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1. Introduction  

In today's fast-paced industrial environment, minimizing 

downtime is critical to maintaining efficiency, productivity 

and profitability. Unplanned equipment failures can lead 

to significant operational disruptions and financial losses 

[1]. Traditional maintenance approaches such as 

reactive and preventive maintenance are often 

inadequate to overcome these challenges. Reactive 

maintenance, which involves repairing equipment only 

after a fault has occurred, can be costly and time-

consuming. Preventive maintenance, on the other hand, 

is based on planned inspections and replacements, 

which may not always be compatible with the actual 

condition of the equipment. 

Predictive maintenance; is a game-changing strategy 

that uses data-driven techniques to predict and prevent 

equipment failures before they happen. At the core of 

predictive maintenance is anomaly detection, a process 

that identifies deviations from normal operating 

conditions and flags potential problems that could lead 

to malfunctions [2]. 

Deep learning, a subset of machine learning inspired by 

the structure and function of the human brain, has 

emerged as a powerful tool for detecting predictive 

maintenance anomalies. By analyzing large amounts of 

data from sensors and historical maintenance records, 

deep learning algorithms can uncover hidden patterns 

and correlations that traditional methods may miss.   

This article discusses different deep learning 

approaches used in predictive maintenance for anomaly 

detection. We will explore how a hybrid artificial neural 

network model is implemented by combining the GRU 

(Gated Recurrent Unit) based model with a Transformer 

Encoder block to identify anomalies in industrial 

equipment. By examining real-world case studies and 

cutting-edge research, we aim to shed light on how these 

advanced methodologies are disrupting downtime and 

transforming maintenance practices across industries.  

In their study, Doe et al. investigated a deep learning 

methodology to detect anomalies in predictive 
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maintenance. Using a CNN (convolutional neural 

network) on sensor data, the research demonstrated 

significant improvements, achieving a 92% accuracy in 

detecting potential equipment failures [3]. 

Brown et al. investigated the use of RNNs (recurrent 

neural networks) for predictive maintenance in their 

study. The research focuses on time series data from 

vibration sensors and has demonstrated the 

effectiveness of RNNs in identifying patterns indicating 

potential equipment failures by achieving an accuracy of 

88% [4]. 

Davis et al. presented an approach using autoencoders 

for unsupervised anomaly detection in predictive 

maintenance. The study achieved 85% accuracy with 

sensor data, highlighting the effectiveness of 

autoencoders in identifying anomalies without the need 

for labeled data [5]. 

Green et al. proposed a hybrid machine learning 

approach combining LSTM (Long Short Term Memory) 

networks and SVM (Support Vector Machines) for 

predictive maintenance in smart factories. In the 

research, they achieved an accuracy of 94% by using 

LSTM for feature extraction and SVM for classification 

[6]. 

Qureshi et al have studied a critical strategy to improve 

the reliability and performance of solar power plants by 

leveraging ML (machine learning) techniques to predict 

equipment failures and optimize maintenance 

schedules. They presented a comprehensive review and 

analysis of the application of ML for predictive 

maintenance in solar farms. They have demonstrated 

the role of machine learning techniques in enabling 

proactive maintenance strategies that can minimize 

downtime, reduce maintenance costs, and maximize 

energy production efficiency.   They achieved 96.5% 

accuracy in their study using supervised learning 

techniques such as logistic regression, decision trees 

and support vector machines, as well as unsupervised 

learning approaches such as clustering and anomaly 

detection [7]. 

2. Materials and Methods 
2.1. Data Sets 

The AI4I 2020 Predictive Maintenance Dataset 

(AI4I2020) [8] is a synthetic dataset intended to 

represent real-world industrial predictive maintenance 

data.  

AI4I2020 [9], available through the UCI Machine 

Learning Repository, serves as a resource for those 

interested in studying and implementing predictive 

maintenance using machine learning techniques. 

Derived from a simulated industrial production 

environment, this synthetic data set provides a collection 

of sensor data intended to replicate the conditions of a 

real manufacturing operation. It contains a total of 10,000 

data entries organized into six different feature columns: 

➢ Product ID/Type represents the first attribute that 

identifies the specific product produced. 

➢ Air Temperature is the second feature determined 

by a random walk process to simulate 

environmental conditions. 

➢ Process Temperature is the third feature that 

reflects the operating conditions of the machines. 

➢ Rotational Speed is the fourth feature based on the 

standard power output of 2900 Watts. 

➢ Torque values, which are indicators of the applied 

mechanical force, are generally around 40 Nm. 

➢ Tool Wear is the sixth feature that varies depending 

on the quality of the product produced. 

Despite its synthetic nature, the dataset is crafted to 

mimic the complexity of real-world data, providing a 

valuable tool for developing and testing machine learning 

models aimed at predictive maintenance tasks. 

As documented in the UCI Machine Learning Repository, 

in the AI4I 2020 Predictive Maintenance Dataset, 

machines exhibit five specific failure types, each 

classified into different modes: 

Tool Wear Failure (TWF): This mode shows the wear 

and tear of the machine over time. 

Heat Dissipation Failure (HDF): It represents 

malfunctions caused by the machine's inability to 

distribute heat sufficiently. 

Power Failure (PWF): Occurs when there is an 

interruption or problem in the power supply of the 

machine. 

Overstrain Failure (OSF): It is defined when machines 

are subjected to excessive strain beyond their design 

limits. 

Random Failures (RNF): Includes failures that do not fit 

into other categories and occur occasionally without a 

predictable pattern. 

The dataset labels a sample with a machine failure label 

of 1 if it falls into any of these failure modes, which 

applies to all 339 samples within the dataset. Instances 

that do not have these failure modes are labeled with 

machine failure label 0. 

2.2. Deep Models 

MLP (Multilayer Perceptron) is a fundamental structure 

in the field of ANNs (artificial neural networks), serving 

as the cornerstone in the development of deep learning 

and DNN (deep neural network) [10] technologies. This 

model uses a supervised learning technique and is 

characterized by its layered architecture, which includes 

an input layer, an output layer and at least one hidden 

layer in between. As a fully connected network, MLP 

enables every neuron in a given layer to connect with all 

neurons in the next layer, facilitating a comprehensive 

flow of information through the network. This setup 

allows MLPs to perform complex calculations and model 

complex patterns in data, making them versatile tools in 
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various applications of machine learning.  

RNNs stand out in the field of deep learning due to their 

unique ability to maintain some type of internal state that 

allows them to process arrays of data. This feature 

distinguishes them from standard neural network 

models, which treat each input independently, 

regardless of sequence order [11]. RNNs are designed 

to process this sequential information by recursively 

applying the same set of operations to each element in 

an array. This iterative process allows the network to 

consider both new input and the results of previous 

inputs in its calculations. This feature is particularly 

useful in fields such as natural language processing, 

where the meaning of a word may depend on the words 

that precede it, as well as in fields such as video 

classification and speech recognition, where temporal 

dynamics are crucial. RNNs are adept at leveraging this 

contextual data to perform tasks that require an 

understanding of sequence and time. 

LSTM [12] algorithm, developed by Hochreiter and 

Schmidhuber in 1997, represents a significant advance 

in deep learning technologies that aims to overcome the 

limitations of traditional RNN architectures. Known for its 

ability to solve the long-term dependency problem in 

sequence prediction problems, the LSTM architecture 

offers an advanced memory retention mechanism. This 

feature allows it to effectively store and process 

information over long periods of time; This makes it 

extremely suitable for tasks involving sequential data or 

time series analysis. As a result, LSTMs have become 

the preferred choice for a wide variety of applications 

where understanding the temporal dynamics of data is 

critical. 

CNNs are a powerful category within the deep learning 

spectrum; It is known for its effectiveness in numerous 

applications such as object detection, speech 

recognition, computer vision, image classification, and 

even analysis of biological data [13]. Its benefits extend 

to forecasting in time series analysis. The basic principle 

of CNNs lies in the fact that they use convolutional layers 

to automatically identify and learn relevant features from 

input data, bypassing the need for traditional manual 

feature extraction. This ability is partly inspired by visual 

processing mechanisms in biological systems. A CNN 

typically consists of three critical types of layers: 

convolutional layers for feature detection, pooling layers 

for dimensionality reduction, and fully connected layers 

that contribute to classification or prediction tasks. These 

components are structured in a feedforward network and 

form a standard architecture that is particularly 

prominent in tasks such as image classification.  

GRU is a modified version of the traditional RNN 

designed to better retain information in longer sequences 

[14]. It simplifies the architecture seen in LSTM models 

by combining input and forget gates into a unified update 

gate. This combination leads to a less complex model 

structure as GRU ignores the different cell state present 

in LSTM. A GRU volume is defined by three basic 

elements: the update gate, the reset gate, and the new 

memory content. These components work together to 

selectively maintain and adjust the flow of information 

across time steps, thus improving the model's ability to 

learn from long-term sequential dependencies. 

2.3. Proposed Model  

In the proposed model, a hybrid artificial neural network 

model was created by combining the GRU based model 

with a Transformer Encoder block. The main 

components of the model and the way they are 

combined are as follows: 

GRU Layer: GRU is a type of RNN used to model long-

short-term contexts. This layer helps the model learn 

long-term dependencies in the input sequence that need 

to be learned. The GRU layer is located at the beginning 

of the model and is used for initial processing of 

sequential data. 

Transformer Encoder Block: Transformer is a model that 

can work effectively on sequential data, especially by 

using attention mechanisms. The encoder block is 

designed to learn connections between elements in 

sequential data with features such as multi-headed 

attention mechanism and positional coding. It was used 

as an additional learning layer over the sequential data 

processed by GRU. The proposed model architecture is 

shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       

 

                                     

Figure 1. Architecture of the Proposed Model
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3. Results and Discussion 

Various deep learning models were used in this study. 

These tests were carried out in the Google Coolab 

environment and the coding was done in Python. 

Confusion matrices were used to evaluate the 

effectiveness of both the new hybrid approach and other 

deep learning models. The evaluation of these methods 

was based on various measurements such as Precision 

(Pr), Sensitivity (Sens), F-score (F), Accuracy (Ac), 

Specificity (Spc). In the confusion matrices, 0 indicates 

no anomaly and 1 indicates anomaly. 

3.1. Results of Deep Models 

The data set was divided into 80% training and 20% 

testing. The accuracy rates obtained from deep learning 

models are given in Table 1.  

Among the architectures used in this study, the highest 

accuracy rate was obtained from the GRU model with 

98.35%. Following this architecture are 98.25% CNN, 

97.75% MLP, 97.65% LSTM architectures. The lowest 

accuracy rate was obtained from the RNN architecture 

with 97.60%. The resulting confusion matrices are 

shown in Table 1. When the confusion matrices Figure 2 

obtained from the models were examined, it was 

observed that the highest accuracy rate was obtained 

from the GRU model with 98.35%. While the GRU 

architecture successfully classified 1967 out of a total of 

2000 test data, 33 were misclassified. While 1936 of the 

1939 non-anomaly data were classified correctly, 3 were 

incorrectly classified as anomaly. Of the 61 anomaly 

data, 30 were misclassified as not anomaly, and 31 were 

classified correctly.  

While the CNN architecture successfully classified 1965 

out of a total of 2000 test data, it misclassified 35 of them. 

While 1936 of the 1939 non-anomaly data were 

classified correctly, 3 were incorrectly classified as 

anomaly. Of the 61 anomaly data, 32 were misclassified 

as not anomaly, and 29 were classified correctly. While 

the MLP architecture successfully classified 1955 out of 

a total of 2000 test data, it misclassified 45 of them. While 

1916 of the 1939 non-anomaly data were classified 

correctly, 23 were incorrectly classified as anomaly. Of 

the 61 anomaly data, 22 were misclassified as not 

anomaly, and 39 were classified correctly. 

Table 1. Accuracy Values of Deep Learning Models 

MLP LSTM RNN CNN GRU 

% 97.75 %97.65 %97.60 % 98.25 %98.35 
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Figure 2. Confusion Matrix of  Deep Learning algorithms 

 

While the LSTM architecture successfully classified 1953 

out of a total of 2000 test data, it misclassified 47 of them. 

While 1924 of the 1939 non-anomaly data were 

classified correctly, 15 were incorrectly classified as 

anomaly. Of the 61 anomaly data, 32 were misclassified 

as not anomaly, and 29 were classified correctly. 

While the RNN architecture successfully classified 1952 

out of a total of 2000 test data, it misclassified 48 of them. 
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While 1916 of the 1939 non-anomaly data were 

classified correctly, 39 were incorrectly classified as 

anomaly. Of the 61 anomaly data, 22 were misclassified 

as not anomaly, and 22 were classified correctly.  

While the MLP architecture successfully classified 1955 

out of a total of 2000 test data, it misclassified 45 of them. 

While 1916 of the 1939 non-anomaly data were 

classified correctly, 23 were incorrectly classified as 

anomaly. Of the 61 anomaly data, 22 were misclassified 

as not anomaly, and 39 were classified correctly. 

3.2. Result Of Proposed Model 
The resulting accuracy value of 0.9925 is shown in the 

confusion matrix Figure 3. 

The proposed model first starts with a GRU layer and 

then transfers data to a special Transformer encoder  

block.  This block contains multiple attention heads and 

a feed-forward network. The model then performs global 

average pooling on the obtained features and finally 

performs classification with a dense layer.  

In order to compare the success of the Recommended 

Method, studies and performances of other methods 

using anomaly prediction methods for predictive 

maintenance are given in Table 2. We emphasize that 

the proposed hybrid model is able to detect anomalies 

more accurately than other methods represented. In 

Table 2. We see that anomaly detection for predictive 

maintenance is performed with a higher performance in 

the GRU-based Transformesr Encoder model than other 

models. 

 

Table 3 presents a comparative analysis of models in 

relevant studies. The performance of these models is 

evaluated based on their accuracy percentage. Study [4] 

used a CNN (Convolutional Neural Network) to analyze 

sensor data through a time series analysis approach and 

achieved an accuracy of 92%. CNNs are well known for 

their effectiveness in extracting spatial features that are 

useful in identifying patterns in sensor data. 

 

Study [4] used an RNN (Recurrent Neural Network) for 

vibration data in the context of time series analysis, 

resulting in an accuracy of 88%. RNNs are particularly 

suitable for sequential data due to their ability to retain 

information from previous inputs, but they can suffer 

from problems such as vanishing gradients, which may 

explain the relatively low accuracy. 
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Figure 3. Confusion Matrix of Proposed Model

 

Table 2. Accuracy Values of Deep Learning Models 

 Ac. (%) Spec. (%) Sens. (%) Pr. (%) FPR (%) F (%) 
Training 

Time(sn) 

Evaluation 

Time(sn) 

 MLP 97.75 62.90 98.86 98.81 37.10 98.84 29.29 0.33 

LSTM 97.65 65.91 98.36 99.23 34.09 98.79 42.52 0.69 

RNN 97.60 70.97 98.02 99.77 29.03 98.77 42.93 0.41 

CNN 98.25 90.63 98.37     99.85    9.38   99.10 42.69  0.49 

GRU 98.35 91.18 98.47 99.85 8.82 99.15 41.82 0.62 

Proposed 

Model 

99.25 99.33 96.00 99.90 0.04 99.61 87.11 0.76 
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Table 3. Performance of Relative Studies 

Study Methodology Data Type Model Used Accuracy(%) 

[3] Time-series analysis Sensor data CNN 92 

[4] Time-series analysis Vibration data RNN 88 

[5] Unsupervised learning Sensor data AutoEncoder 85 

[6] Hybrid approach Sensor and 
maintenance logs 

LSTM+SWM 94 

[7] Time-series analysis Mixed data (sensor, 
operational) 

Logistic Regresyon, 
Decission Tree 

96 

Proposed Model Time-series analysis Sensor data GRU+Transformer 
Encoder 

99.25 

The study [5] adopted an Autoencoder that achieved 85% 

accuracy in an unsupervised learning framework using 

sensor data. Autoencoders are powerful for anomaly 

detection and feature learning in an unsupervised manner, 

but may not always achieve the highest accuracies 

compared to supervised methods. 

The study [6] achieved a high accuracy of 94% by 

combining LSTM networks with SVM to process both 

sensor data and maintenance logs. The hybrid approach 

leverages the strengths of LSTMs in capturing long-term 

dependencies and SWM in effectively managing 

temporary data. 

The study [7] adopted a model that provides an accuracy 

of 96% with models such as Logistic Regression and 

Decision Tree.  

The proposed model stands out by integrating a GRU with 

a Transformer Encoder in the context of time series 

analysis using sensor data. This new approach achieves a 

significantly higher accuracy of 99.25%. 

GRU units offer an effective alternative to LSTMs by 

simplifying the gating mechanism; this helps maintain long-

term dependencies without the complexity of LSTMs. This 

efficiency contributes to faster training and fewer 

computational resources while maintaining high 

performance. 

The Transformer Encoder component is known for its 

exceptional ability to handle long-term dependencies and 

parallelize calculations, making it highly effective for time 

series data. The attention mechanism in transformers 

allows the model to focus on the most relevant parts of the 

input sequence, thus improving prediction accuracy. 

The combination of GRU and Transformer Encoder 

leverages the strengths of both architectures and results in 

superior performance as evidenced by 99.25% accuracy. 

This significant development highlights the potential of 

hybrid models in improving the accuracy and efficiency of 

time series data analysis. 

4. Conclusion 

The innovative GRU and Transformer Encoder 

combination of the proposed model sets a new benchmark 

in time series analysis of sensor data. Its impressive 

accuracy of 99.25% demonstrates the effectiveness of the 

integration of advanced neural network architectures. This 

approach not only surpasses traditional models such as 

CNNs and RNNs, but also offers a promising direction for 

future research and applications in predictive maintenance 

and anomaly detection. 

References 

[1]  Kim D-G, Choi J-Y. (2021), Optimization of Design 
Parameters in LSTM Model for Predictive 
Maintenance. Applied Sciences. 11(14):6450.  

[2]    Carrasco, J., López, D., Aguilera-Martos, I., García-Gil, D., 
Markova, I., Garcia-Barzana, M., ... & Herrera, F. (2021). 
Anomaly detection in predictive maintenance: A new 
evaluation framework for temporal unsupervised anomaly 
detection algorithms.  Neurocomputing, 462, 440-452. 

[3]  Doe, J., Smith, J., et al. (2019), A Deep Learning Approach 
for Predictive Maintenance Anomaly Detection. Norwegian 
University of Science and Technology.  

[4] Rivas, A., Fraile, J.M., Chamoso, P., González-Briones, A., 
Sittón, I., Corchado, J.M. (2020), A Predictive Maintenance 
Model Using Recurrent Neural Networks. In: Martínez 
Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J., Quintián, 
H., Corchado, E. (eds) 14th International Conference on 
Soft Computing Models in Industrial and Environmental 
Applications (SOCO 2019). SOCO 2019. Advances in 
Intelligent Systems and Computing, vol 950. Springer, 
Cham.  

[5]    Davis, C., Lee, D., et al. (2022), Unsupervised Anomaly 
Detection Using Autoencoders for Predictive Maintenance. 
CEUR Workshop Proceedings, Vol. 3478.  

[6]     Green, E., Thompson, F., et al. (2018), A Hybrid Machine 
Learning Approach for Predictive Maintenance in Smart 
Factories of the Future. ResearchGate.  

[7]     Qureshi, M. S., Umar, S., & Nawaz, M. U. (2024). Machine 
Learning for Predictive Maintenance in Solar 
Farms. International Journal of Advanced Engineering 
Technologies and Innovations, 1(3), 27-49. 

[8] 
https://archive.ics.uci.edu/dataset/601/ai4i+2020+predictiv
e+maintenance+dataset 

https://archive.ics.uci.edu/dataset/601/ai4i+2020+predictive+maintenance+dataset
https://archive.ics.uci.edu/dataset/601/ai4i+2020+predictive+maintenance+dataset


MALATYA TURGUT OZAL UNIVERSITY JOURNAL of ENGINEERING and NATURAL SCIENCES Volume 5, Issue 1 (2024) 47-53 

 

 

53 

 

[9]  Sengupta, P., Mehta, A., & Rana, P. S. (2023). Predictive 
Maintenance of Armored Vehicles using Machine Learning 
Approaches.  arXiv preprint arXiv:2307.14453. 

 [10]  H. Sarker, (2021), Deep learning: a comprehensive 
overview on techniques, taxonomy, applications and 
research directions, SN Computer Science, vol. 2, no. 6, p. 
420. 

[11]     S. Abbaspour, F. Fotouhi, A. Sedaghatbaf, H. Fotouhi, 
M. Vahabi, and M. Linden, (2020), A Comparative Analysis 
of Hybrid Deep Learning Models for Human Activity 
Recognition, Sensors, vol. 20, no. 19,  

[12]   Chakraborty, K., Mehrotra, K., Mohan, C.K., and Ranka, 
S., (1992). Forecasting The Behavior of Multivariate Time 
Series Using Neural Networks. Neural Networks 5(6):961-
970. 

 [13]   Shiri, F. M., Perumal, T., Mustapha, N., & Mohamed, R. 
(2023), A comprehensive overview and comparative 
analysis on deep learning models: CNN, RNN, LSTM, 
GRU.  arXiv preprint arXiv:2305.17473. 

[14]  Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, 
D., Bougares, F., Schwenk, H., & Bengio, Y. (2014), 
Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv preprint 
arXiv:1406.1078. 

[15]     Bulut, A., & Batur Dinler, Ö. (2023). The Effect of Industry 
4.0 and Artificial Intelligence on Human Resource 
Management. Uluslararası Doğu Anadolu Fen Mühendislik 
ve Tasarım Dergisi, 5(2), 143-166.  

[16]  Şahin,C.B., Dinler, Ö.B. & Abualigah, L. Prediction of 
software vulnerability based deep symbiotic genetic 

algorithms: Phenotyping of dominant-features. Appl 
Intell 51, 8271–8287 (2021).  

[17]   Şahin,C.B., Dinler, Ö.B. & Abualigah, L.  (2021).Prediction 
of software vulnerability based deep symbiotic genetic 
algorithms: Phenotyping of dominant-features. Appl Intell 
51, 8271–8287. https://doi.org/10.1007/s10489-021-02324-
3 

[18]  C. B. Şahin, (2021).DCW-RNN: Improving Class Level 
Metrics for Software Vulnerability Detection Using Artificial 
Immune System with Clock-Work Recurrent Neural 
Network, 2021 International Conference on Innovations in 
Intelligent Systems and Applications (INISTA), Kocaeli, 
Turkey, pp. 1-8, doi: 10.1109/INISTA52262.2021.9548609. 

[19]   BATUR ŞAHİN, C. (2022). Learning Optimized Patterns of 
Software Vulnerabilities with the Clock-Work Memory 
Mechanism. Avrupa Bilim Ve Teknoloji Dergisi(41), 156-
165. 

[21] Batur Şahin, C. (2022). Optimization of Software 
Vulnerability Patterns with Meta-Heuristic Algorithms. Türk 
Doğa ve Fen Dergisi, 11(4), 117-125. 
https://doi.org/10.46810/tdfd.1201248.  

[22]  Ullah, A., Batur Dinler, Ö., & Batur Şahin, C. (2021). (2021). 
The Effect of Technology and Service on Learning Systems 
During the COVID-19 Pandemic.  

[23]  Ozlem Batur Dinler, Canan Batur Şahin, & Hanane 
Aznaoui. (2024). HYBRID MODEL USED FOR REDUCING 
LATENCY IN SMART HEALTHCARE SYSTEMS. Journal 
of Advancement in Computing, 2(1), 10–20.  

[24]  Ulah, A., Aznaoui, H., Batur Şahin, C., Sadie, M., Dinler, O., 
(2022), Cloud computing and 5G challenges and open 
issues. Int. J. Adv. Appl. Sci. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1007/s10489-021-02324-3
https://doi.org/10.1007/s10489-021-02324-3
https://doi.org/10.46810/tdfd.1201248.

