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ABSTRACT: Based on Rytov method, on-axis scintillation index of laser communication link in a weak 

oceanic medium is formulated for collimated annular beam. Employing these obtained scintillation 

values, average bit error rate (<BER>) is evaluated where the intensity has log-normal distribution. 

Scintillation indices of collimated annular beams are found for fixed primary source size
1s

 , varying 

annular beam thickness, propagation distance L , source size s , the rate of dissipation of the mean 

squared temperature T , non-dimensional parameter representing the relative strength of temperature 

and salinity fluctuation w . <BER> versus the source size and the average signal to noise <SNR> found 

for the collimated annular beams are exhibited for various rate of dissipation of  turbulent kinetic energy 

per unit mass of fluid   and source sizes s . At the stated link lengths, as secondary source size of 

annular beam equals to zero, that is, for Gaussian beam, <BER> will offer more advantages. 
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Halkasal Hüzmenin Zayıf Okyanussal Türbülansta Bit Hata Oranı 

 

ÖZ: Rytov yöntemine dayalı olarak  zayıf bir okyanussal ortamdaki lazer iletişim bağlantısının eksen 

üzerine ıpıldama indeksi, paralelleştirilmiş halka hüzmesi için formüle edilmiştir. Elde edilen bu 

değerler kullanılarak, ortalama bit hata oranı (<BER>), log-normal dağılımlı olarak değerlendirilmiştir. 

Paralelleştirilmiş halkalı hüzmelerin ıpldama indeksleri; sabit birincil kaynak boyutu 
1s

 , değişen 

dairesel hüzme kalınlığı, yayılma mesafesi L , kaynak boyutu s , ortalama karesel sıcaklığın dağılma 

oranı T , sıcaklık ve tuzluluk dalgalanmasının göreli kuvvetini temsil eden boyutsuz parametresi w  

için bulunur. Paralelleştirilmiş halka hüzmesi için kayanak büyüklüğü ve ortalama sinyal gürültü oranı 

(<SNR>)’ na göre <BER>, birim kütle akışkanı ve kaynak boyutları için türbülans kinetik enerjinin çeşitli 

dağılım oranı için sergilenmektedir. Belirtilen iletişim bağlantısında, halkasal hüzmelerin  ikincil kaynak 

boyutu sıfıra eşit olduğunda, yani Gaussian hüzmesi olduğunda, <BER> daha fazla avantaj 

sağlayacaktır. 

Anahtar Kelimeler : Okyanussal türbülans, Okyanus optiği,  Optiksel haberleşme, ıpıldama, BER 

 

INTRODUCTION  

 

Optical communications in underwater channels have fluctuations in the intensity measured by the 

scintillation index. This affects the behaviour of the <BER> which is one of the most important 

performance criteria in the link design. Some studies concerning the scintillation index of laser beams  

DOI: 10.15317/Scitech.2017.87 



Ber Of Annular Beams In Weak Oceanic Turbulence                                                                                                                                    263 

                                                                                                                                                                                    

 

show how much the fluctuations in the intensity, measured by the scintillation index, impress the optical 

communication in not only weak turbulence but also in strong turbulence. Also the types of beam model 

effect the scintillations, hence the <BER> at the receiver (Tatarski, 1961; Ishimaru, 1978; Andrews et al., 

2001; Andrews et al., 2005; Arpalı and Baykal, 2009; Arpalı et al.,2008; Vetelino et al., 2007; Sandalidis et 

al., 2008; Tyson et al., 2005; Namazi et al., 2007; Gerçekcioglu et al., 2010; Gerçekcioglu and Baykal, 2013; 

Gerçekcioglu and Baykal, 2013; Gerçekcioglu et al., 2010; Gerçekcioglu and Baykal, 2011; Gerçekcioglu et 

al., 2010). Studies involving scintillation index of annular beams have revealed important results at the 

atmospheric channel (Gerçekcioglu et al., 2010; Gerçekcioglu and Baykal., 2013; Gerçekcioglu and 

Baykal, 2013; Gerçekcioglu et al., 2010; Gerçekcioglu and Baykal, 2011; Gerçekcioglu et al., 2010).  

The propagation of various kind of laser beams used in wireless optical links in underwater 

channels will cause intensity fluctuations, also affect the performance of optical communication link 

(Kumar et al., 2011; Lu et al., 2006; Korotkova et al., 2012; Baykal, 2015; Yousefi et al., 2015; Yi et al., 2015; 

Gökçe et al., 2016; Baykal, 2016; Cheng et al., 2016; Peng et al., 2017; Nikishov and Nikishov, 2000; 

Gerçekcioglu, 2014; Ata and Baykal, 2014). Especially, the scintillation indices of optical plane and 

spherical and Gaussian beams propagating in underwater turbulent media are researched by using the 

Rytov method (Gerçekcioglu, 2014; Ata and Baykal, 2014). 

In this study, thanks to utilizing the spatial power spectrum of the refractive index of atmospheric 

media and developed on-axis scintillations in the weak atmospheric optical horizontal links, with the 

spatial power spectrum of the refractive index of homogeneous and isotropic oceanic water, collimated 

annular beams propagating in underwater turbulent media are analyzed and the scintillations and 

<BER> are evaluated in horizontal oceanic optics links by using the Rytov method. Scintillation index of 

collimated annular beams at changing features for propagation distance and source size is shown. 

Furthermore, scintillation index and <BER> versus <SNR> are found by using the log-normal distributed 

intensity for the collimated annular beams versus the for non-dimensional ratio of  the relative strength 

of temperature and salinity fluctuations w , various source sizes s , the rate of dissipation of the mean 

squared temperature T  and the rate of dissipation of turbulent kinetic energy per unit mass of fluid  . 

FORMULATION 

 

The on-axis scintillation index 
2m  of annular beams in ocean turbulence (Gercekcioğlu and Baykal, 

2011) with the spatial power spectrum of the refractive index of homogeneous and isotropic oceanic 

water represented by  n  for 0   is represented as  (Lu et al., 2006; Nikishov and Nikishov, 2000), 
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where Re(.) is to the real part of the argument,   is the variable showing the length along the 

propagation axis, L  is the propagation distance of the link,  exp i   is the two dimensional spatial 

frequency in polar coordinates,   is the magnitude,  .  is the Gamma function, 
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where, the rate of the dissipation of the mean squared refractive index fluctuation is 

 
22 21 /n TA w w   ,

T  is the rate of dissipation of the mean squared temperature taking values 

for smaller   close in the range from 10-2 K2/s to 10-10 K2/s,   is the              Obukhov–Corrsin constant 

whose value is taken as 0.72,   is the rate of dissipation of  turbulent kinetic energy per unit mass of 

fluid, the non-dimensional constant Q  is a free parameter to be determined by comparison with 

experiment where its value is taken as 2.35, and  
1/ 4

3 /s v   is the Kolmogorov microscale, v  being 

the kinematic viscosity, w  is non-dimensional representing the relative strength of temperature and 

salinity fluctuations, which in the ocean waters can vary between -5 and 0, 1   when the quantity of 

eddy thermal diffusivity equals to the quantity of diffusion of the salt, Tr  and 
Sr  represent the 

Prandtl numbers for temperature and salinity respectively, where  
Tr =7 and 

Sr =700, and the 

refractive index is expressed as a function of temperature and salinity fluctuation, -42.6 10A   l/deg is 

a constant. 

 

The expressions in the integrand of Eq. (1) are 
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where    
1

1D L A i L


   and  the annular beam incident field at the source plane is given        as 

2
2 2

1

, exp 0.5 0.5s s x y l l x l y

l

u u s s A k s k s s ,  these examples of annular beam expressed 

by ,x ys ss  is the transverse coordinate at the source plane, ,x ys s  representing the x and  y  

components, A  is in general the complex amplitude of the source field,  1 2 1A A   , * is the complex 

conjugate, 
0.5

1i , 2 /k    is the wave number,   is the wavelength, 
2

1 1 11/ /sk j F  , 

1 1 and s F  are the Gaussian source size and focusing parameter of the symmetrical primary beam. 

Likewise,
2

2 2 21/ /sk j F  , 2 2 and s F  are the Gaussian source size and focusing parameter of 

the symmetrical secondary beam, thickness is defined as difference between primary and secondary 

source (Gerçekcioğlu et al., 2010). 
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Substituting Eqs. (3), (4) and the spatial power spectrum of refractive index fluctuation given in Eq. (2) 

into Eq. (1), performing the integration over   and  , the on-axis scintillation index of annular beams 

in weak oceanic turbulence is found which is expressed as, 
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The <BER> is given by Eq. (3) of [4] as, 

     3/ 2
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where  .erfc  is the complementary error function, ( )Ip u  is identified in weak oceanic turbulence as  

the probability density function of the intensity with 0u  as [4], 

   2
2

20.5 .                              11
1

( )
2

exp ln 0.5I mp u
m u

u m



     



    

 

For the collimated annular beams at the origin of the receiver in a weakly turbulent ocean., the <BER> is 

found  by using 2m  given in Eq. (5) inserted into ( )Ip u  given in Eq. (11) which in turn is substituted 

into Eq. (10). 

RESULTS AND DISCUSSIONS 

In this section, the results are obtained by utilizing the derived formulations in section 2 

which are valid in oceanic weak turbulence. As taken in my article published in 2014, it is noted 

that 1.55 m    and 
-8 2 1

t = 10  K s  are chosen. While  Figs.1, 2, 3, 4 and  5 indicate the 

scintillation indices versus the propagation distance L , source size s , rate of dissipation of the 

mean squared temperature T  
and the ratio of temperature and salinity fluctuations w , 

respectively, Figs. 6, 7 and 8 indicate the variations of <BER> versus the primary source size 

1s


 
at various thickness, versus <SNR> for fixed primary source size 

1
= 1 cms  

and 
1
= 2 cms

, respectively. 
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Figure 1.  Scintillation index versus propagation distance L  for collimated annular beams at fixed 

primary source size ( 1= 1 cms ) and various thickness. 
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Figure 2. Scintillation index versus primary source size 1s  
for collimated annular beams at various 

thickness. 
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Figure 3.  Scintillation index versus the rate of dissipation of the mean squared temperature T  for 

collimated annular beams at fixed primary source size ( 1= 2 cms ) and various thickness. 

 

Figure 4.  Scintillation index versus the rate of dissipation of the mean squared temperature T  for 
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Figure 5.  Scintillation index versus effects of temperature and salinity fluctuations w for collimated 

annular beams at fixed primary source size ( 1= 2 cms ) and various thickness. 

 

 
Figure 6.  <BER> versus scintillation index versus primary source size 1s for collimated annular beams 
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Figure 7.  <BER> versus <SNR> for collimated annular beams at fixed primary source size ( 1= 1 cms ), 

various thickness, and various rate of dissipation of turbulent kinetic energy per unit mass of fluid  . 

 
Figure 8.  <BER> versus <SNR> for collimated annular beams at  fixed primary source size ( 1= 2 cms ), 

various thickness, and various rate of dissipation of turbulent kinetic energy per unit mass of fluid  . 

 

0 1 2 3 4 5 6 7 8 9 10
-7

-6

-5

-4

-3

-2

-1

0

<SNR>  in dB

<
B

E
R

>
 

 Annular  beam  
F

s
 =  ,

s1
 = 1.0 cm, L=40 m, X

t
=  1x10-8

 =   10
-4


s2

 = 0.5 cm


s2

 = 0.0 cm

 =   10
-2

0 1 2 3 4 5 6 7 8 9 10
-7

-6

-5

-4

-3

-2

-1

0

<SNR>  in dB

<
B

E
R

>
 

 Annular  beam  
F

s
 =  ,

s1
 = 2.0 cm, L=40 m, X

t
=  1x10-8

 =   10
-4


s2

 = 0.5 cm


s2

 = 0.0 cm

 =   10
-2



Ber Of Annular Beams In Weak Oceanic Turbulence                                                                                                                                    271 

                                                                                                                                                                                    

 

Scintillation index versus propagation distance L  for collimated annular beams at 
1
= 2 cms , 

-8 2 1

t = 10  K s , 
-4= 10 and various thickness is depicted in Fig.1. As thickness increases, scintillation 

indices decreases until
2s

 equals to zero, i.e, Gaussian beam case. In Fig. 2,  scintillation index versus the 

primary source size 
1s


 
for collimated annular beams at various thickness is drawn for propagation 

distance = 40 mL , 
-8 2 1

t = 10  K s
 
and 

-2= 10  and is seen that the lowest scintillation indices are at 

2
= 0 cms . Fig. 3 and 4 show the scintillation index versus the rate of dissipation of the mean squared 

temperature T  for collimated annular beams at fixed primary source sizes of 
1
= 2 cms  

and 

1
= 1 cms , respectively. Figs. 3 and 4 are drawn at various thickness at the propagation distance 

= 40 mL , 
-8 2 1

t = 10  K s
 
and 

-1= 10 . As the thickness decreases, scintillation indices increase. 

When Figs.3 and 4 are compared in terms of the scintillation indices at two different source size, smaller 

source size value has better scintillation indices values. 

 

Scintillation indices are plotted in Fig. 5 versus the ratio of temperature and salinity fluctuations, w  
for collimated annular beams at 1= 2 cms  

for fixed primary source size and various thicknesses. The 

propagation distance is = 40 mL , 
-8 2 1

t = 10  K s
 
and 

-1= 10 . Increasing values w cause a rise in 

scintillations. In Fig. 6, <BER> is depicted versus the primary source size 1s  
at various thickness values 

at propagation distance = 40 mL , 
-8 2 1

t = 10  K s , 
-2= 10  and <SNR>=10 dB. <BER> is found to 

have much smaller values when annular beam approaches the Gaussian beam. Figs. 7 and 8 indicate 

<BER> versus <SNR> for various thickness and   values for fixed primary source sizes of 
1
= 1 cms  

and
1
= 2 cms , respectively. For the Gaussian beam, <BER> is found not to change at various . 

However, for the annular beam, small source size yields much lower <BER>. It is also observed that 

when   is larger,<BER> increases.  

 

CONCLUSION 

 

In this study, based on the temperature and salinity spatial power spectrum of underwater 

fluctuations, on-axis scintillation index of annular beam is derived analytically for horizontal optics 

communication links in a weak oceanic turbulence by utilizing Rytov solution, and <BER> with log-

normal intensity distribution is examined. The results of the on-axis scintillation index of annular beam 

for horizontal optics communication link in weak oceanic turbulence are found to be similar to the 

previously obtained results for horizontal optics communication links in weak atmospheric turbulence. 

Our results show that as compared to collimated annular beam, annular beam yields much bigger 

scintillations at short distances, unlike long distances as in other articles (Namazi et al., 2007; 

Gerçekcioglu et al., 2010; Gerçekcioglu and Baykal, 2013; Gerçekcioglu and Baykal, 2013; Gerçekcioglu et 

al., 2010; Gerçekcioglu and Baykal, 2011). Propagation distance is taken shorter than the distances in 

atmospheric links because strong oceanic turbulence can occur at short distances (Lu et al., 2006). As the 

annular beam thickness decreases, the scintillation index, and naturally <BER> as well increase. 

Gaussian beams are found to be favorable when compared to annular beams at the stated distances.  

 

For collimated annular beam in a weak oceanic medium, the figure, including scintillation indices 

versus propagation distance, shows that as secondary source size increases, scintillation index increases 

at constant, primary source size, rate of dissipation of turbulent kinetic energy per unit mass of fluid, 

and rate of dissipation of the mean squared temperature. Again, at constant, stated propagation 
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distance, rate of dissipation of turbulent kinetic energy per unit mass of fluid, and rate of dissipation of 

the mean squared temperature, when scintillation index and <BER> at fixed <SNR> versus  source size is 

depicted,  as secondary source size increases in proportional to the primary source size,  scintillation 

index  grows up. But, thinner annular beam has more advantages after a certain value without zero 

secondary source size. Just as the growth in the rate of dissipation of the mean squared temperature 

increases scintillation index at fixed, the stated propagation distance, primary source size, and the rate of 

dissipation of turbulent kinetic energy per unit mass of fluid, the growth in the ratio of temperature and 

salinity fluctuations increases scintillation index, and the growth in the rate of dissipation of the mean 

squared temperature increases scintillation index at fixed, the stated propagation distance, primary 

source size, the rate of dissipation of turbulent kinetic energy per unit mass of fluid. At certain values for 

the propagation distance, primary source size, and the rate of dissipation of the mean squared 

temperature, for the smaller value of  the rate of dissipation of turbulent kinetic energy per unit mass of 

fluid and chancing <SNR>,  annular beam has more disadvantage than Gaussian beam. However, 

derived formulation analytically is more important for horizontal optics communication link. The results 

yielded in this paper can be used in the analysis of wireless optical communication links employed in 

ocean.  
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