
23. DogumTarihi = Faker.Identification.DateOfBirth(),
24. Numara = Faker.RandomNumber.Next(10000, 500000),
25. LisansID = Faker.Identification.SocialSecurityNumber(),
26. Ozgecmis = Faker.Lorem.Sentence(Faker.RandomNumber.Next(80, 150)),
27. Telefon = Faker.Phone.Number()
28. };
29. kisiler.Add(data);
30. i++;
31.
32. }
33. JSONOlustur(kisiler, path);
34. }
35. Console.WriteLine(string.Format("{0} adet kişi, {1} dosyasına başarıyla kaydedildi. Çıkmak için Enter...",sayi,path));
36. Console.ReadKey();
37. }

Code Snippet 1. The code that generates the test data

1. public class Kisi
2. {
3. public int ItemID { get; set; }
4. public Guid ItemGuid { get; set; }
5. public string Ad { get; set; }
6. public string Soyad { get; set; }
7. public DateTime DogumTarihi { get; set; }
8. public string Adres { get; set; }
9. public string Telefon { get; set; }
10. public string LisansID { get; set; }
11. public decimal Numara { get; set; }
12. public string Ozgecmis { get; set; }
13.
14. public override string ToString()
15. {
16. return string.Format("ItemID:{0}\nItemGuid:{1}\nAd:{2}\nSoyad:{3}\n Adres:{4}}\nDoğum Tarihi:{5}\nTelefon:{6}\n
LisansID:{7}\nNumara:{8}\n Ozgeçmiş:{9}", ItemID, ItemGuid, Ad, Soyad, Adres,DogumTarihi.ToShortDateString()
,Telefon,LisansID,Numara,Ozgecmis);
17. }
18. }

Code Snippet 2. Person class code

29

NanoEra

An example of person data generated using Code Snippet 1 is
shown below in JSON format.

1. {
 2. "ItemID": 1,
 3. "ItemGuid": "3a3b5691-f464-43d8-a56b-c8b2bf88d402",
 4. "Ad": "Hassan",
 5. "Soyad": "Auer",
 6. "DogumTarihi": "1985-09-11T00:00:00Z",
 7. "Adres": "6603 Judd Avenue Apt. 289 / South Ken - Guinea",
 8. "Telefon": "(883)857-2727 x9877",
 9. "LisansID": "157-78-1606",
10. "Numara": 353583.0,
11. "Ozgecmis": "Doloremque suscipit dicta qui consectetur non assumenda quos molestias voluptatem adipisci aspernatur aliquid sint quia ab
ipsum corporis quo consequatur dolores natus dolor quae et consequatur et earum consequatur delectus odit praesentium exercitationem quia
sunt culpa aperiam molestias id modi aut labore exercitationem voluptas illum suscipit dolores dolor sapiente animi optio laborum earum aut
dignissimos et saepe nihil ex deserunt quaerat nesciunt et est at totam odio omnis et sed aut natus earum qui ad et esse rerum temporibus labore
et nihil est velit odit nam non dolores eveniet deserunt et eligendi autem praesentium non laborum placeat ex consequatur asperiores odit
quisquam sed reprehenderit atque fuga laborum aut doloribus sed sit voluptatem omnis et doloribus aut accusamus excepturi quidem totam in
eaque omnis non non sit aut fugit asperiores veniam molestiae consequuntur aut blanditiis aut eaque deserunt cum eos saepe odit harum impedit."
12. },

Code Snippet 3. Sample person data in JSON format

A total of 20,000 non-real-person data was created using Code
Snippet 1 and this data was saved as a file in JSON format. This
file was read into the prepared C# and Python programs and
uploaded into the database, and tests were performed.
Preparation of Database
The database to perform SQL DML operations was created using

Code Snippet 4 created from on the SQL Server 2014 program
installed on the same computer where the test programs run.
The database was named KisilerVT, and has a single table named
TB_Kisiler. The newly created database file is 5.00 MB
(5,242,880 bytes), and the log file is 2.00 MB (2,097,152 bytes).

1. USE [master]
2. GO
3. CREATE DATABASE [KisilerVT]
4. ON PRIMARY
5. (NAME = N'KisilerVT', FILENAME = N'C:\Test\KisilerVT.mdf' , SIZE = 5120KB , MAXSIZE = UNLIMITED, FILEGROWTH = 1024KB)
6. LOG ON
7. (NAME = N'KisilerVT_log', FILENAME = N'C:\Test\KisilerVT_log.ldf' , SIZE = 2048KB , MAXSIZE = 2048GB , FILEGROWTH = 10%)
8. GO

Code Snippet 4. SQL code for creating a KisilerVT database

1. USE [KisilerVT]
 2. GO
 3. SET ANSI_NULLS ON
 4. GO
 5. SET QUOTED_IDENTIFIER ON
 6. GO
 7. CREATE TABLE [dbo].[TB_Kisiler](
 8. [ItemID] [int] NOT NULL,
 9. [ItemGuid] [uniqueidentifier] NOT NULL,
10. [Ad] [nvarchar](50) NOT NULL,
11. [Soyad] [nvarchar](50) NOT NULL,
12. [Adres] [nvarchar](255) NOT NULL,
13. [DogumTarihi] [datetime] NOT NULL,
14. [Telefon] [nvarchar](50) NOT NULL,
15. [Numara] [decimal](6, 0) NOT NULL,
16. [LisansID] [nvarchar](50) NOT NULL,
17. [Ozgecmis] [nvarchar](max) NOT NULL
18.) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]
19. GO

Code Snippet 5. SQL code to create TB_Kisiler table

30

NanoEra

To create the KisilerVT database, and the TB_Kisiler table; Code
Snippet 4 and Code Snippet 5 were used. When the testing of a
language is complete, the database and table were dropped and
re-created for another run using these codes.
Determination of Benchmark Conditions and Scenarios
Comparison Conditions
The conditions for comparison are as follows:

• Both programs were run on the same computer and
through the Console Application in order to provide the
same conditions and to get rid of the advantages and
disadvantages of the IDE.

• The same data file was used in both programs.

• The database and table structure were rebuilt in both
programming languages prior to testing.

• SQL DML operations are performed in the same way and in
the same way from a software point of view, the difference
being the two programming languages and the amount of
code that needs to be written.

• In each comparison scenario, the same process was
repeated three times, and the average of these three times
was taken as the processing time.

Comparison Scenarios
As known, SQL DML operations cover 4 types of operations:
INSERT, SELECT, UPDATE and DELETE.2 Comparison scenarios
were defined for each function. Random ItemID values were
randomly selected between 1 and 20000 (11680) and saved as a
txt file to be used in both programs.
The comparison for the INSERT function was made by adding new
records through the following 3 different scenarios. These are;

• Inserting 20000 records by sending a separate query for
each record,

• Inserting 20000 records by sending a query for every 100
records,

• Inserting 20000 records by sending a query for every 1000
records.

It was determined as adding it to the database and transaction
times were recorded.
The comparison for the SELECT function was done by calling the
records through the following 3 different scenarios. These are:

• Calling 20000 records in a single query and adding them to
the list structure as Person object,

• Calling 5000 records in the order in which they are in the
TB_Kisiler table, that is, in a single query with the TOP
structure and adding them to the list structure as a Person
object,

• Calling 11680 records in a single query with the WHERE
structure over pre-selected ItemIDs and adding them to
the list structure as Person objects.

It was determined as calling from the database and transaction
times were recorded.
The comparison for the UPDATE function was made by updating
the "Ozgecmis" field with the longest data over 3 scenarios with
a new Ozgecmis value defined with the same value in both

programs. These are;

• Updating the "Ozgecmis" field of 20000 records in a single
query,

• Updating 5000 records in the TB_Kisiler table, that is,
updating the "Ozgecmis" field in a single query with the
TOP structure

• Updating the "Ozgecmis" field in a single query with the
WHERE structure over pre-selected ItemIDs of 11680
records,

Updates were made in the database, and transaction times were
recorded.
The comparison for the DELETE function was made by deleting
records in the following three different scenarios. These are;

• Deleting 20000 records from the database in a single query,

• Deleting 5000 records from the database in the order
they are in the TB_Kisiler table, that is, in a single query
with the TOP structure,

• Deleting 11680 records from the database in a single query
with WHERE structure over pre-selected ItemIDs,

Deletion was made from the database and transaction times
were recorded.
Preparatıon of Python and C# Programs
Python Program Codes
The Python program was prepared as 2 different files. These are;
main.py file containing the start function and main functions,
and kisi.py file containing the Kisi class.
C# Program Codes
The C# program was prepared as 2 different files. These are:
Program.cs file containing the start function and main functions,
and Kisi.cs file containing the Kisi class.

COMPARISON OF PERFORMANCE AND CODE WRITING
Performance Comparison
C# Performance Tests and Results
After all tests, the database file size was 81.0 MB (84,934,656
bytes), and the log file size was 214 MB (224,526,336 bytes), even
though there was no data in the database.

Fig 1. Insert operation C# program screenshot

Table 1. C# Program Insert operation times test results (ms)

 Scenario 1 Scenario 2 Scenario 3

1. Operation 3976 811 363

2. Operation 3797 792 323

3. Operation 3802 789 340

Average 3858 797 342

31

NanoEra

Fig 2. Select process C# program screenshot

Table 2. C# Program Select processing times test results (ms)

 Scenario 1 Scenario 2 Scenario 3

1. Operation 97 884 284

2. Operation 69 885 264

3. Operation 75 893 280

Average 80 887 276

Fig 3. Update process C# program screenshot

Table 3. C# Program Update processing times test results (ms)

 Scenario 1 Scenario 2 Scenario 3

1. Operation 66 7105 265

2. Operation 62 7128 269

3. Operation 63 7132 258

Average 64 7122 264

Fig 4. Delete process C# program screenshot

Table 4. C# Program Delete processing times test results (ms)

 Scenario 1 Scenario 2 Scenario 3

1. Operation 597 7017 45

2. Operation 500 6950 42

3. Operation 496 6998 45

Average 531 6988 44

Python Performance Tests and Results
After all tests, the database file size was 94.0 MB (98,566,144
bytes), while the log file size was 247 MB (258,994,112 bytes),
even though there was no data in the database.

Fig 5. Insert process Python program screenshot

Table 5. C# Program Select processing times test results (ms)

 Scenario 1 Scenario 2 Scenario 3

1. Operation 3358 871 436

2. Operation 3139 879 443

3. Operation 3176 878 422

Average 3224 876 434

Fig 6. Select process Python program screenshot

Table 6. C# Program Select processing times test results (ms)

 Scenario 1 Scenario 2 Scenario 3

1. Operation 61 935 237

2. Operation 56 922 235

3. Operation 57 917 240

Average 56 925 237

Fig 7. Update process Python program screenshot

Table 7. C# Program Select processing times test results (ms)

 Scenario 1 Scenario 2 Scenario 3

1. Operation 58 6851 290

2. Operation 55 7245 270

3. Operation 57 6886 224

Average 57 6994 261

32

NanoEra

Fig 8. Delete process Python program screenshot

Table 8. C# Program Select processing times test results (ms)

 Scenario 1 Scenario 2 Scenario 3

1. Operation 538 6778 43

2. Operation 490 7038 44

3. Operation 476 6834 37

Average 501 6883 41

Process Performance Comparison

Table 9. Comparison of both programming languages on Average
Processing times

P
ro

ce
ss

C

A
ve

ra
ge

Tr
an

sa
ct

io
n

D
u

ra
ti

o
n

 (
m

s)

P
yt

h
o

n

A
ve

ra
ge

Tr
an

sa
ct

io
n

D
u

ra
ti

o
n

 (
m

s)

D
if

fe
re

n
ce

R
at

e
 (

%
)

C
o

n
cl

u
si

o
n

Insert - S1 3858 3224 19,66% Python

Insert - S2 797 876 9,87% C#

Insert - S3 342 434 26,80% C#

Select - S1 80 58 38,51% Python

Select - S2 887 925 4,21% C#

Select - S3 276 237 16,29% Python

Update - S1 64 57 12,35% Python

Update - S2 7122 6994 1,83% Python

Update - S3 264 261 1,02% Python

Delete - S1 531 501 5,92% Python

Delete - S2 6988 6883 1,53% Python

Delete - S3 44 41 6,45% Python

Code Writing Comparison
Comparison of Code Size and Readability
C# is a statically typed programming language, which means that
when defining a variable, its type must be specified. For
example, a variable is declared as int a = 5;. Python, on the other
hand, is a dynamically typed language. Here, no need to specify
the type of variables in advance. A variable can simply be
defined like a = 5;. This flexibility gives Python an advantage in
rapid prototyping and code writing. However, in terms of safe
code writing, statically typed languages are safer. Also, on the
code readability side, this makes code readability difficult, and
in large projects, it can be difficult to understand the code when
looking at older code. At this point, statically typed languages
are more advantageous.
The Python program code has a total of 9,688 characters, 203
lines, 891 words, and at a size of 9.46 KB (9,688 bytes).

The C# program codes totaled 16,566 characters, 330 lines, 1770
words, and at a size of 16.1 KB (16,556 bytes).

Table 10. Comparison of both programming languages on code
parameters

Parameter C# Python Ratio Conclusion

Character 16566 9688 71,0% Python

Line 330 203 62,6% Python

Word 1770 891 98,7% Python

Size (KB) 16,1 9,46 70,2% Python

Debugging and Optimization Comparison
Although C# and Python are different software languages, they
both have powerful tools for debugging and code optimization.
C# offers debugging and optimization tools such as Visual Studio
Debugger, Debug and Trace output generation classes
"Debug.WriteLine()" and "Trace.WriteLine()" functions, real-
time debug and break- point support, exception management
with try-cache blocks, and profiling tools. Python, on the other
hand, offers powerful debugging and code optimization tools
with its powerful standard library and specially designed plugins
for debugging. Some of these include the pdb and pdb++
debugger classes, real-time debug and break-point support,
exception handling with try-cache blocks, the pytest and unittest
classes, and the logging class.

CONCLUSION
In this study, two separate computer programs were written to
perform SQL Server DML operations using C# and Python, and
with these programs, the content of the JSON file containing 10
columns and 20,000 rows of data was read with the program,
the data was first converted into a list of objects, and the basic
DML operations were implemented with the programs written
in both languages over the specified process scenarios and
comparisons were made in terms of both performance
measurements and code writing. For performance
measurements, each operation was repeated three times, and
the average of these was considered the processing time.
Evaluation in terms of processing performance: A total of four
operations were performed with three different scenarios, and
although it seems that the Python language performed better
mathematically when looking at the processing times of these
12 operations, it was observed that both programming
languages did not provide a significant superiority over the
other.
Evaluation in terms of code size and readability: In terms of code
readability, C# can be considered a more readable language in a
general context, but in the context of the programs written for
this study, there was no difference between both programming
languages in terms of code readability. Both in the general
context and in the context of the program written within the
scope of this thesis in terms of code size Table 11 when looking
at the results in 'Python has a clear advantage.
Evaluation in terms of debugging and optimization: Both
languages have been shown to have a high level of debugging
and code optimization capabilities, so the main factor that will

33

NanoEra

determine the choice will be fitness for purpose.
As a result, it has been determined that both languages have
superior features compared to each other, and that there is no
definite superiority of these two languages over each other in
DML operations. The choice of language should be based on the
requirements of the project, the ecosystem, and the skills of the
team.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – M.Y.; Design – M.Y.; Supervision
– Y.Z.A., Resources – K.K.; Data Collection and/or Processing –
Y.Z.A., M.Y.; Analysis and/or Interpretation – Y.Z.A., M.Y.;
Literature Search – M.Y; Writing Manuscript – Y.Z.A., M.Y.; Critical
Review – Y.Z.A., M.Y.

Conflict of Interest: The authors have no conflicts of interest to
declare.

 Financial Disclosure: This study received no funding.

REFERENCES

1. Stackoverflow.com. Stack Overflow Developer Survey
2022. Stack Overflow.
https://survey.stackoverflow.co/2022#most-popular-
technologies-misc-tech. Accessed May 11, 2024.

2. Setiyadi D. Database System Development Life Cycle
(DSDLC) on System Libraries for Data Manipulation
Language (DML) Using SQL Server 2008. J Mantik.
2021;5(2):1065-1066.
https://www.ejournal.iocscience.org/index.php/mantik/a
rticle/view/1448/1032. Accessed May 1, 2024.

3. Hakim Lubis J, Muisa Zamzami E. Relational Database
Reconstruction from SQL to Entity Relational Diagrams. J
Phys Conf Ser. 2020;1566(1). doi:10.1088/1742-
6596/1566/1/012072.

4. Codd EF. A Relational Model of Data for Large Shared Data
Banks. Commun ACM. 1970;13(6):377-387.
doi:10.1145/362384.362685.

5. Microsoft Learn. ACID Properties - Win32 apps | Microsoft
Learn. https://learn.microsoft.com/en-
us/windows/win32/cossdk/acid-properties. Accessed May
11, 2024.

6. Taylor P. Most popular relational DBMS 2022 | Statista.
https://www.statista.com/statistics/1131568/worldwide-
popularity-ranking-relational-database-management-
systems/. Accessed May 11, 2024.

7. Azure Microsoft. NoSQL Database - What is NoSQL?
https://azure.microsoft.com/tr-tr/resources/cloud-
computing-dictionary/what-is-nosql-database/. Accessed
May 11, 2024.

8. Amazon.com. NoSQL Nedir? | Non-Relational Databases,
Flexible Schema Data Models | AWS.
https://aws.amazon.com/tr/nosql/. Accessed May 11,
2024.

9. Bektaş G. The Importance of Data Management and the
Role of NoSQL Databases: ACID, CAP, and BASE Concepts

and Principles.
https://medium.com/@bektasguner772/the-importance-
of-data-management-and-the-role-of-nosql-databases-
acid-cap-and-base-concepts-and-principles-
e7c572742098. Accessed May 11, 2024.

10. Innuy. List of Best and Most Popular NoSQL Database 2022.
https://www.innuy.com/blog/list-of-best-and-most-
popular-nosql-database-2022/. Accessed May 11, 2024.

11. Saralıoğlu E. Python Programlama Dili Kullanılarak Uzaktan
Algılama Amaçlı Arayüz Tasarımı [master’s thesis].
Karadeniz Technical University; 2015.

12. Ayvaz U, Çoban A, Gürüler H, Peker M. Python Dilinin
Öznitelikleri, Programlama Eğitiminde ve Yazılım
Dünyasındaki Yeri. Akad Bilişim. 2016;1-6.

13. Summerfield M. Programming in Python 3: A Complete
Introduction to the Python Language. 2nd ed.
http://ifile.it/qx63lw/ebooksclub.org__Programming_in_
Python_3__A_Complete_Introduction_to_the_Python_La
nguage__2nd_Edition_.pdf. Accessed May 9, 2024.

14. Scarlett R. Why Python keeps growing, explained - The
GitHub Blog. https://github.blog/2023-03-02-why-python-
keeps-growing-explained/. Accessed May 11, 2024.

15. Python.org. Python 3 Documentation.
https://docs.python.org/. Accessed May 11, 2024.

16. Kimmel P. Advanced C# Programming. McGraw-
Hill/Osborne; 2002.

17. Microsoft Learn. C# Guide .NET managed language |
Microsoft Learn. https://learn.microsoft.com/en-
us/dotnet/csharp/. Accessed May 12, 2024.

18. Riches O. GitHub - oriches/faker-cs: C# port of the Ruby
Faker gem. https://github.com/oriches/faker-cs. Accessed
May 11, 2024.

https://survey.stackoverflow.co/2022#most-popular-technologies-misc-tech
https://survey.stackoverflow.co/2022#most-popular-technologies-misc-tech
https://www.ejournal.iocscience.org/index.php/mantik/article/view/1448/1032
https://www.ejournal.iocscience.org/index.php/mantik/article/view/1448/1032
https://learn.microsoft.com/en-us/windows/win32/cossdk/acid-properties
https://learn.microsoft.com/en-us/windows/win32/cossdk/acid-properties
https://www.statista.com/statistics/1131568/worldwide-popularity-ranking-relational-database-management-systems/
https://www.statista.com/statistics/1131568/worldwide-popularity-ranking-relational-database-management-systems/
https://www.statista.com/statistics/1131568/worldwide-popularity-ranking-relational-database-management-systems/
https://azure.microsoft.com/tr-tr/resources/cloud-computing-dictionary/what-is-nosql-database/
https://azure.microsoft.com/tr-tr/resources/cloud-computing-dictionary/what-is-nosql-database/
https://aws.amazon.com/tr/nosql/
https://www.innuy.com/blog/list-of-best-and-most-popular-nosql-database-2022/
https://www.innuy.com/blog/list-of-best-and-most-popular-nosql-database-2022/
http://ifile.it/qx63lw/ebooksclub.org__Programming_in_Python_3__A_Complete_Introduction_to_the_Python_Language__2nd_Edition_.pdf
http://ifile.it/qx63lw/ebooksclub.org__Programming_in_Python_3__A_Complete_Introduction_to_the_Python_Language__2nd_Edition_.pdf
http://ifile.it/qx63lw/ebooksclub.org__Programming_in_Python_3__A_Complete_Introduction_to_the_Python_Language__2nd_Edition_.pdf
https://github.blog/2023-03-02-why-python-keeps-growing-explained/
https://github.blog/2023-03-02-why-python-keeps-growing-explained/
https://docs.python.org/
https://learn.microsoft.com/en-us/dotnet/csharp/
https://learn.microsoft.com/en-us/dotnet/csharp/
https://github.com/oriches/faker-cs

