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Water should be supplied and distributed as disinfected from 
water tanks/reservoirs to settlements/residences/cities by 
water distribution networks (WDN). But the chlorination 
should be appropriately applied to avoid toxic effects of 
the chlorine. The total residual chlorine consists of free 
chlorine (hypochlorite ion/OCl- and hypochlorous acid/
HOCl) (more oxidizing/more powerful disinfectant) and 
chloramines (more stable and long-lived/durable) remained 
after a certain residence time of water, and it should be 

1. Introduction
The chlorine used to disinfect drinking and domestic water 
is a vital and critical chemical in terms of the public health. 
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Öz

Bu çalışmada, su dağıtım şebekelerindeki bakiye kloru azaltan boruların tespit edilmesi için modifiye klonal seçim algoritması (çok 
bilinen sezgisel optimizasyon tekniklerinden biri) kullanan bir optimizasyon modeli inşa edilmesi amaçlanmıştır. Model, EPANET ile 
bağlantılı olarak MATLAB yazılım dilinde kodlanmıştır. Modelin performansı, kararlı/sabit akım koşulları altında iki gözlü farazi bir 
su dağıtım şebekesinde değerlendirilmiştir. Amaç fonksiyonu, model kalibrasyonuna dayalı olduğu için şebekenin düğüm noktalarında 
serbest klor konsantrasyonlarının ölçüldüğü kabul edilmiştir. Bakiye klor konsantrasyonlarını azaltan borular, her bir düğüm 
noktasındaki ölçülen ve tahmin edilen serbest klor konsantrasyonları arasındaki farkların toplamının minimize edilmesine bağlı olarak 
model tarafından belirlenmiştir. Boruların belirlenmesi için boru cidarı reaksiyon hız katsayılarından yararlanılmıştır. Model 10 kez 
çalıştırılarak su dağıtım şebekesindeki her bir borunun ortalama reaksiyon hız katsayıları elde edilmiştir. Model 10 kez çalıştırıldıktan 
sonra, ortalama tahmin ve gerçek reaksiyon hız katsayı değerlerinin hemen hemen aynı olduğu sonucuna varılmıştır (R2=0.99). Su 
dağıtım şebekesindeki bakiye klor kaybına neden olan boruların tespit edilmesi için optimizasyon modelinin uygulanabilir olduğu 
görülmüştür. 

Anahtar Kelimeler: Yapay bağışıklık sistemleri, model kalibrasyonu, boru cidar reaksiyon katsayısı, bakiye klor, su dağıtım şebekesi.

Abstract

This paper intended to build an optimization model utilizing the modified clonal selection algorithm (one of the famous heuristic 
optimization techniques) to detect pipes which reduces a residual chlorine in the water distribution networks (WDNs). MATLAB 
programming language was used to code the model linked with EPANET. The model performance was evaluated in a two-loop 
hypothetical WDN under steady-state flow conditions. In nodes of this hypothetical WDN, free chlorine concentrations were 
assumed to be measured since an objective function depends on model calibration. Pipes decreasing residual chlorine concentrations 
were determined by running the model which minimizes a total of concentration differences between estimated and measured free 
chlorine in each node. In order to find these pipes, pipe wall reaction rate coefficients were utilized. The model was run 10 times 
to obtain average reaction rate coefficient of each pipe in the WDN. After 10 runs, mean estimated and actual/real reaction rate 
coefficient values were almost equal (R2=0.99). The optimization model appeared to be viable for detecting pipes causing a residual 
chlorine loss in the WDN.
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provided as desired concentrations (e.g., 0.3-0.5 mg/l free 
chlorine) in the nodes of the WDNs (see Askenaizer 2003, 
Oğur et al. 2004 for the chemical reactions). The guidelines 
of World Health Organization (WHO) on water quality 
suggests limit concentrations of residual chlorine (as 
free chlorine) in the drinking water to the range 0.2–5 
mg/l (WHO 2022). As well as free chlorine decay due 
to reactions with natural organic matters in the bulk flow 
over time, the metal pipes of the WDNs are corroded over 
time and cause to reduce the concentration of the residual 
chlorine since free chlorine oxidizes iron (Fe) released from 
pipe wall corrosion or pipe wall reactions/decay with biofilm 
(Rossman 2000, Han et al. 2017, Fisher et al. 2017a, Xu 
et al. 2018). Therefore, both health risk occurs and costs 
increase due to extreme chlorine consumption.

In the literature, there are many studies regarding residual 
chlorine modelling in the WDNs (Onyutha and Kwio-
Tamale 2022, Elsherif et al. 2023, Hossain et al. 2022, 
Ardila et al. 2023). Rossman et al. (1994) improved a mass‐
transfer‐based model which considers first‐order reactions 
of chlorine to occur both in the bulk flow and at the pipe 
wall for predicting chlorine decay in the WDNs. Islam et 
al. (1997) proposed a new computer model using an inverse 
method to model chlorine concentration in the pipe networks. 
Rodriguez and Sérodes (1998) applied two empirical models 
to simulate and predict residual chlorine concentrations in 
the urban water systems. Li et al. (2003) built a model of 
residual chlorine decay in the WDN considering a chlorine 
consumption in reactions with chemicals in a bulk water, in 
corrosion process, bio-films occuring on a pipe wall, and the 
chlorine mass transport from a bulk water to a pipe wall. 
Gibbs et al. (2006) used different data-driven techniques 
(artificial neural networks and linear regression model) 
to predict concentrations of chlorine in the Hope Valley 
WDN (South Australia). Helbling and VanBriesen (2009) 
performed modeling residual chlorine related to a microbial 
contamination in the WDNs. Monteiro et al. (2014) 
carried out a chlorine decay modelling in drinking water 
supply systems by using EPANET MSX. Kim et al. (2014) 
investigated the relationship between a temporal variation 
in a chlorine concentration and hydraulic conditions for a 
pilot scale WDN (Similarly, Kim et al., 2015). Blokker et al. 
(2014) predicted residual chlorine concentrations in WDN 
under the effect of stochastic water demands. Chelsea 
(2016) modelled residual chlorine and trihalomethanes 
using EPANET for the City of Akron’s WDN (Ohio, US). 
Fisher et al. (2017b) implemented a bulk chlorine decay 
model (the augmented two-reactant (2RA) model) for 

simulating residuals in the WDNs. Monteiro et al. (2020) 
modelled pipe wall decay of chlorine residuals in a full-
scale water supply system using the traditional first-order 
and EXPBIO models. García-Ávila et al. (2021) proposed 
a model of residual chlorine decay to forecast chlorine 
concentration levels in a real WDN during the COVID-19 
pandemic. Fisher et al. (2021) modelled residual chlorine and 
trihalomethane profiles in the WDNs after pre-chlorination 
of the water treatment plant. Absalan et al. (2022) performed 
predictions of chlorine and trihalomethanes in the WDN 
in southern Quebec (Canada). Abhijith and Ostfeld (2022) 
developed a novel computer-based tool (EPANET-C) to 
simulate variations in residual chlorine concentrations in the 
WDNs. Wu and Dorea (2022) applied basic chlorine decay 
kinetic models in the literature for humanitarian emergency 
water supply. Yimer et al. (2022) conducted modelling of 
residual chlorine in the Arada sub-city supply system (Addis 
Ababa water supply distribution systems, Ethiopia) by using 
Water CAD. Onyutha (2022) predicted residual chlorine 
concentrations in drinking water using machine and deep 
learning techniques. Wang (2022) optimized the chlorine 
injection mass to maintain chlorine in the WDN by using a 
fuzzy chance-constrained optimization model. Huang and 
Wang (2023) developed a double-sided fuzziness chance-
constrained programming model to cut down costs of the 
disinfectant booster under uncertainty. Kyritsakas et al. 
(2023) designed a data-driven model that uses different 
machine learning algorithms for the prediction of chlorine 
losses in water distribution trunk mains. Wang et al. (2023) 
proposed an improved VRC-3R- residual chlorine decay 
model in the UV/Cl2 process in the WDN. Wongpeerak 
et al. (2023) applied a novel method based on a simple 
theoretical analysis (theoretical disinfectant mass loss 
models) to simulate residual chlorine concentrations in the 
real WDNs in Thailand. Enriquez et al. (2023) estimated 
chlorine and trihalomethanes concentrations in the trunk 
network of Bogota’s WDN (Colombia) by using evolutionary 
polynomial regression models and artificial neural networks. 
Belcaid et al. (2023) presented a new methodology for 
chlorine decay modeling in the WDN of Mohammedia 
City (Morocco). Helm et al. (2024) implemented machine 
learning models by developing a gradient-boosting method 
to forecast a free chlorine residual in a drinking water 
treatment plant (Georgia, U.S.). Li et al. (2024) improved 
a novel gated graph neural network model/approach for 
a chlorine prediction in nodes of a real WDN (Yantian 
WDN, China).
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These studies generally focused on modelling of residual 
chlorine concentrations (not detecting pipes which decrease 
the concentrations). By considering this gap in this broad 
literature, this study aimed to develop a heuristic optimiza-
tion model based on model calibration to detect pipes which 
reduce residual chlorine concentrations (as free chlorine) in 
nodes of the WDNs (considering pipe wall reaction coeffi-
cients).

2. Material and Methods
2.1. Algorithm

The heuristic optimization model was coded by linking with 
EPANET software in MATLAB programming language. 
EPANET, a commonly known WDN simulation software, 
was chosen for the hydraulic calculations since it is simple 
and efficient (also, it can be linked with MATLAB). It 
was developed as a tool for understanding the movement 
and fate of drinking water constituents within WDNs and 
can be used for many different applications in distribution 
systems analysis (Rossman 2000). As for MATLAB, it is 
a programming and numeric computing platform used by 
engineers and scientists to analyze data, develop/improve 
algorithms, and build models.

The model uses the modified clonal selection algorithm 
(modified Clonalg) (one of the artificial immune systems) 
developed by Eryiğit (2015) as a heuristic optimization 
method. (See Figure 1). This algorithm mimics the clonal 
selection theory of the natural immune system. In Figure 
1, Ab is the antibody population randomly created, f is 
the antibody’s antigenic affinity (representing an objective 
function), C is the cloned antibody population, C* is the 
mutated antibody population. The algorithm process can 
be briefly defined as follows (Eryiğit 2015, Eryiğit and 
Sulaiman 2022):

1)  An antibody set/population (Ab) is randomly generated.

2)  An objective function (f ) is computed to be minimized 
or maximized (optimization) for each individual in Ab.

3)  All individuals are cloned/copied.

4)  All antibody clones (C) are exposed to the maturation 
(mutation) process which is inversely proportional to 
their antigenic affinities. Besides, new antibody genes are 
generated for the clones in this step.

5)  An objective function (f ) is recalculated for each matured 
clone in C*.

6)  The matured/mutated clones owning the highest affinity 
(best individuals) are chosen to replace the antibodies 
which own the lowest affinity in Ab. 

This loop goes on until the iteration reaches a maximum 
number (or a certain error/difference between worst and 
best individuals in Ab). Hence, the optimum result can be 
obtained. 

Figure 1. The flow diagram of the modified Clonalg (Eryiğit 
2015).

In the modified Clonalg (step 4), new genes are produced 
for each antibody clone by taking in consideration a certain 
probability which is referred to “probability rate” (PR) 
depending on an optimization problem. The antibody clone 
number can be computed as below (De Castro and Von 
Zuben 2002):

( ) ,N round N i N1c Ab Ab

i

N

1

Ab

$ gb= =
=

/   (1)

where Nc is the total clone number, β is the coefficient of 
multiplying, and “round” is a rounding operator for the 
integer.

A mutation rate can be obtained as the following (De Castro 
and Von Zuben 2002):

( )exp fi i$a t= -   (2)

where αi is the mutation rate, ρ is the coefficient of decay, 
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actions/decay kinetics (R K Cb
n$=  and  ( / )R A V K Cw

n$ $=

for bulk and wall reactions (R), respectively. A/V: The surface 
area per unit volume within a pipe, C: The reactant con-
centration) were used for the chlorine, and lower and upper 
limits for pipe wall reaction coefficient were assigned as -1.5 
and 0 m/day, respectively (Rossman 2000, Rossman et al. 
2020). The optimization model reaches a global minimum 
(f ) by assigning coefficient values in this range [-1.5, 0] to 
the pipes of the WDN during the iteration.

The analyses were carried out by using a computer with Intel 
Core I5-8300H CPU 2.3 GHz, and the model was run 10 
times with maximum iteration number (Imax) of 1000 for 
examining a model stability. In this study, NAb, β, ρ, and PR 
were assigned as 30, 1, 0.5, and 0.2, respectively.

3. Results and Discussion
There are 8 pipes in the WDN. Their wall reaction 
coefficients are assumed to be unknown. As it is seen in 
Figure 2, Pipe 1, 3, 5 and 8 (red lines with -1.5 m/day) 
cause a higher loss of residual chlorine concentration while 

and fi is a value of the antigenic affinity (value of the objective 
function) normalized between 0 and 1.

Population Ab is defined as shown below:
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where NAb is the total antibody number (population Ab), 
xij is the gene of Abi (decision variable of fi), nd is the gene 
number of Abi. In this study, xij corresponds to the wall 
reaction rate coefficient (Kw) of each pipe in the WDN. f 
was minimized depending on pipe wall reaction coefficients 
(genes) produced and mutated/matured through the 
algorithm processes. The objective function (f) is based on 
model calibration in the study:

minimize RC RC10 ipred iobs

i

NRC
3

1

-
=

/   (4)

where RCipred is the i-th predicted residual chlorine, RCiobs 
is the i-th observed residual chlorine, NRC is the number 
of observed residual chlorine values in nodes of the WDN.

2.2. Implementation

The optimization model was applied to a two-loop hypo-
thetical WDN consisting of 6 nodes (junctions), 8 pipes and 
one reservoir under steady-state gravity flow conditions in 
EPANET (See Figure 2). The data of the WDN was given 
in Table 1. This scenario includes some assumptions as fol-
lows:

1) Free chlorine concentrations are assumed to be measured 
in the WDN nodes in each hour for 24 hours.

2) Bulk reaction coefficient (Kb) in the WDN is assumed 
as -0.01/day (most of the chlorine decay in the network 
is occurring in the reservoir and residual chlorine 
concentration is 1 mg/l).

3) Pipe corrosion and biofilm are dominant in the system 
because of pipe age and material.

4) All pipe wall reaction coefficients in the WDN are 
unknown.

The residual chlorine concentrations (as free chlorine) mea-
sured in the nodes after 24 hours and pipe wall reaction co-
efficients (Kw) are shown in Figure 2. First-order (n=1) re- Figure 2. Layout and operational data of the two-loop hypothetical 

WDN.
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Pipe 2, 4, 6 and 7 (blue lines with -0.01 m/day) cause a 
lower loss in the WDN. After the model was run 10 times, 
results obtained in each run were given in Table 2. Also, 
the comparison of mean predicted coefficients and actual 
pipe wall coefficients was shown in Table 3 and Figure 3. 
As it is seen in Table 2, the model was able to determine 
accurately wall reaction coefficients of all pipes in all runs 
except run 6 (ratio of 9/10 runs). This demonstrates that the 
optimization model is stable. Mean predicted and actual 
values are almost equal each other (R2=0.99) (See Table 3 
and Figure 3). Consequently, the pipes reducing residual 
chlorine concentrations in the WDN were successfully 
detected by the model (Pipe corrosion and biofilm are 
assumed to be dominant in the network). By detecting 
these pipes, it can be said that we also specify the old/worn 

Table 1. The main characteristics of the two-loop hypothetical WDN.

Node Elevation (m) Base Demand (l/s) Pipe Length (m) Diameter (mm) Cp

Reservoir 150 - 1 5000 450 130
1 80 20 2 3000 250 140
2 70 20 3 3000 300 130
3 70 20 4 3000 150 140
4 60 20 5 3000 200 130
5 60 20 6 3000 250 140
6 60 20 7 3000 150 140

8 3000 150 130

Table 2. Results of predicted wall reaction coefficient for each pipe in the WDN after 10 runs.

Run
No f Pipe 1

(m/day)
Pipe 2

(m/day)
Pipe 3

(m/day)
Pipe 4

(m/day)
Pipe 5

(m/day)
Pipe 6

(m/day)
Pipe 7

(m/day)
Pipe 8

(m/day)
Run Time

(min)
1 0.34 -1.5 -0.01 -1.5 -0.01 -1.5 -0.01 -0.02 -1.5 38.3
2 0.21 -1.5 -0.01 -1.5 -0.01 -1.5 -0.01 -0.02 -1.5 38.7
3 0.30 -1.5 -0.01 -1.5 -0.01 -1.5 -0.01 -0.02 -1.5 39.0
4 0.27 -1.5 -0.01 -1.5 -0.01 -1.5 -0.01 -0.01 -1.5 38.8
5 0.27 -1.5 -0.01 -1.5 -0.01 -1.5 -0.01 -0.01 -1.5 38.4
6 0.80 -1.5 -0.01 -1.5 -0.01 -1.5 -0.01 -0.13 -1.01 38.4
7 0.15 -1.5 -0.01 -1.5 -0.01 -1.5 -0.01 -0.01 -1.5 38.5
8 0.37 -1.5 -0.01 -1.5 -0.01 -1.5 -0.01 -0.01 -1.5 38.5
9 0.24 -1.5 -0.01 -1.5 -0.01 -1.5 -0.01 -0.01 -1.5 38.4
10 0.31 -1.5 -0.01 -1.5 -0.01 -1.5 -0.01 -0.01 -1.5 38.3
Mean 0.32 -1.5 -0.01 -1.5 -0.01 -1.5 -0.01 -0.02 -1.45 38.5
Std 0.180 0 0.0004 0 0.001 0 0.0004 0.037 0.154 0.23
Min 0.15 -1.5 -0.01 -1.5 -0.01 -1.5 -0.01 -0.13 -1.5 38.3
Max 0.80 -1.5 -0.01 -1.5 -0.01 -1.5 -0.01 -0.01 -1.01 39.0

Table 3. A comparison of mean predicted and actual pipe wall 
reaction coefficients.

Pipe *Mean Predicted
Coefficient (m/day)

Actual Coefficient
(m/day)

1 -1.5 -1.5
2 -0.01 -0.01
3 -1.5 -1.5
4 -0.01 -0.01
5 -1.5 -1.5
6 -0.01 -0.01
7 -0.02 -0.01
8 -1.45 -1.5

*Average of 10 runs
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value). But, this makes the run time longer. So, NAb of 30 
and Imax of 1000 were enough to obtain acceptable/satisfying 
results during the analyses.

The optimization model obtained good results under 
steady-state flow conditions. Of course, flows are not steady/
constant in real WDNs. However, dynamic flow conditions 
could be neglectable for this study because the bulk flow 
reaction was assumed to be too low (-0.01/day) in the WDN 
(most of the chlorine decay is occurring in the reservoir) 
according to the scenario.

In the related literature, mostly residual chlorine concentra-
tions have been modeled in the WDNs. The present study 
differs from the others because pipes reducing the chlorine 
concentrations were detected instead of modelling the con-
centrations in the WDNs. Thus, it can be said the paper 
is the first optimization study based on Kw in terms of the 
detection of the pipes decreasing the residual concentra-
tions. While reviewing the literature, it is seen that aver-
age Kw value of -0.066 m/day was (coincides with the range 
[-1.5, 0]) experimentally determined by García-Ávila et al. 
(2021). But experimental methods could be expensive and 
time-consuming. Zaghini et. al. (2024) assumed an overall 
rate coefficient K (1/time) combining Kb and Kw due to the 
difficulties of the accurate estimation of individual Kb and 
Kw decay contributions. They obtained K values between 
-0.4 and -1.1 (1/day) for the multiple-source WDNs. But 
Kw values were uncertain since they were included in the 
overall rate coefficients. Therefore, the pipes reducing the 
chlorine concentrations were unknown. 

4. Conclusion and Suggestions
The worn-out pipes in the water supply have a risk to the 
public health due to corrosion and biofilm (pathogens 
etc.) and increase the costs of the chlorination. These pipes 
should be detected and renewed as quickly as possible. For 
this problem, the optimization model could be utilized. In 
this study, wall reaction coefficients (Kw) of the pipes in the 
WDN were determined by utilizing the model calibration. 
Thus, the pipes reducing residual chlorine concentrations 
were able to be detected by the optimization model 
considering their reaction coefficients (since pipe corrosion 
and biofilm are dominant in the present WDN). This also 
indicates that these pipes are old (especially corroded pipes) 
and decrease pressure heads desired in the nodes of the 
WDN. Consequently, the model is useful to detect pipes 
which decrease both residual chlorine concentrations and 
pressures by measuring only free chlorine in the nodes of the 

out pipes (especially corroded metal pipes) which may 
cause pressure losses in the WDN because a higher Darcy-
Weisbach roughness coefficient or a lower Hazen-Williams 
C-factor results in a greater frictional head loss in a flow 
along the pipe (Rossman 2000). The pipe wall reaction 
coefficient (Kw) can be assigned as the function of the 
roughness coefficient for each pipe in EPANET. For this, 
site-specific field measurements should be performed. In 
this study, Hazen-Williams C-factors (Cp) for the frictional 
head loss were selected independently from the pipe wall 
reaction coefficients (Kw) because the hypothetical WDN 
was applied.

On the other hand, the optimization model can detect the 
pipes which decrease residual chlorine with mean run time 
of 38.5 minutes. Run time depends on iteration number (or 
error/difference between minimum and maximum affinity 
values of antibodies in the population) and population 
number as well as the algorithm structure. Better results 
(ratio of 10/10 runs) might be obtained by increasing 
population and iteration numbers (or assigning lower error 

Figure 3. Mean predicted and actual pipe wall reaction coefficients 
(m/day).
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the frictional head losses and chlorine losses in the future 
studies. 

The optimization model was run under steady-state flow 
conditions. Therefore, it might need to be tested under 
non-steady state flow conditions in real WDNs in the 
future studies. However, this study is a pioneer in terms of 
detection of pipes resulting in chlorine losses in the WDN 
and inspires the researchers about this subject.
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