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Introduction 

The concept of the Internet of Things (IoT) refers to the idea 

of various devices interacting and communicating with each 

other over the internet to share data. This concept has 

become highly significant today [1]. As shown in Figure 1, 

this approach is used in a diverse array of applications, from 

industrial systems to smart homes, from healthcare services 

to the agricultural sector [2]. However, this rapid growth 

and widespread use also introduce significant security 

challenges for IoT devices and networks. The increasing 

number of connected devices expands the attack surface, 

making it crucial to address vulnerabilities and protect 

sensitive information from potential threats. 

Security vulnerabilities in IoT networks can arise from 

various sources, including weak authentication 

mechanisms, insufficient encryption, and lack of regular 

software updates. These security weaknesses can be 

exploited, potentially leading to unauthorized access, data 

breaches, and other harmful intrusions. Therefore, 

implementing robust security measures is essential to 

safeguarding IoT environments. 

 

 

 

Figure 1. Internet of things domains of use 

 

Research Article  

 

 

 

 

 

 

 

 

 

 

 

ARTICLE INFO 

Article history: 

 

Received 27 May 2024 

Received in revised form 14 November 2024 

Accepted 25 November 2024 

Available online 23 December 2024 

Keywords: 

 

Internet of things, RPL, Machine 

learning, IDS, Routing attacks 

ABSTRACT 

 
This study analyzes various machine learning techniques for detecting attacks against Routing Protocol 

for Low-Power and Lossy Networks (RPL), a routing protocol commonly used in Internet of Things (IoT) 
applications. RPL is often employed in IPv6-based IoT applications that require low power consumption 

and limited bandwidth. The research reviews recent literature examining attacks on RPL-based networks 

and utilizes the ROUT-4-2023 dataset for detecting routing attacks. This dataset, created using the Cooja 
simulator, encompasses four types of routing attacks: Blackhole Attack, Flooding Attack, DODAG 

Version Number Attack, and Decreased Rank Attack. The attack types are detected using machine learning 

techniques. In the combined dataset, the Decision Tree and Bagging algorithm exhibited the highest 
performance with a 99.99% accuracy. To create a more accurate representation of the real world, we 

incorporate a 10% level of noise into the dataset. On the noisy dataset, Random Forest algorithm performed 

the best with about 84.80% accuracy. The high accuracy show that the employed methods can be 
effectively used as an Intrusion Detection System (IDS) to protect IoT networks. As a result, this study 

demonstrates that machine learning techniques offer a promising approach for detecting routing attacks in 

the RPL protocol. 
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Given the diverse applications and the critical nature of IoT 

deployments, ensuring secure and efficient communication 

is paramount. Among the routing protocols commonly used 

in IoT networks, the Routing Protocol for Low-Power and 

Lossy Networks (RPL) stands out [3]. RPL aims to optimize 

communication in wireless sensor networks while ensuring 

low power consumption for IoT devices. Nevertheless, 

security vulnerabilities and attacks in RPL-based networks 

present a major concern. Intrusion Detection Systems (IDS) 

become an important tool for detecting and preventing 

attacks in RPL-based IoT networks. Machine learning-

based IDS can provide more effective protection through 

methods such as network traffic analysis and identifying 

behavioral patterns [4]. Such systems can protect against 

known attacks by using predefined attack signatures and 

can also detect new and unknown attacks. 

Applying machine learning in IoT not only enhances the 

performance of IoT systems but also allows for more 

efficient management of unpredictable processes. 

Moreover, it increases the effectiveness of these systems by 

reducing human intervention and eliminating the challenges 

of reprogramming [5]. 

The motivation of this study is to investigate the effects of 

using (performance of) machine learning algorithms to 

detect routing attacks in RPL-based IoT networks. In this 

scope, the ROUT-4-2023 [6] dataset representing IoT 

network scenarios with diverse attack types has been 

utilized for the first time to analyze the performance of 

various algorithms, including AdaBoost, KNN, Random 

Forest, Decision Tree, Bagging, Logistic Regression, 

Gaussian NB, Gradient Boosting, Extra Trees, XGBoost, 

ANN, and CNN. This study aims to analyze the ROUT-4-

2023 dataset using machine learning and ANN models to 

assess their effectiveness in detecting attacks within the 

dataset. The ROUT-4-2023 dataset, a comprehensive 

representation of real-world IoT network scenarios with 

various attack types, serves as the basis for comparing the 

capabilities of different algorithms in identifying routing 

attacks. Through this evaluation, we aim to determine the 

impact of machine learning and neural network models on 

detecting and analyzing these attacks effectively. 

The remainder of this study is organized as follows: Section 

RPL introduces the RPL routing protocol, detailing its 

operational mechanisms, core functionalities, and 

significance in IoT networks. This section also highlights 

the features that make RPL suitable for low-power and 

lossy networks. Section Literature reviews related work, 

analyzing previous studies on RPL-based IoT networks, 

including methodologies, findings, and limitations. Section 

Related work focuses on approaches for detecting routing 

attacks in RPL networks. It discusses various machine 

learning algorithms used for IoT security, their strengths, 

and weaknesses. Section Test results present the machine 

learning test results using the ROUT-4-2023 dataset, 

detailing the experimental setup, data pre-processing, and 

performance evaluation criteria. Section Discussion 

analyzes the results in relation to the dataset characteristics 

and algorithm performance, comparing machine learning 

and deep learning models in the context of IoT security 

needs and computational efficiency. Finally, Section 

Conclusion summarizes the key contributions and findings, 

discusses their significance in IoT security, and suggests 

potential directions for future research. 

RPL 

Routing Protocol for Low-Power and Lossy Networks is a 

routing protocol specifically designed for wireless sensor 

networks. This protocol is of great importance, especially 

for applications such as Internet of Things and Smart Grid. 

The goal of the routing protocol is to ensure energy 

efficiency, low latency, and reliable communication in 

wireless sensor networks [7]. One of the main goals of the 

RPL protocol is to route data packets between nodes with 

low energy consumption. Thus, the battery life of the nodes 

in the network is extended and energy resources are used 

more efficiently [8]. 

RPL creates and manages the network topology at the node 

level to enable wireless sensor networks to efficiently 

transmit data. The protocol can create and manage various 

topology structures, for example, using DODAGs 

(Destination Oriented Directed Acyclic Graphs), which are 

hierarchical structures at the node level to ensure efficient 

data transmission. The routing protocol aims to transmit 

data packets with low latency and high reliability while 

minimizing the energy consumption of nodes in the 

network. 

The main features of RPL include the use of node routing 

tables, the creation of network topology through inter-node 

routing messages, the mutual exchange of information 

between nodes, and the ability to determine the functions of 

nodes (e.g. root, parent, and leaf nodes). 

Figure 2 shows the structure for creating DODAGs with 

RPL: 

• DIS (DODAG Information Solicitation) is a type 

of message that nodes use to request DODAG 

information. When a node wants to learn or update 

its DODAG structure, it can request DIO messages 

from neighboring nodes by broadcasting the DIS 

message. DIS messages allow nodes in the 

network to dynamically discover and update the 

DODAG structure. 

• DIO (DODAG Information Object) is one of the 

message types used in the RPL protocol. DIO 

messages are used for nodes in the network to 

create and update the DODAG structure. DIO 

messages broadcast by the root node at regular 

intervals enable other nodes to learn and update 

the DODAG structure. DIO messages contain 

neighboring nodes and routing metrics (e.g., link 

quality, latency) of nodes in the network. This 

information helps nodes determine the best routing 

path. 

• DAO (Destination Advertisement Object) is 

another type of message used in the RPL protocol. 

DAO messages allow nodes to notify neighboring 

nodes of their presence and services, if any. With  
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Figure 2. Structure of building DODAG with RPL

DAO messages, a node introduces itself to its 

parent nodes and indicates that it wants to join the 

network. The parent nodes receive the DAO 

messages, update the network structure, and 

include the node in the DODAG structure. DAO 

messages can also contain the node's child nodes. 

This message enables the creation of downward 

(root to node) routing paths. 

• DAO-ACK (DAO Acknowledgment) message 

type is utilized to confirm the receipt of DAO 

messages. Once a node transmits a DAO message 

to its parent node, it awaits a DAO-ACK message 

to confirm the successful transmission and its 

inclusion in the DODAG structure. 

• Parent List is used to maintain node parents where 

a default parent is used as the default router.  A 

node can forward data packets to its default parent 

node, which creates a cascading connection to the 

Root node of the RPL topology. The Parent List 

helps nodes make routing decisions and determine 

the best path. 

The common use of RPL in various application areas, such 

as IoT and WSN has also increased the security threats in 

these networks. As RPL continues to be widely adopted, the 

prevalence of security vulnerabilities has grown, 

necessitating a more robust approach to safeguarding these 

networks. Various attacks on RPL-based networks can 

compromise both the efficiency and the security of the 

entire network infrastructure. These attacks are particularly 

concerning as they have the potential to disrupt critical 

applications and services reliant on IoT and WSN 

technologies. Additionally, these attacks can culminate in 

node denial of service, where nodes are rendered 

inoperative, thereby severely degrading network 

performance and reliability. The taxonomy of attacks 

against RPL networks is depicted in Figure 3. This figure 

categorizes the various attack types, illustrating the broad 

spectrum of threats that can target RPL-based networks.  

Figure 3. Taxonomy of attacks against RPL networks
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The specific attack types examined in this study are clearly 

marked and highlighted within the figure, providing a visual 

representation of the focus areas of our research. By 

identifying and categorizing these threats, we can better 

understand the potential vulnerabilities and develop more 

effective countermeasures to protect RPL-based IoT and 

WSN networks. 

Literature 

In recent years, with the rapid deployment of IoT devices, 

attacks on RPL-based networks have increased. Many 

research and studies have been conducted to detect and 

prevent these attacks. These studies have been conducted to 

identify the security vulnerabilities of RPL-based networks, 

analyze attack patterns, and develop effective defense 

mechanisms [10]. The results of these studies provide an 

important resource for understanding the vulnerabilities of 

RPL-based networks and taking advanced security 

measures. Table 1 provides summaries of these studies and 

provides guidance to researchers and network 

administrators on attack detection and prevention. 

In 2019, Verma et al. introduce ELNIDS (Ensemble 

Learning-based Network Intrusion Detection System) to 

detect various routing attacks against IPV6 routing 

protocols [11]. The ELNIDS system is specifically created 

to identify and identify seven different forms of routing 

attacks, including Sinkhole (SH), BlackHole (BH), Sybil, 

Clone ID (CID), Selective Forwarding (SF), Hello Flooding 

(HF), and Local Repair. This detection is done using the  

NIDDS17 dataset, as mentioned in the paper [22]. The 

ELNIDS methodology is founded on the utilization of 

ensemble learning, which involves the amalgamation of 

diverse machine learning classifiers. The researchers utilize 

four distinct machine learning classifiers: Boosted Trees, 

Subspace Discriminant, RUSBoosted Tree, and Bagged 

Trees [23], [24]. The authors assess the individual 

performance of each classifier applying distinct evaluation 

and validation measures. Subsequently, they use an 

ensemble model, namely a voting scheme, to enhance the 

classification outcomes. Nevertheless, the process of 

constructing intricate ensemble models may entail 

significant computational expenses, rendering the system 

unfeasible. 

In 2019, Aydogan et al. propose a new technique for 

identifying HF and VN attacks in RPL-based IIoT 

networks. They utilized genetic programming and 

suggested that this approach is the most appropriate 

framework for IIoT environments [12]. Their proposed 

technique uses Genetic Programming in conjunction with a 

centralized IDS to detect and identify threats. The 

implemented framework is installed at the main node to 

oversee the packets of the neighboring nodes. The root 

consistently analyzes the network data and collects 50 

characteristics, which are subsequently utilized to construct 

genetic programming trees. The top-performing individual 

from the previous generation is assessed for both HF and 

DODAG VN attacks, resulting in the development of two 

detection algorithms. The values are acquired by gathering 

data at successive intervals of 500 ms and 5000 ms. The  

Table 1. Comparative analysis of detection methods for 

various RPL-based routing attacks 

Suggested Types of Attacks Methods Used 

Verma et al. [11] 

Sinkhole, 

BlackHole, Sybil, 
Clone ID, Selective 

Forwarding, Hello 

Flooding, Local 
Repair 

Boosted Trees, 

Subspace 

Discriminant, 
RUSBoosted Tree, 

Bagged Trees 

Aydogan et al. [12] 

Version Number, 

Hello Flooding, 

Sinkhole 

Genetic 

programming for 

attacks 

Deshmukh-Bhosale 
et al. [13] 

Wormhole, Hello 
Flooding 

Routing information 

and received signal 

strength indicator 

Farzaneh et al. [14] Local Repair Attack Fuzzy Logic 

Agiollo et al. [15] 

Sinkhole, 

Wormhole, Hello 

Flooding, Version 

Number, Clone ID, 

Local Repair, DIS, 

Selective 
Forwarding 

Signature and 

behavior-based 

detection rule 

Garcia Ribera et al. 

[16] 

Hello Flood Attack, 

DIS Attack, DAO 
Insider Attack, 

Blackhole Attack, 

Greyhole Attack 

a Hybrid IDS 

Alazab et al. [17] 
Blackhole, Selective 
Forwarding, Sybil 

Attacks 

a Decision Tree 
Classifier and a One-

class Support Vector 

Machine Classifier 
(a Hybrid Intrusion 

Detection System) 

Azzaoui et al. [18] 

CIC-IDS2017 
Dataset (DoS, 

DDoS, Brute Force, 

XSS, SQL Injection, 

Infiltration, 

Portscan, Botnet), 

WSN-DS Dataset 
(Blackhole, 

Grayhole, Flooding, 

Scheduling) 

a Lightweight 

Artificial Neural 
Network 

Bokka et al. [19] 

Blackhole, Sybil, 
Selective 

Forwarding, 

Sinkhole, DIO 
Suppression, DIS 

Flooding 

analysis 

Kiran et al. [20] 

DODAG 
Information 

Solicitation (DIS) 

Attack, Version 
Number Attack, 

Decreased Rank 

Attack, Worst Parent 

Selection (WPS) 

Attack 

analysis 

Osman et al. [21] 

Version Number, 
Decreased Rank, 

DIS Flooding 

Attacks 

Ensemble Learning-
based Intrusion 

Detection System 

(ELG-IDS) 

Our work 

Blackhole Attack, 

Flooding Attack, 
DODAG Version 

Number Attack, 

Decreased Rank 
Attack 

AdaBoost, KNN, 
Random Forest, 

Decision Tree, 

Bagging, Logistic 
Regression, 

Gaussian NB, 

Gradient Boosting, 
Extra Trees, 

XGBoost, ANN, 

CNN 
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researchers only examine the accuracy of genetic 

programming in detecting intrusions and reducing false 

positives. They do not explore how intrusion techniques 

affect performance metrics like energy consumption and 

memory usage. In addition, the evaluation of the system 

does not consider factors such as resource requirements, 

scalability, extensibility, and mobility support. 

Deshmukh-Bhosale et al. present a real-time approach for 

identifying wormhole and HF attacks in RPL-based IoT 

networks [13]. Their IDS utilizes the collected signal 

strength to detect nodes that may be engaging in suspicious 

activities. Both centralized and distributed IDS are 

suggested. The findings indicate that the accuracy of 

correctly identifying positive cases is 90% when the 

network is small, consisting of 8, 16, or 24 nodes. However, 

the performance of the method declines noticeably as the 

network size grows. In addition, the authors solely assess 

the impact of IDS on a solitary metric and a solitary attack. 

Furthermore, they disregard the typical issues of mobility 

associated with networks and fail to acknowledge that the 

offered solution relies on static topological information. 

Farzaneh et al. conduct a study utilizing Fuzzy logic to 

detect local repair attacks on IoT networks, specifically 

targeting the RPL routing protocol. The study demonstrates 

that the suggested strategy, implemented using the Contiki 

operating system on the Cooja simulator, effectively detects 

local repair attacks with a significantly high True Positive 

Rate (TPR). The authors of this study assert that the 

proposed approach is a highly efficient means of identifying 

security risks in IoT networks that utilize the RPL protocol 

[14]. 

Agiollo et al. introduce the DETONAR model in RPL, 

which integrates the strengths of anomaly and signature-

based IDS models to effectively identify malicious 

activities in network traffic [15]. This approach utilizes a 

mechanism known as the 'Detector', which employs 

signature and behavior-based detection algorithms to 

identify 14 distinct routing assaults. Additionally, the 

intrusion detection systems are assessed using the 'Routing 

Attacks Dataset' (RADAR). Nevertheless, their strategy 

fails to account for the ever-changing nature of the IoT 

network. Furthermore, the dataset might have been 

examined with regards to the privacy and security of 

Quality of Service (QoS). 

Garcia Ribera et al. develop an IDS for IoT networks 

utilizing the RPL routing protocol. Their objective is to 

precisely and effectively identify many sorts of assaults, 

including different routing and denial-of-service (DoS) 

attacks. The attacks mentioned involve targeted attacks 

against RPL, such as the version number attack, blackhole 

attack, and grayhole attack. The effectiveness of the 

proposed IDS is assessed by a comprehensive analysis of 

the specified assaults and their consequences. This 

evaluation also encompasses the ability to forecast the 

performance of the IDS in terms of its accuracy and 

effectiveness when confronted with the predetermined 

attacks. The results obtained demonstrate a high level of 

accuracy in detection. Moreover, the detected attacks have 

been determined to have a negligible impact on CPU 

utilization and power consumption. More precisely, the rise 

in CPU use is below 2% in every instance, while the average 

increase in power consumption is limited to 0.5% [16]. 

In 2023, a study is undertaken by Ammar Alazab et al. that 

specifically examined the security difficulties associated 

with routing attacks that target RPL in IoT systems based 

on 6LoWPAN. The assaults encompass Flooding assaults, 

Data-DoS/DDoS Attacks, Wormhole Attacks, RPL Rank 

Attacks, Blackhole Attacks, Version Attacks, and Sinkhole 

Attacks. To combat these dangers, they suggest 

implementing a pioneering Hybrid Intrusion Detection 

System (HIDS) that merges a decision tree classifier with a 

class Support Vector Machine classifier. The objective of 

this hybrid technique is to attain a high rate of detecting 

intrusions while keeping the incidence of false alarms low. 

This is accomplished by utilizing the advantages of both 

Signature Intrusion Detection Systems (SIDS) and 

Anomaly-based Intrusion Detection Systems (AIDS). 

Experiments conducted on a dataset of network traffic from 

real IoT devices, including different types of routing 

attacks, have demonstrated that their suggested Host-based 

Intrusion Detection System (HIDS) works better than 

conventional System-based Intrusion Detection Systems 

(SIDS) and Anomaly-based Intrusion Detection Systems 

(AIDS). The HIDS exhibits greater detection abilities and a 

reduced rate of false positives compared to the traditional 

techniques [17]. 

In 2024, Azzaoui et al. propose a streamlined cross-layer 

IDS approach for the IoT called RPL-IDS. This approach 

utilizes the RPL routing protocol and employs certain 

routing parents as artificial neural network (ANN) based 

mitigation agents. The researchers integrate RPL-IDS into 

the Contiki operating system and conducted a 

comprehensive evaluation using the Cooja simulator. The 

empirical findings demonstrate that RPL-IDS is efficient 

and can be implemented on devices with restricted 

resources. The work involves the construction of an IDS 

scheme that use a machine learning technique and may be 

implemented on devices with limited resources. 

Additionally, the results demonstrate that RPL-IDS exhibits 

superior detection rates in comparison to several IDS 

schemes documented in the literature. Furthermore, the 

energy overhead associated with RPL-IDS is nearly 

insignificant [18]. 

In 2024, Bokka et al. introduce a study on the effects of RPL 

routing attacks, which cause disruptions to the regular 

routing operations and structure of IoT networks. The study 

assessed the network's performance under normal 

conditions and five different routing attack scenarios, 

utilizing a range of performance measures. The metrics 

encompass Link data rate, Number of packets generated 

(control and data), Sensor data rate, Packet Delivery Rate 

(PDR), and Packet delivery delay. The text emphasizes the 

susceptibility of IoT devices connected via the RPL 

protocol to routing attacks and underscores the significance 

of protecting them to thwart both internal and external 

attacks. The study, which utilizes simulation, demonstrates 

the crucial importance of robust security measures in  
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Figure 4. Cooja attack models and feature extraction diagram 

safeguarding IoT networks and devices against routing 

attacks [19]. 

Kiran et al. examine the effects of several RPL attacks, 

including DIS attack, version number attack, decreased 

rank attack, and worst parent selection (WPS) attacks. The 

Contiki Cooja network simulator is utilized for the purpose 

of simulation. In addition, a thorough examination of 

various attacks based on RPL is conducted, revealing that 

the WPS attack has a substantial influence on network 

performance in comparison to other assaults [20]. 

In 2024, Osman et al. present an Ensemble Learning-based 

Intrusion Detection System (ELG-IDS) using stacking and 

over-parameter optimization to detect three RPL internal 

attacks (version number, decreased rank, and DIS flooding 

attacks). ELG-IDS uses improved feature extraction and 

genetic algorithm-based feature selection. Their research 

improves the security of IoT networks by using ELG-IDS 

and provides better defense against emerging security 

threats [21]. 

Upon examining the presented studies, it is emphasized that 

RPL-based IoT networks face serious security threats, and 

this underscores the importance of implementing effective 

protection measures against these threats. Especially 

considering the limited resources and the impact of attacks 

on network performance, strong security controls need to be 

implemented. These studies show the necessity of machine 

learning methods, new approaches, and technologies to 

improve the security of IoT networks. 

Related Work 

Description of the ROUT-4-2023 dataset 

The study uses the ROUT-4-2023 dataset, which is made up 

of ".csv" files with four different routing attacks against the 

RPL protocol: the Blackhole Attack (blackhole.csv), the 

Flooding Attack (flooding.csv), the DODAG Version 

Number Attack (dodag.csv), and the Decreased Rank 

Attack (rank.csv). It can see these attacks in Table 2. The 

attack type is given in the Category header. Malicious or 

normal status is kept as Label. Additionally, as shown in 

Table 3, the dataset contains 16 features. 

Table 2. Number of RPL-based routing attacks 

Category Malicious Normal Total 

Blackhole Attack 134282 269852 404134 

Flooding Attack 135576 263206 398782 

DODAG Version 

Number Attack 

170242 297818 468060 

Decreased Rank 
Attack 

139891 229108 368999 

Total 579991 1059984 1639975 

Table 3. Features and descriptions in the ROUT-4-2023 

dataset 

Name/Abbreviation Description 

TIME Simulation time 

SOURCE Source Node IP 

DESTINATION Destination Node IP 

LENGTH Packet Length 

INFO Packet Information 

TR Transmission Rate (per 1000 ms) 

RR Reception Rate (per 1000 ms) 

TAT Transmission Average Time 

RAT Reception Average Time 

TPC Transmitted Packet Count (per second) 

RPC Received Packet Count (per second) 

TTT Total Transmission Time 

TRT Total Reception Time 

DAO DAO Packet Count 

DIS DIS Packet Count 

DIO DIO Packet Count 

Figure 4 illustrates the sequence of steps involved in 

simulating attacks on IoT networks and extracting features 

for analysis using machine learning. The Cooja simulator is 

utilized to expose a network to different attacks, and the 

resulting network traffic is recorded in pcap files. The files 

undergo analysis using Wireshark and are subsequently 

converted to CSV format for feature preprocessing, which 

encompasses data cleaning and normalization. The 

processed data is subsequently utilized to train multiple 

machine learning models for the purpose of identifying and 
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categorizing IoT attacks, culminating in the development of 

an IoT attack detection model. 

Types of attacks 

Blackhole attack 

It is a type of attack that targets data transmission on the 

network. In this attack, attackers receive messages, but 

instead of forwarding them to the destination, they destroy 

them or redirect them to their own devices. Thus, other 

devices on the network realize that their messages did not 

reach the destination and experience communication 

problems [25]. When the Blackhole Attack is carried out by 

an attacker in a strategic position in the network, it can 

isolate many nodes from the network and significantly 

impact network performance [26]. An example Blackhole 

Attack scenario is shown in Figure 5. 

 

Figure 5. RPL blackhole attack 

Flooding attack 

It is a type of attack that involves transmitting large amounts 

of spoofed data to the network to consume communication 

resources on the network or render target devices non-

functional. In this attack, attackers typically send large 

amounts of traffic to the network at a fast rate, consuming 

network resources or exceeding the capacity of the target 

device. Therefore, it becomes difficult for legitimate data 

packets to be processed and reach their destination. 

Flooding Attack can be used to damage the network by 

disrupting or disabling network services [27]. The HELLO 

Flood attack is a type of Flood attack using the RPL 

protocol on a network. In this attack, the attacker Floods the 

network using DIS messages, which are request messages. 

In RPL networks, the attacker can perform the HELLO 

Flood attack either by broadcasting DIS messages to 

neighboring nodes that should reset the trickle timer, or by 

sending a unicast DIS message to a node that should 

respond to a DIO message [26]. Figure 6 shows an example 

of Flooding Attack scenario. 

 

 

Figure 6. RPL flooding attack 

DODAG version number attack 

This attack specifically focuses on exploiting version 

numbers within the Directed Acyclic Graph utilized in the 

RPL protocol. The DODAG Version Number is a crucial 

component of every DIO transmission. This value remains 

constant as it moves down the DODAG graph and is often 

only increased by the root node when the DODAG requires 

reconstruction. A node with an outdated version number 

signifies that it has not been transferred to the new DODAG 

graph and is not suitable for usage as a parent node. A 

malicious actor can modify this field by unlawfully 

increasing the version number of DIO messages as it 

transmits them to neighboring nodes. This form of attack 

has the potential to result in the needless reconstruction of 

the entire DODAG graph. During this attack, the 

perpetrators can control the routing processes in the 

network by substituting the version numbers in DODAG 

with counterfeit or altered values [26], [28]. Figure 7 shows 

an example DODAG Version Number Attack scenario. 

 

Figure 7. RPL DODAG version number attack 

 

 



DUJE (Dicle University Journal of Engineering) 15:4 (2024) Page 783-796 

 

790 
 

Decreased rank attack 

This attack is carried out by manipulating the ranks in the 

routing tables of resource-constrained devices in the RPL 

network. As a result of these manipulations, devices with 

low Rank become favored over other devices in the 

network. By targeting devices with this low Rank, attackers 

can direct the data traffic in the network as they wish. The 

lower the rank in the DODAG graph, the closer the node is 

to the root and the more traffic that node has to manage. As 

a result, many legitimate nodes connect to the DODAG 

network through the attacker. In the RPL protocol, an 

attacker can change the ranking value through the 

tampering of DIO messages [26]. This attack results in the 

inability to perform correct routing operations and can 

prevent or delay data packets from reaching their 

destination [29]. Figure 8 shows an example of a decreased 

rank attack scenario. 

 

Figure 8. RPL decreased rank attack 

Algorithms 

This study utilizes a range of machine learning and deep 

learning algorithms to detect RPL-based routing attacks in 

IoT networks. The selected algorithms, spanning from 

simple to complex models, are chosen for their proven 

effectiveness in classification tasks. By evaluating models 

such as AdaBoost, K-Nearest Neighbors (KNN), Decision 

Tree, Random Forest, Bagging, Logistic Regression, 

Gaussian Naive Bayes (GaussianNB), Gradient Boosting, 

Extra Trees, and XGBoost, as well as artificial neural 

networks (ANN) and convolutional neural networks 

(CNN), we aim to cover a diverse set of approaches for 

comparison [30-33]. 

Tree-based models, such as Random Forest, Decision Tree, 

and Extra Trees, are particularly suitable for classification 

tasks due to their ability to handle complex feature 

interactions and provide high accuracy. Ensemble methods 

like Bagging, AdaBoost, and Gradient Boosting are 

included to examine their robustness and performance 

under different boosting strategies. Additionally, neural 

network models (ANN and CNN) are incorporated to assess 

their potential in learning complex patterns in the dataset. 

Logistic Regression and GaussianNB offer simpler, 

interpretable baseline models to compare against more 

complex algorithms. 

The parameters used in these algorithms are carefully 

selected to optimize performance, and are listed below: 

• AdaBoost was configured with a decision tree as 

its base classifier, and the number of weak 

classifiers was set to 100 to create a strong 

ensemble model. This number of estimators 

provides a balance between detection accuracy 

and computational efficiency, ensuring robust 

performance without excessive complexity. 

• K-Nearest Neighbors (KNN), the number of 

neighbors was set to 1. By focusing on the single 

nearest neighbor, the model aims to increase 

precision in distinguishing between well-separated 

classes within the dataset, which helps improve 

classification outcomes in a simple yet effective 

way. 

• Random Forest was also set to build 100 decision 

trees. With this configuration, the model gains 

both robustness and accuracy, as multiple trees 

reduce the variance in predictions, providing a 

stable output that generalizes well to new data. 

Using 100 trees strikes a balance by ensuring 

sufficient learning capacity without unnecessary 

computational demands. 

• Decision Tree was used without specific 

hyperparameter tuning, as this model inherently 

splits data based on optimal feature values. This 

simplicity allows Decision Trees to perform well 

on their own, especially on datasets with clear, 

interpretable decision boundaries. 

• Bagging, the number of estimators was also set to 

100. This ensures stability and reduces the 

variance in predictions by averaging across 

multiple classifiers, each trained on different 

subsets of the data. This approach reinforces 

model robustness and improves accuracy, 

especially useful for data with potential noise. 

• Logistic Regression, the maximum number of 

iterations was set to 100 to ensure that the model 

had ample opportunity to converge. This 

parameter controls the training duration, balancing 

adequate model tuning with computational 

efficiency. 

• Gaussian Naive Bayes (GaussianNB) was used 

without specific parameter adjustments, as it relies 

on probability distributions and assumes feature 

independence, making it a straightforward yet 

effective choice for classification tasks in this 

study. 

• Gradient Boosting was configured to include 100 

boosting stages, which provides enough stages to 

gradually correct errors from previous models 



DUJE (Dicle University Journal of Engineering) 15:4 (2024) Page 783-796 

 

791 
 

while avoiding overfitting. This balanced 

approach enhances accuracy and helps the model 

perform better on complex data structures. 

• Extra Trees, the number of trees was also set to 

100, like Random Forest. This additional 

randomness in splitting nodes enhances 

generalization and further stabilizes the model’s 

output by reducing prediction variance. 

• XGBoost, the number of trees was set to 100, the 

learning rate to 0.1, and the maximum depth to 3. 

These settings ensure that each tree contributes 

gradually, allowing the model to learn 

incrementally and prevent overfitting. The depth 

limit of 3 helps maintain a simpler model that is 

computationally efficient and performs well on 

structured data. 

• ANN uses the sgd (stochastic gradient descent) 

optimizer with an initial learning rate of 0.05. This 

configuration consists of two hidden layers with 

64 and 32 nodes, respectively, and employs the 

ReLU activation function, which helps capture 

more complex patterns in the data. The adaptive 

learning rate allows efficient training by adjusting 

the learning rate as needed throughout the 500 

training iterations. With a batch size of 32, this 

setup ensures a controlled and gradual learning 

process, making it well-suited for datasets where 

the complexity of decision boundaries benefits 

from a deeper network. 

• For comparison purposes, this Convolutional 

Neural Network (CNN) model was tested to 

evaluate its effectiveness in binary classification 

of RPL-based routing attacks, leveraging both 

convolutional and fully connected layers to 

capture key patterns in the data. The architecture 

begins with a 1D convolutional layer with 32 

filters and a kernel size of 2, using ReLU 

activation to extract local features from the input 

time series data. A subsequent max pooling layer 

with a pool size of 2 reduces dimensionality, 

focusing on the most relevant features while 

minimizing computation and overfitting. The 

output is flattened and passed through a dense 

layer of 50 neurons with ReLU activation, 

enabling the model to learn complex relationships. 

Finally, a single neuron with a sigmoid activation 

outputs a probability score for binary 

classification, and the model is compiled with the 

adam optimizer and binary_crossentropy loss 

function, ensuring effective training and accuracy 

in distinguishing attack instances from normal 

activity. 

Test results 

The tests are performed on the Visual Studio Code platform, 

Python version 3.12, AMD Ryzen 5 5500 3.60 GHz 

processor, and 32 GB RAM. Different files containing 4 

different attack types in the ROUT-4-2023 dataset are 

merged. This merged file is analyzed. 

In the process of feature selection, all 13 features, excluding 

"time, source, destination", are utilized for feature 

extraction. Because these parameters will not be meaningful 

for the nodes that may join the network. The dataset is 

randomly divided into training and test data using 5-fold 

cross-validation (k=5). The results are presented by 

averaging 5 different cross-validation iterations for each 

model. 

Performance metrics 

Explanation of the expressions used in the measurement 

parameters: 

➢ True Positive (TP): This statistic corresponds to 

the number of instances in which the 

IDS accurately identified and detected attacks. 

➢ True Negative (TN): Refers to the count of 

instances where the IDS accurately identified that 

no attacks were present. 

➢ False Positive (FP): This metric quantifies the 

number of instances where an IDS erroneously 

identified an attack when no attack really 

occurred. This encompasses instances where 

IDS erroneously detected and reported an attack 

despite the absence of an actual attack. 

➢ False Negative (FN): Refers to the instances where 

IDS incorrectly indicated that no attack had a 

place, despite the presence of an actual attack. 

➢ Accuracy: Refers to the proportion of correctly 

classified instances. This metric represents the 

proportion of events to total events that IDS 

correctly detected. It is often the most fundamental 

metric used to evaluate the performance of a 

model. The calculation of Accuracy is given in 

Equation 1. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 (1) 

➢ Recall: The ratio of true positives (predicted 

positives) to all positives. Also known as 

sensitivity. The calculation of Recall is given in 

Equation 2. Recall is an important metric that 

evaluates the ability of a model to accurately 

detect the positive class. A high recall value means 

that the model correctly detected most of the 

positive samples, while a low recall value means 

that the model missed some of the positive 

samples or classified them as false negatives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (2) 
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Table 4. Performance Evaluation of Data 

Algorithm  

 

Accuracy 

(%) 

Recall 

(%) 

Precision 

(%) 

F1 Score 

(%) 

Training 

Time (s) 

Prediction 

Time (s) 
AUC Log Loss 

AdaBoost 81.5297 72.2550 74.6953 73.4403 84.5643 1.8047 0.7943 6.6574 

KNN 99.8008 99.7338 99.7030 99.7184 3.5782 24.6636 0.9979 0.0718 

Random Forest 99.9783 99.9678 99.9709 99.9693 113.0783 1.8342 0.9998 0.0078 

Decision Tree 99.9920 99.9872 99.9899 99.9886 4.0960 0.0252 0.9999 0.0029 

Bagging 99.9945 99.9907 99.9937 99.9922 294.4614 2.2958 0.9999 0.0020 

Logistic Regression 72.4614 50.9102 63.8869 56.6651 1.0133 0.0078 0.6758 9.9258 

Gaussian NB 71.7257 53.6537 61.4907 57.3055 0.2468 0.0546 0.6763 10.1910 

Gradient Boosting 90.6458 90.6384 84.1389 87.2671 170.6360 0.2920 0.9064 3.3715 

Extra Trees 99.9617 99.9405 99.9512 99.9458 58.3624 2.9720 0.9995 0.0138 

XGBoost 89.9186 90.0350 82.9247 86.3333 1.5107 0.0531 0.8994 3.6336 

ANN 95.6652 93.5362 94.1708 93.8456 3396.4120 0.1137 0.9518 1.5623 

CNN 87.9658 80.0843 85.1612 82.4647 313.6185 7.0707 0.8618 4.3375 

➢ Precision: The ratio of predicted positives to true 

positives (true positives and false positives). That 

is, the percentage of data points that the model 

predicts as positive is correct. The calculation of 

Precision is given in Equation 3. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 (3) 

➢ F1 Score: A measure that balances precision and 

recall. It is more useful for low precision and low-

recall models. The calculation of F1 Score is given 

in Equation 4. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
× 100 (4) 

➢ Training Time: Represents the training time of the 

model in seconds. This is the time it takes to train 

the model on a given training dataset. 

➢ Prediction Time: Represents the model's 

prediction time in seconds. That is, the time it 

takes the trained model to predict new data points. 

➢ AUC: Represents the area under the Receiver 

Operating Characteristic (ROC) curve. This area is 

used to evaluate the classification performance of 

the model. The closer to 1, the better the 

performance of the model. 

➢ Log Loss: Represents the logarithmic loss value. It 

measures how far the model's predictions are from 

the true labels. A lower log loss indicates better 

model performance. The calculation of Log Loss 

is given in Equation 5. 

(yi): True label (0 or 1) 

(yî): Estimated probability (between 0 and 1) 

𝐿𝑜𝑔 𝐿𝑜𝑠𝑠 = −
1

𝑛
∑(𝑦𝑖 𝑙𝑜𝑔(𝑦�̂�)

𝑛

𝑖=1

+ (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑦�̂�)) 

(5) 

 

Performance evaluation 

Table 4 shows the performance of different machine 

learning algorithms. Performance metrics include 

Accuracy, Recall, Precision, F1 Score, training time, 

prediction time, AUC, and Log Loss. 

The AdaBoost model provided an Accuracy of 81.53%. 
Recall and Precision are 72.25% and 74.70% respectively. 
The F1 score is 73.44%. The training time is 84.56 seconds, 
while the prediction time is 1.80 seconds. The AUC is 
0.7943 and Log Loss is calculated as 6.6574. 

KNN model has the highest accuracy rate with 99.80% 
accuracy rate. Recall is 99.73%, Precision is 99.70% and F1 
score is 99.72%. Training time is 3.58 seconds and 
prediction time is 24.66 seconds. AUC is 0.9979 and Log 
Loss is 0.0718. 

The Random Forest and Decision Tree algorithms have 
very high accuracy rates (99.98% and 99.99%). Other 
performance metrics are also very high. Training times 
increase depending on the number of decision trees. 

The Bagging algorithm demonstrates the highest 
performance among the evaluated machine learning 
algorithms, achieving an exceptional accuracy of 99.99%. 
It also exhibits outstanding results in recall (99.99%), 
precision (99.99%), and F1 score (99.99%). These high 
values underscore the model's robustness and reliability in 
detecting and classifying RPL-based routing attacks. 
However, the Bagging algorithm's training time is 
significantly longer than the other algorithms, taking 294.46 
seconds. This extended training duration is a trade-off for 
its superior accuracy and robustness. The algorithm's ability 
to aggregate multiple decision trees enhances its 
performance but also increases computational complexity 
and resource requirements. Despite this, the Bagging 
algorithm remains highly effective choice for scenarios 
where accuracy and robustness are paramount, and the 
available computational resources can accommodate the 
increased training time. 

Logistic Regression yields a lower accuracy rate at 72.46%, 
with Recall at 50.91% and Precision at 53.69%. The model's 
F1 score stands at 56.67%, and training and prediction times 
are 1.01 seconds and 0.0078 seconds respectively, making 
it a fast but less reliable option for this context. AUC is 
0.7373, and Log Loss is high at 9.9258. 
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Table 5. Performance Evaluation of Noisy Data 

Algorithm 
Accuracy 

(%) 

Recall 

(%) 

Precision 

(%) 

F1 Score 

(%) 

Training 

Time (s) 

Prediction 

Time (s) 
AUC 

Log 

Loss 

Accuracy 

Deviation 

(%) 

AdaBoost 74.4405 68.5732 72.9462 69.5364 371.7664 2.3089 0.7931 0.6121 -7.0892 

KNN 80.0297 78.1973 78.1546 78.1755 4.5428 223.8360 0.7820 7.1980 -19.7711 

Random Forest  84.7978 81.5923 84.5195 82.6986 732.0494 6.2169 0.9182 0.3408 -15.1805 

Decision Tree 77.9885 76.0722 75.9234 75.9958 47.5945 0.0777 0.7607 7.9337 -22.0035 

Bagging  84.5792 81.5007 84.1192 82.5133 2972.2421 6.9626 0.9151 0.3539 -15.4153 

Logistic Regression 72.4199 67.5026 69.8124 68.1653 2.3690 0.0082 0.7373 0.5609 -0.0415 

Gaussian NB 71.8279 67.7259 69.011 68.1852 1.2164 0.0479 0.6784 0.8238 +0,1022 

Gradient Boosting 78.5013 74.5297 77.0944 75.4244 767.7227 0.3091 0.8552 0.4467 -12.1445 

Extra Trees 84.6286 81.3143 84.4100 82.4655 132.4850 9.1348 0.9171 0.3463 -15.3331 

XGBoost 78.4861 74.4181 77.1341 75.3477 2.0502 0.0569 0.8531 0.4485 -11.4325 

ANN 83.7789 80.4484 83.3294 81.5252 1850.0085 0.11329 0.9128 0.3406 -11.8863 

CNN 81.7325 77.4846 81.6391 78.7808 321.4079 7.3378 0.8902 0.3814 -6.2333 

Gaussian NB shows an accuracy rate of 71.73%, with 
Recall at 53.63% and Precision at 61.49%, resulting in an 
F1 score of 57.30%. The model's training and prediction 
times are notably short at 0.246 and 0.0546 seconds 
respectively. AUC is relatively low at 0.6763, and Log Loss 
is high at 10.1910, indicating limited applicability for this 
application. 

Gradient Boosting achieved an accuracy of 90.65%, Recall 
at 89.63%, and Precision at 84.14%, giving an F1 score of 
87.27%. Training time is considerable at 170.63 seconds, 
while prediction time is 2.92 seconds. AUC stands at 
0.9064, and Log Loss is 3.3715, showing reliable but 
computationally intense performance. 

Extra Trees achieved an accuracy of 99.96%, with Recall at 
99.94%, Precision at 99.95%, and F1 score at 99.94%. 
Training time is 58.36 seconds, and prediction time is 2.97 
seconds. AUC is high at 0.9995, and Log Loss is low at 
0.0138, making it a strong choice. 

XGBoost achieved an accuracy of 99.91%, Recall at 
99.03%, and Precision at 99.03%, resulting in an F1 score 
of 99.03%. The training time is 112.07 seconds, and the 
prediction time is 2.53 seconds. AUC is 0.9994, and Log 
Loss is 0.0249, indicating high reliability and confidence in 
predictions. 

The ANN model achieved an accuracy of 95.66%, 
indicating high classification performance. It has a recall of 
93.53%, precision of 94.17%, and an F1 score of 93.84%, 
which demonstrate its effectiveness in correctly identifying 
both positive and negative cases. The model's AUC is 
0.9518, reinforcing its strong performance in distinguishing 
between classes.  However, the training time for ANN is 
notably high at 3396.41 seconds, which highlights the 
model's computational demands. The prediction time is 
relatively low at 0.1137 seconds, making it efficient during 
the testing phase. This setup suggests that while ANN 
requires substantial resources for training, it provides a 
robust performance and quick predictions, making it 
suitable for applications where high accuracy is prioritized 
over training speed. 

CNN achieved an accuracy of 87.97%, Recall of 80.08%, 
and Precision of 85.16%, with an F1 score of 82.46%. 
While the training time is lengthy at 313.62 seconds, AUC 
is 0.8618, and Log Loss is 4.3375, making it suitable for 

tasks involving complex feature extraction at the expense of 
computational efficiency. 

As a result, when model performances are analyzed, it is 
seen that the Bagging model shows the highest 
performance. However, ANN has the longest training time 
among the models. The Decision Tree model stands out 
with its high accuracy rate and very low training and testing 
times. It is important to take this into consideration when 
making a choice in the application context.Given the critical 
importance of attack detection in IoT networks, where 
timely and accurate identification of threats is crucial for 
maintaining network security and performance, selecting 
the appropriate model is essential. The effectiveness of 
these models directly impacts the ability to safeguard IoT 
environments against malicious activities. 

Performance evaluation of noisy data 

In this study, we also test the performance of machine 

learning algorithms on noise-added data. In the real world, 

data is not always clean and error-free. Noise is inevitable 

in data collection processes. Testing how algorithms deal 

with noisy data increases the reliability of models in real-

world applications. 

For noise, a certain level of random normally distributed 

noise is added to the feature values of the dataset. The noise 

level is determined by multiplying the standard deviation of 

the data by 10%. This process is used to simulate real-world 

data collection errors. The noise addition process involves 

the following steps: 

The noise level is determined. This level determines the 

magnitude of the added noise. The noise level ( σ𝑛𝑜𝑖𝑠𝑒) is a 

ratio of the standard deviation of the available data. Random 

noise is generated for each feature. This noise is generated 

by random numbers drawn from a normal distribution 

(Gaussian distribution), as shown in Equation 6: 

𝑛𝑜𝑖𝑠𝑒𝑖 ∼ 𝒩(0, 𝜎𝑛𝑜𝑖𝑠𝑒 ⋅ 𝜎𝑖) (6) 

- (𝑛𝑜𝑖𝑠𝑒𝑖): Random noise for column  𝑖  

- (σ𝑖): Standard deviation of column  𝑖  

- (σ𝑛𝑜𝑖𝑠𝑒): Noise level (σ𝑛𝑜𝑖𝑠𝑒 = 0.1) 
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The generated random noise (𝐷𝑛𝑜𝑖𝑠𝑦) is added to a copy of 

the original data set (𝐷𝑛𝑜𝑖𝑠𝑦𝑖
), as shown in Equation 7: 

𝑫𝒏𝒐𝒊𝒔𝒚[: , 𝒊] = 𝑫[: , 𝒊] + 𝒏𝒐𝒊𝒔𝒆𝒊 (7) 

- 𝐷[: , 𝑖]:  𝑖  column of the original data set 

-𝐷𝑛𝑜𝑖𝑠𝑦[: , 𝑖]:  𝑖  column of the noise-added data set 

There are no negative values in the dataset, so Equation 8 is 

used to take the absolute value of all values in column 𝑖. in 

the matrix 𝐷𝑛𝑜𝑖𝑠𝑦 , making negative values positive. 

𝑫𝒏𝒐𝒊𝒔𝒚[: , 𝒊] = |𝑫𝒏𝒐𝒊𝒔𝒚[: , 𝒊]| (8) 

Analysis of noisy data is given in Table 5. The Accuracy 

Deviation (%) column represents the difference in accuracy 

between the noisy and original data, expressed as a 

percentage. According to Table 5, the Random Forest 

algorithm achieves the highest accuracy on noisy data, with 

an accuracy of 84.79%, recall of 81.59%, precision of 

84.51%, and F1 score of 82.69%. Additionally, it has an 

AUC of 0.9182 and a Log Loss of 0.3408, which 

demonstrates the Random Forest algorithm’s robustness in 

handling noisy data effectively. 

In contrast, the Decision Tree algorithm experiences a 
significant decrease in accuracy on noisy data, achieving an 
accuracy of 77.98%, recall of 76.07%, precision of 75.92%, 
and F1 score of 75.99%. The AUC for Decision Tree drops 
to 0.7607, and Log Loss increases to 7.9337, indicating that 
the Decision Tree algorithm is notably more sensitive to 
noise. This is likely due to the Decision Tree's reliance on a 
single tree structure, making it more susceptible to noise or 
outliers, which can cause larger fluctuations in accuracy. 

Both Random Forest and Bagging mitigate this issue by 
employing multiple decision trees, which collectively 
reduce the influence of individual tree errors and enhance 
model generalization. This ensemble approach diminishes 
the sensitivity to noise, making them more resilient. 
However, in this study, Random Forest not only 
outperforms Bagging in terms of accuracy but also achieves 
faster results due to its methodology of using a random 
subset of features for each tree. This approach decreases 
training time and further minimizes the correlation between 
trees, giving Random Forest an edge over Bagging. 

Bagging, on the other hand, trains each decision tree on the 
full set of features, requiring more computational power and 
time. This model often involves a larger number of trees to 
achieve a strong generalization, which extends the training 
duration. While Bagging provides a highly robust and 
resilient model, it is more resource-intensive compared to 
Random Forest. The results in Table 5 demonstrate that 
Random Forest not only achieves a faster training time but 
also exhibits higher accuracy and robustness within the 
context of noisy data, outperforming Bagging. 

Other algorithms, such as KNN and Gradient Boosting, also 
show reasonable resilience to noise, with accuracy rates of 
80.30% and 85.50%, respectively. However, Logistic 
Regression and Gaussian NB exhibit lower performance, 
with Logistic Regression achieving 72.42% accuracy and 

Gaussian NB achieving 71.82%, highlighting their 
limitations in handling noisy data effectively. 

Finally, the neural network models ANN and CNN present 
varying performance levels under noisy conditions. While 
ANN and CNN demonstrate relatively high accuracy levels 
of 83.78% and 81.73%, respectively, the training times are 
considerably longer, particularly for ANN. This suggests 
that while neural networks can adapt to noisy data, they may 
require extensive computational resources, which could be 
a consideration in resource-constrained environments. 

In summary, Random Forest stands out as the most effective 
model for handling noisy data, combining high accuracy, 
reasonable training time, and resilience against noise, 
making it a suitable choice in noisy environments. 

Discussion 

In this study, various machine learning algorithms were 

evaluated for detecting RPL-based routing attacks using the 

ROUT-4-2023 dataset. Results show that tree-based 

models, especially Random Forest, Decision Tree, and 

Bagging achieved higher accuracy and outperformed deep 

learning models like ANN and CNN. This can be attributed 

to the structure of the dataset, which allows tree-based 

algorithms to effectively separate attack types, resulting in 

superior performance without the computational 

complexity of deep learning models. 

Due to the novelty of the ROUT-4-2023 dataset, 

comparisons with prior studies were not possible, as this 

dataset has not been previously used in the literature. This 

limitation highlights the need for further studies utilizing 

ROUT-4-2023 to establish a broader comparative 

framework. 

Overall, the distinct features of the ROUT-4-2023 dataset 

enabled tree-based methods to provide efficient and 

accurate classifications. While ANN and CNN showed 

potential, their longer training times and computational 

demands did not yield notable benefits over simpler, 

interpretable tree models in this case. Future studies could 

explore deep learning approaches further on larger or more 

complex datasets to reassess their effectiveness in this 

context. 

Conclusion 

This study evaluated the effectiveness of various machine 

learning algorithms for detecting RPL-based routing attacks 

in IoT networks. Using the ROUT-4-2023 dataset, we 

demonstrated that tree-based models, particularly Decision 

Tree, Bagging, and Random Forest, achieved high 

accuracy, with Decision Tree and Bagging reaching an 

impressive accuracy of 99.99% on the combined dataset. To 

represent real-world conditions, a 10% noise level was 

added to the dataset, where Random Forest performed the 

best with an accuracy of approximately 84.80%. These high 

accuracy rates underline the suitability of machine learning-

based IDS for classifying attack types in RPL-based 

networks, enhancing security and resilience in low-power 

and lossy network environments. On the other hand, due to 
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the easily separable nature of the dataset, more complex 

models like ANN and CNN did not achieve similarly high 

performance, underscoring that simpler models can be 

highly effective for this specific dataset. Our results 

highlight the advantages of machine learning in fortifying 

RPL protocol security, establishing a solid foundation for 

further research. Future studies may explore more advanced 

models, such as deep learning, to assess their potential in 

improving detection capabilities. Additionally, real-world 

testing across diverse IoT settings would be essential to 

validate the practical applicability and robustness of these 

models in live environments. 
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