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Abstract: Determining canopy cover (CC) temporal variation is critical for sustainable management of natural resources and 

environmental protection efforts. Data analysis and interpretation methods for remote sensing are important for understanding these 

changes and adapting to natural systems. In this study used the Parcel Identification System (LPIS) database physical blocks as field 

ground data. In the study area, agricultural areas were determined from LPIS data, including classes A0, A1, A3, A4, S1, T0, and T1, and 

a total of 8424 physical blocks and an area of 14651.9 hectares were evaluated. CC estimates were made using 3-m spatial resolution 

Planet Scope multispectral satellite images of July and August 2023, and it was determined that there were significant differences in 

parcel-based distinctions, especially in parcels A0, A1, T0, and T1 (P<0.05). According to the study results, it was determined that using 

the estimated CC data, the A0 (69.27%) and T0 (30.43%) land cover types could be successfully used to determine the changes in the 

phenological period caused by environmental impact assessment such as climate change. At the same time, this study contributes to 

the rapid monitoring of agricultural production areas caused by climate change by using physical blocks of agricultural land classes 

within the LPIS data, the rapid determination of agricultural land management, and support payments with remote sensing data. In 

this regard, the use of modern technologies and data analysis methods will contribute to increasing agricultural sustainability.  
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1. Introduction 
Population increase and climate change have a significant 

impact on the dynamics of natural ecosystems and 

agricultural areas (Demir, 2024). Understanding and 

monitoring these changes are crucial for preserving 

natural ecosystems and ensuring agricultural 

sustainability. Remote sensing techniques offer effective 

methods for monitoring these changes (Demir, 2023). 

Multispectral remote sensing programs, such as Landsat, 

Sentinel, Spot, IKONOS, WorldView, GeoEye, KOMPSAT, 

SkySat, MODIS, Gaofen, Pleiades, and PlanetScope, 

provide crucial spectral data across various regions of 

the electromagnetic spectrum (Vos et al., 2019). These 

data offer insights into plant properties such as leaf 

pigment concentration, water content, and internal 

structure, contributing to the effectiveness of remote 

sensing applications in agricultural and biodiversity 

research (Selim and Sönmez, 2015; Damm et al., 2018; 

Hatfield et al., 2019; Berger et al., 2022; Selim et al., 2022; 

Esetlili et al., 2022; Le et al., 2023; Demir et al., 2024; 

Aljanabi et al., 2024; Demir and Başayiğit, 2024). 

Vegetation dynamics play a pivotal role in agricultural 

productivity, providing insights into plant health and 

growth. Canopy cover (CC), which represents the 

proportion of ground covered by photosynthetically 

active vegetation, is a key indicator of plant growth and 

health (Tucker, 1979; Pei et al., 2018). This metric is 

widely utilized in various applications, including crop 

canopy growth measurement, radiation interception, and 

evapotranspiration partitioning in hydrological and 

agricultural modeling (Trout et al., 2008; Talsma et al., 

2018; Ghiat et al., 2021; Tenreiro et al., 2021; Qin et al., 

2023; Oliveira et al., 2024). 

The Normalized Difference Vegetation Index (NDVI) is a 

commonly used tool for defining CC and is employed in 

both proximal and remote sensing methods (Tenreiro et 

al., 2021; Carella et al., 2024; Theime et al., 2024). In 

addition, several other vegetation indices have been 

developed alongside the NDVI to characterize vegetative 

diversity. Many indices have been created to characterize 

vegetative diversity in addition to the NDVI (Rouse et al., 

1974; Huete, 1988; Clevers, 1989; Baret and Guyot, 1991; 

Pinty and Verstraete, 1992; Kaufman and Tanre, 1992; 

Rondeaux et al., 1996; Basso et al., 2004; Gitelson, 2013; 

Hassan et al., 2018; Kumar et al., 2018). Despite 
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theoretical promises of improvement over NDVI in 

addressing soil background and atmospheric influences, 

NDVI remains widely used due to its accessibility and 

user-friendliness across satellite and remote sensing 

platforms (Rondeaux et al., 1996; Gitelson, 2013; Hassan 

et al., 2018; Gong et al., 2023; Kumar et al., 2024; Demir 

et al., 2024). Remote sensing-based CC estimation is 

becoming increasingly useful for calibrating models in 

spatial analysis of cropping systems. Effective CC 

estimation models can be created using the multispectral 

image’s NDVI and other vegetation indices. This 

approach is less expensive and requires less time than 

standard in situ measurements. Trout et al. (2008) used a 

handheld multispectral digital camera to measure the 

canopy cover of 11 different horticultural crops in 30 

fields on the west side of California’s San Joaquin Valley. 

They compared the results with NDVI values computed 

from Landsat 5 satellite images. The study found a strong 

correlation (R²=0.95, P<0.01) between NDVI and canopy 

cover, with an average absolute error of 0.047 up to 

complete coverage. Tsakmakis et al. (2021) established 

an effective model for assessing canopy cover (CC) in 

maize fields. They examined the link between the NDVI 

values obtained from the Sentinel satellite images and 

the on-site CC, obtaining an R2 greater than 0.98. Thieme 

et al. (2024) studied the comparability between ground-

based and spaceborne sensors for assessing the 

biophysical characteristics of winter cover crops. Their 

research focused on measuring biomass and fractional 

vegetative groundcover using SPOT 5, Landsat 7, 

WorldView-2 satellite imagery, and handheld 

multispectral proximate sensors. They found that surface 

reflectance imagery demonstrated greater associations 

with proximal sensors than with top-of-atmosphere data. 

Surface reflectance NDVI showed high agreement with 

proximate sensor-derived fractional green cover and 

biomass, with modified R2 values of 0.96 and 0.95. 

Studies have repeatedly revealed a strong association 

between CC and NDVI, although this relationship may 

differ among crop species. Standardized correlations are 

consequently required to reduce uncertainty when 

forecasting CC using the NDVI. Despite these limitations, 

NDVI remains a valuable tool for estimating vegetation 

characteristics. 

In summary, NDVI-derived vegetation indices using 

multispectral remote sensing data provide a viable 

method for quantifying canopy cover and understanding 

vegetation dynamics. These indexes help improve the 

accuracy of agricultural and environmental responses to 

climate change by supporting the development of canopy 

cover prediction models. 

The aim of this study was to determine the possibility of 

merging Parcel Identification System (LPIS) data with 

high-resolution satellite images to evaluate canopy cover 

in LPIS-based subsidy programs. In addition, we intend 

to investigate these inconsistencies at the parcel level by 

using canopy cover data to address variations in the 

phenological stages in response to weather differences. 

The results of this study can have a substantial impact on 

agricultural policies and encourage the adoption of 

sustainable farming practices. 

 

2. Materials and Methods 
2.1. Field Description  

The study area is located within the borders of the 

Gelendost district in the province of Isparta in Türkiye's 

Lakes Region. It extends between coordinates 310725–

340359 east and 4202796–4232165 north (Zone 36, 

UTM-m) (Figure 1). The Gelendost district, which covers 

the study area, has a surface area of 610.95 km2, 

according to the General Directorate of Maps. The district 

is located 81 kilometers from Isparta's center at an 

elevation of 913–2213 m. Positioned on the eastern side 

of the Eğirdir lake, the district experiences a transition 

between Mediterranean and Central Anatolian climates. 

Mediterranean climate effects are prominent in low-lying 

areas because of the lake effect, transitioning to a cooler 

and rainy climate with increased altitude toward the 

mountains. The study area, located near the Eğirdir lake, 

has experienced an average total precipitation of 433.2 

mm and an average temperature of 14.5 °C for many 

years (1990–2020) (MGM, 2024).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study area location map. 
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Figure 2. Changes in precipitation and temperature regimes for the years 2022-2023 in the study area. 

 

The distribution of agricultural land use in the study area 

in 2023 by product group was determined. Within the 

farmland of fruits, beverages, and spice plants, apples are 

produced at 91.7%. In the farmland of vegetables, garlic 

accounts for 41.9%, with 12.6% being tomatoes, 11.2% 

being melons, 8.9% being cucumbers, and 5.6% being 

bean production. In the farmland of grains and other 

plant products, 42% consists of durum wheat, 35% 

barley, and 10.5% safflower production (TurkStat, 2024). 

2.2. Climate Data 

Climate data plays a crucial role in agricultural 

production, affecting various aspects of crop cultivation. 

It influences phenological dates, delaying the maturation 

of annual crops and affecting the flowering period in fruit 

orchards, thereby influencing fruit set and quality (Çakır 

et al., 2021; Yalçın et al., 2021; Yılmaz et al., 2021; Kazemi 

et al., 2023; Ličina et al., 2024). The impact of climate 

parameters on agriculture directly influences the plant 

growth cycle, harvest timing, and productivity. The 

monthly average temperature and precipitation data for 

the study area in 2022 and 2023 were obtained from 

station number 18114 of the General Directorate of 

Meteorology (MGM, 2024). Monthly variations are shown 

in Figure 2.  

In 2022, there was 441.4 mm of precipitation overall; in 

2023, there was 374.8 mm. As a result, 2023’s total 

precipitation was 66.6 mm less than 2022’s. Thus, the 

increase in temperature data is influenced by the 

decrease in precipitation. In 2022 and 2023, the annual 

average temperature was 13.2°C and 14.1 °C, 

respectively. As a result, the average temperature in 

2023 rose by 0.9 °C over 2022. 

2.3. Land Parcel Identification System Database 

One of the main components of the European Union's 

IACS (Integrated Administration and Control System) is 

the Land Parcel Identification System (LPIS), a system 

that precisely defines each and every agricultural land 

parcel in member states. Up until 2003, member 

countries mandated its use. Under the scope of EU 

membership negotiations, Türkiye began implementing 

LPIS in 2003. In 2016, LPIS data for the entire nation 

were established using physical block reference systems 

(Anonymus, 2024). There are five-year updates to the 

LPIS data (Şimşek and Durduran, 2022). The 

administration of agricultural land, assistance payments, 

and the execution of environmental protection measures 

all heavily depend on this update. The parcel data used in 

this analysis were obtained from the LPIS database. The 

LPIS database’s agricultural land cover categories 

allowed us to choose classes that corresponded to arable 

areas for our study. The classes of land use status within 

the study area of the LPIS data are as follows: arable land 

(A0), arable land with sparse (scattered) trees (A1), 

mixed agricultural regions (A3), greenhouses (A4), 

continuous bush product: vineyards (S1), continuous 

wood products (T0), and permanent wood product: olive 

trees. Table 1 shows the distribution of classes in the 

study area within Türkiye’s borders (Anonymus, 2024). 
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Table 1. Spatial distribution of agricultural parcel classes according to LPIS data in Türkiye 

Code Name Physical Block Count Surface Area (Km2) 

A0 Arable land 3598752 192953.41 

A1 Arable land with scattered trees 24271 433.27 

A3 Mixed agricultural areas 38271 31.22 

A4 Greenhouses 76137 438.03 

S1 Permanent shrub crops: Vineyards 157931 2695.61 

T0 Permanent tree crop 943607 14545.74 

T1 Permanent tree crop: Olive trees 146647 577.74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Orthorectified image (a) July 4, 2023 (b) August 24, 2023. 

 

2.4. Data Collection and Preprocessing 

With 120 satellites in orbit, the Planet-Scope 

constellation is the largest commercial satellite fleet in 

history, capturing images of the entire Earth’s surface 

every day (Ghuffar, 2018). With a resolution of 3–5 m, its 

sensors can capture images in four different 

multispectral bands: red, green, blue, and near-infrared. 

This makes it ideal for monitoring and assessing changes 

in the amount of plant and forest cover. Data from the 

commercial satellite Planet-Scope are available for 

purchase from Planet Inc. or can be downloaded for free 

for academic use (Team, 2017; Planet, 2024). 

In our study, Planet-Scope imagery covering the study 

area, which extends between the coordinates 305526–

351372 east and 4201685–4238913 (Zone 36, UTM-m), 

acquired on July 4 and August 24, 2023, was used. Figure 

3 shows the product Level 3B images (Planet, 2024), 

which encompass the study area and were acquired on 

two different dates. 

Satellite imagery is retrieved under different levels, with 

each level requiring necessary corrections before further 

processing. Our retrieved satellite imagery is ‘Surface 

Reflectance’ in the case of Planet-Scope Dove, already 

corrected for radiometric and atmospheric corrections 

(Planet, 2024). All the data have the same pixel size of 3 

m. 

Vegetation index, such as NDVI, is a measure of the health 

of a plant based on how the plant reflects light at certain 

frequencies (Rouse et al., 1974). The NDVI was calculated 

for the Planet-Scope imagery using Erdas Imagine 

software (Erdas, 2024), according to the equation given 

in Equation 1. The canopy cover was then calculated 

according to the model proposed by Trout and Johnson 

(2007), as given in Equation 2. 
 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 (1) 

 

𝐶𝑎𝑛𝑜𝑝𝑦 𝐶𝑜𝑣𝑒𝑟 (%) = (1.22 ∗ 𝑁𝐷𝑉𝐼 − 0.21) ∗ 100 (2) 
 

After calculating the canopy cover, the determined LPIS 

physical block parcels within the study area were 

analyzed using the Zonal Statistics tool in ArcGIS 

software (Demir et al., 2024). A dataset for 8388 parcels 

was created, including pixels’ data. Canopy cover pixel 

values were determined for the LPIS dataset within land 

cover types such as arable land (A0), arable land with 

sparse (scattered) trees (A1), mixed agricultural regions 

(A3), greenhouses (A4), continuous bush product: 

vineyards (S1), continuous wood products (T0), and 

permanent wood product: olive trees (T1). 

2.5. Statistical Analyses 

The study was conducted based on the different types of 

land uses for LPIS parcels, and a frequency distribution 

analysis was carried out. The study used the Global 

Moran's I statistic to examine spatial autocorrelation and 

calculated a Moran's Index of 0.833 (Figure 4). This 

index, along with a z-score of 78.285 and a p-value of 

0.000, signifies a clustered pattern with a probability of 

less than 1% of occurring randomly. These results point 

to a nonrandom spatial distribution within the dataset, 

indicating that underlying variables may be influencing 

observable clustering patterns. In addition, a one-sample 

Kolmogorov–Smirnov test of normality confirmed the 

 

a b 
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null hypothesis of normal distributions. In this study, 

box-plot statistics were computed on the basis of land 

cover types in the LPIS dataset using satellite imagery 

collected in two periods. The estimated canopy cover 

values for each period were determined at the parcel 

scale using the Zonal Statistics tool. Descriptive statistical 

results were then derived. Within the study area, mean 

canopy cover values for different periods were calculated 

on the basis of LPIS data corresponding to agricultural 

land cover types A0, A1, A3, A4, S1, T0, and T1. Levene’s 

test of homogeneity of variance for zone types revealed 

significant differences (P<0.05); hence, the conservative 

Tukey test, with significance measured at α=0.05, was 

employed for post hoc comparisons. This analysis 

involved 8388 different parcel scale observations across 

seven parcel types. ArcGIS software (ArcGIS, 2024) was 

used for geographic data processing, Erdas Imagine 

software (Erdas, 2024) for processing 3-m spatial 

resolution Planet-scope imagery, and statistical analyses 

of the resulting database were performed using the 

Minitab software package (Minitab, 2024). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Moran I index of physical blocks in the study 

area. 

 

3. Results 
3.1. Study Area LPIS Database 

The analysis of the LPIS data indicated land use patterns 

that are crucial in enhancing agricultural output. Proper 

classification and usage of agricultural lands, particularly 

in high-productivity zones, aids in the optimization of 

production amounts. Furthermore, by tracking land use 

changes, these spatial data help promote sustainable 

agriculture practices. Enable land use data served as field 

ground data for the study area LPIS data. Table 2 shows 

the number of parcels and their spatial distribution in the 

research region for land cover classes A0, A1, A3, A4, S1, 

T0, and T1. Parcels labeled A0 represent the agricultural 

areas with the largest area in the research region. It has 

the largest area of 10149.07 ha, accounting for 69.27% of 

the total research area. The number of physical blocks 

indicates that such lands are broad and dispersed over 

large areas. The relatively high standard deviation 

indicates that such plots differ in size. General 

agricultural lands are broad areas where herbaceous 

crops, including cereals, legumes, and oilseeds, are 

farmed (Table 2). Parcels coded A1 are among the 

smallest farmlands in the study area. They account for 

only 0.08% of the study area, totaling 12.30 hectares. The 

lower number of physical blocks indicates that this sort 

of land is less common. The low standard deviation 

(0.601) indicates that the plot sizes are reasonably 

comparable (Table 2). A3 coded parcels are one of the 

farmlands with the smallest surface area, totaling 4.30 

hectares and accounting for only 0.03% of the total area. 

The low number of physical blocks indicates that such 

regions are uncommon. The standard deviation is 

relatively low, indicating that such plots are very similar 

in size (Table 2). A4 coded parcels cover a small area of 

4.23 hectares or 0.03% of the total area. The small 

number of physical blocks indicates that these farmlands 

are scarce. The low standard deviation indicates that the 

plot sizes are quite similar. Greenhouses mitigate the 

detrimental consequences of climate change by creating 

controlled environments (Table 2). Parcels coded S1 

covers 1.06% of the research area, totaling 20.36 ha. 

These farmlands, with a physical block number of 20, are 

clustered in specific locations (Figure 3). The standard 

deviation number (1.064) indicates that the sizes are 

quite close together (Table 2). Parcels coded T0 covers a 

considerable area, totaling 4458.87 ha, or 30.43% of the 

total area. The large number of physical blocks indicates 

that such areas are relatively frequent. The relatively 

high standard deviation indicates that such plots vary in 

size (Table 2). Parcels code T1 covers a small area of 2.73 

ha or 0.02% of the total area. The small number of 

physical blocks indicates that these territories are scarce. 

The low standard deviation indicates that the plot sizes 

are quite similar. In total, the study area includes 8388 

physical blocks and 14,651.9 hectares of agricultural 

land. The largest area consists of agricultural lands with 

code A0, and the smallest area consists of special-use 

agricultural fields with codes A3 and A4. This 

distribution demonstrates that agricultural activities are 

primarily focused on large, general agricultural 

businesses. In addition, different land use forms appear 

to differ greatly in size and scope. Figure 5 shows the 

spatial distribution of the LCT code and physical block 

data from the LPIS dataset in the study area.  
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Table 2. Study area and agricultural parcel status according to the LPIS database 

LCT Code Physical Block Count Area (Hectare) Standard Deviation Area (%) 

A0 5425 10149.07 69.27 2.343 

A1 19 12.30 0.08 0.601 

A3 26 4.30 0.03 0.092 

A4 13 4.23 0.03 0.305 

S1 20 20.36 0.14 1.064 

T0 2878 4458.87 30.43 2.246 

T1 7 2.73 0.02 0.249 

Total 8388 14651.9 - 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Study area agriculture parcel physical blocks spatial distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. Study area canopy cover prediction at different temporal resolutions. 

 

3.2. Canopy cover prediction 

In this study, the CC of agricultural areas in the study 

area was estimated using high-resolution PlanetScope 

satellite images with varying temporal resolutions. 

Changes in the vegetation period due to changes in the 

study area’s climatic circumstances resulted in 

considerable changes in the CC data (Figure 6). These 

changes were evaluated using the LCT (Land Cover 

Types) physical block types from the LPIS data, and the 

descriptive statistics results are shown in Table 3. Table 
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3 shows descriptive statistics for canopy cover 

percentages based on different LCT types, including 

minimum, mean, maximum, standard deviation, 

coefficient of variation, skewness, and kurtosis values. 

These statistics provide important information for 

understanding and evaluating the CC distribution of 

different LCT categories in the study area. The estimated 

CC values in the first and second periods show significant 

changes in different LCT codes. While in the first period, 

code A0 had the highest average CC value (33.53), this 

value decreased significantly (21.16) in the second 

period. In addition, the skewness and kurtosis values in 

the A0 code shifted, indicating that the distribution’s 

asymmetry and kurtosis characteristics had changed. It is 

worth noting that in the A1 code, the average values are 

low in both periods, as are the skewness values; this 

indicates that the distribution has a long tail to the right, 

resulting in more extreme results. While the average 

values in the A3 and S1 codes are similar in both eras, the 

average and coefficient of variation in the A4 category 

are much lower and higher. In the T0 and T1 codes, a 

larger distribution and increased standard deviation 

values were observed in the second period, indicating 

that environmental variables and agricultural methods 

have considerable effects on canopy cover across time. As 

a result, the A0 and T0 codes show a more homogenous 

distribution, whereas the A1 and A4 codes show higher 

variability and skew. In the T0 code, the canopy cover 

percentage had a high average value and a homogeneous 

distribution with low skewness and kurtosis. This 

demonstrates that the T0 code contains dense and 

regular vegetation in the research area. 

Figure 6 shows the spatial distribution of July and 

August's estimated canopy cover levels. These spatial 

distribution maps depict the effects of changes in 

vegetation phase and meteorological conditions on 

canopy coverage. Data collected in July and August are 

crucial for a better understanding of temporal changes in 

CC estimates and the impact of agricultural operations in 

the study area. While CC values increase in well-

structured covered orchards within the study area, 

Figure 6 shows the spatial distribution of the decline in 

canopy value in dry-farmed areas where annual plants 

are planted. 

This study investigated the impact of canopy cover values 

estimated across different time periods on land cover in 

agricultural areas. The Kolmogorov-Smirnov normality 

test results indicated that the average results of the 

physical blocks for the estimated canopy cover values 

followed a normal distribution. Average canopy cover 

values for each LCT (Land Cover Type) type were 

investigated using post hoc tests such as analysis of 

variance and the Tukey test at a 95% confidence interval. 

Analyses revealed that canopy cover values varied 

significantly among vegetation periods (Table 4). These 

discrepancies enabled us to gain a better understanding 

of the periodic changes in vegetation in agricultural areas 

and their effects on canopy cover. In addition, the 

investigation attempted to assess the applicability of 

canopy cover estimations using high-resolution satellite 

images to distinguish between LCT types based on 

physical block ground truth (Table 4). There were 

significant changes in canopy cover rates between July 4, 

2024, and August 24, 2024, for each land use type 

(P<0.05). 

 

Table 3. Descriptive statistics results for canopy cover effects on land cover in different periods 

Variable LCT N Minimum Mean Maximum StDev CoefVar Skewness Kurtosis 

Canopy Cover (%)  

A0 5425 3.187 33.531 73.659 11.967 35.69 0.46 -0.38 

A1 19 18.70 28.97 53.12 8.27 28.54 1.52 2.88 

A3 26 26.99 40.97 57.30 8.45 20.63 0.34 -0.62 

A4 13 7.91 28.39 43.05 11.93 42.02 -0.72 -0.79 

S1 20 25.43 39.37 53.41 8.12 20.62 0.02 -0.81 

T0 2878 8.632 45.226 74.677 10.634 23.51 -0.45 -0.17 

T1 7 39.19 53.87 65.78 11.49 21.32 -0.34 -1.80 

Canopy Cover(%)  

A0 5425 -3.163 21.157 78.132 16.974 80.23 1.03 0.01 

A1 19 3.18 18.08 40.81 10.33 57.13 0.90 -0.19 

A3 26 17.14 38.12 55.76 9.90 25.96 -0.24 -0.60 

A4 13 -0.65 26.97 51.37 15.48 57.42 -0.28 -0.79 

S1 20 13.36 35.28 66.14 13.45 38.14 0.37 -0.13 

T0 2878 2.020 45.768 76.189 15.163 33.13 -0.60 -0.41 

T1 7 26.82 45.26 64.57 14.51 32.07 0.11 -1.80 
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Table 4. ANOVA and Tukey test results for canopy cover effects on land cover in different periods 

LCT Physical Blocks 4 July 2024 CC (%) (Mean±SE) 24 August 2024 CC (%)(Mean±SE) 

A0 5425 53.87±0.16B 21.16±0.23C 

A1 19 45.23±1.90B 18.08±2.37C 

A3 26 40.97±1.66B 38.12±1.94AB 

A4 13 39.37±3.31B 26.97±4.29BC 

S1 20 33.53±1.82AB 35.28±3.01AB 

T0 2878 28.97±0.199A 45.77±0.28A 

T1 7 28.39±4.34A 45.26±5.49AB 

* Capital letters indicate the difference between canopy cover averages for each land use (P<0.05). 

 

Table 4 shows a significant difference between the LCT 

groups in canopy cover estimates on July 4, 2024 and 

August 24, 2024 (P<0.05). A substantial difference was 

found between "T0" and "A0 and A1" in both times 

(P<0.05). A substantial difference was found between 

"T1" and "A0 and A1" in both times (P<0.05). There was 

no statistically significant difference found between the 

plant species grown in groups A3, A4, and S1 and those 

grown in groups A0, A1, T0, and T1. This could also be 

due to parallel plant growth processes, which are 

expected to result in similar canopy cover levels. In 

addition, it is believed that this is related to the fact that 

the number of physical blocks in the research region for 

the A3, A4, and S1 land cover groups is less than that of 

the A0 and T0 groups.  

 

4. Discussion 
The temperature and rainfall in the study area 

significantly varied between 2022 and 2023. 

Precipitation trends tend to fluctuate. Significant 

decreases were observed in January and February, 

whereas significant increases were observed in May, 

September, November, and December. These oscillations 

can be used to predict seasonal and climate changes. 

Temperatures vary similarly, with considerable increases 

in January and March and decreases in April and May. 

Temperatures rose modestly throughout the second half 

of the year. These changes reflect the climate’s dynamic 

structure and are crucial data to consider for future 

climate analyses and environmental planning. Climate 

change also has a significant impact on agriculture. While 

changes in phenological periods cause shifting growing 

seasons and fluctuations in productivity in annual plants, 

precipitation and temperature changes during the 

flowering period in perennial plants have a negative 

impact on development and productivity due to issues 

with fruit set and quality. This situation is of critical 

importance in terms of agricultural production and 

sustainability (Talsma et al., 2018; Nhemachena et al., 

2020; Revzi et al., 2023; Kazemi Garajeh et al., 2023; Qin 

et al., 2023; Carealla et al., 2024). Climatic changes in the 

research area in 2023 reduced apple production, which 

was grown in 91.7% of fruit farming areas by 20,521 

tons. This increased 11503 tons in wheat and barley 

plant yields throughout 78.82% of grain fields (TurkStat, 

2024). This circumstance stresses the importance of 

changing agricultural production patterns in response to 

global climate change or switching to agricultural 

products appropriate for phenological times. In studies 

conducted with different apple varieties grown in Isparta 

province and its districts, it has been reported that full 

flowering dates are distributed in April and May (Uçgun 

and Gezgin, 2017; Eskimez et al., 2020; Küçükyumuk, 

2021; Küçükyumuk and Erdal, 2022). In the study area’s 

agricultural land use, apple cultivation is practiced in the 

majority of the fruit-growing areas, and the drop in yield 

is attributed to an increase in precipitation and a 

decrease in temperature in May 2023, the full flowering 

time. It has been stated that under Isparta climatic 

conditions, the wheat plant is in its development period 

in March, April, and May; therefore, increased rainfall 

increases productivity (Akgün et al., 2011). The increase 

in precipitation during the development phase of wheat 

and barley plants, which are grown in most grain fields in 

March, April, and May, improved yield while delaying 

harvest. Other research findings corroborate the idea 

that changes in the study area’s climate have varying 

effects on agricultural goods (Akgün et al. 2011; Uçgun 

and Gezgin, 2017; Eskimez et al., 2020; Küçükyumuk, 

2021; Küçükyumuk and Erdal, 2022). Keeping track of 

these changes is critical for establishing sustainable food 

supplies, agricultural policies, and subsidies. As a result 

of the study conducted to determine the land cover 

change due to climate change using the high-resolution 

Planet Scope satellite image of the land use classes 

corresponding to agricultural lands in the LPIS database, 

it was determined that the LPIS physical block data can 

be used as field data. The CC estimation performed using 

an image of the research region obtained on July 4 

revealed that the grain areas were not harvested because 

of climate change that occurred during the plant growth 

season, which delayed harvest maturity. It was 

discovered that CC values had dropped in grain fields 

harvested in August (Table 3). It has been reported in 

studies that machine learning and deep learning 

algorithms made with physical blocks can be determined 

with high accuracy in determining the land cover type of 

Türkiye from LPIS data (Şimşek and Durduran, 2022; 

Şimşek, 2023). As a result, land cover classes (A0, A1, A3, 

A4, S1, T0, T1) representing agricultural areas in the 

study area were employed as ground truth. The utility of 

this data in monitoring phenological changes in land 

cover caused by climate change was determined based 
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on a variance analysis of the average canopy values of the 

physical block values. The analysis results can be used to 

discriminate between fruit agricultural areas and grain 

areas based on canopy cover values estimated 

throughout both periods (Table 4). It has been 

established that canopy cover estimation can be used to 

determine land use. The results were found to be 

consistent with those from other investigations (Trouth 

et al., 2008; Tsakmakis et al., 2021; Thieme et al., 2024). 

The limited number of physical blocks in the A3, A4, and 

S1 land cover types identified in this study is assumed to 

be the cause of their low discrimination compared with 

other classes. 

In the future, it will be of great importance to develop the 

necessary strategies for agricultural areas to adapt to 

climate change. These strategies include developing plant 

species that are resistant to climate change, improving 

irrigation techniques, and optimizing soil management 

practices. In addition, agricultural policies and subsidies 

need to be rearranged within the framework of 

adaptation to climate change to ensure the sustainability 

of agricultural production. 

This study has shown that the use of the LPIS database 

and high-resolution satellite images is an effective 

method for determining the effects of climate change on 

agricultural land cover. Monitoring canopy cover values 

can be used as an important tool to monitor the effects of 

climate change on phenological changes. Thus, changes 

occurring in agricultural areas can be detected more 

quickly and accurately, and adaptation strategies can be 

implemented in a timely and effective manner. 

 

5. Conclusion 
In this study, canopy cover estimation of agricultural 

lands in the study area was performed using high-

resolution PlanetScope satellite images at different 

temporal resolutions. Changes in climatic conditions and 

vegetation have led to significant differences in the 

canopy cover data. Analyses of images taken in July and 

August showed that canopy cover values vary 

significantly in different LCT categories. While a more 

homogeneous distribution was observed in the A0 and 

T0 categories, more variability and skewness were noted 

in the A1 and A4 categories. 

Data obtained in July and August provided critical 

information for understanding temporal changes in 

canopy cover estimates and the effects of agricultural 

activities in the study area. The study results revealed 

that the canopy cover values of plant species in the A3, 

A4, and S1 categories did not differ significantly from 

those in the A0, A1, T0, and T1 categories. This situation 

can be explained by the impact of similar plant 

cultivation techniques. In addition, it was determined 

that the number of physical blocks in the A0 and T0 

categories was the two highest groups, and 

discrimination could be made according to canopy cover 

estimation in both periods due to differences in land use 

and plant patterns. 

CC estimations based on high-resolution satellite images 

can be useful for monitoring phenological changes in 

agricultural fields and designing agricultural policies. 

Therefore, constant monitoring and adaptation studies 

are critical for mitigating the effects of climate change on 

agricultural production and ensuring food security. In 

this regard, applying contemporary technologies and 

data analysis methodologies can help improve 

agricultural sustainability. It is also recommended that 

local and national remote sensing resources be rapidly 

deployed and made available as standard data types for 

monitoring and evaluation studies. 
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