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Abstract 

In addition to computer vision-based methods, physiological signal-based person identification (PI) applications have 

attracted great attention in recent years with various kinds of advantages. Because physical activities can significantly 

contaminate physiological signals, most of the PI models were proposed to acquire the considered signal during the resting 

state. In this study, we proposed a kurtosis rejection-based PI from photoplethysmography (PPG) signals recorded during a 

step exercise. In the preprocessing stage, we rejected the PPG trials, which have a kurtosis value greater than five and are 

labeled as non-PPG, from the classification process. Afterward, the features were extracted by the sequential forward mother 

wavelet selection method and classified using the k-nearest neighbor algorithm. We achieved the highest classification 

accuracy rate of 88.64% PI performance. The obtained results proved that the kurtosis rejection-based PPG signals recorded 

during the step exercise can be reliably used for PI. 

Keywords: Person identification, Kurtosis, Photoplethysmography, Wavelet selection, Sequential forward, Feature 

extraction, Classification. 

 

 

Adım Egzersizi Sırasında Kaydedilen Fotopletismografi Sinyallerinden Basıklık 

Reddine Dayalı Kişi Tanımlaması 

 

Öz 

Bilgisayarlı görü tabanlı yöntemlerin yanı sıra, fizyolojik sinyal tabanlı kişi tanımlama (KT) uygulamaları da çeşitli 

avantajlarıyla son yıllarda büyük ilgi görmektedir. Fiziksel aktiviteler fizyolojik sinyalleri önemli ölçüde kirletebildiğinden, 

KT modellerinin çoğu, dikkate alınan sinyali dinlenme durumu sırasında elde etmek için önerilmiştir. Bu çalışmada, bir adım 

egzersizi sırasında kaydedilen fotopletismografi (PPG) sinyallerinden basıklık reddine dayalı bir KT önerilmiştir. Ön işleme 

aşamasında basıklık değeri beşten büyük olan ve PPG olmayan olarak etiketlenen PPG denemelerini sınıflandırma sürecinden 

çıkarılmıştır. Daha sonra sıralı ileri ana dalgacık seçim yöntemiyle öznitelikler çıkarılmış ve k-en yakın komşu algoritması 

kullanılarak sınıflandırılmıştır. %88.64 KT performansıyla en yüksek sınıflandırma doğruluğu oranına ulaşılmıştır. Elde 

edilen sonuçlar, adım egzersizi sırasında kaydedilen basıklık reddine dayalı PPG sinyallerinin KT için güvenilir bir şekilde 

kullanılabileceğini doğrulamıştır. 

Anahtar Kelimeler: Kişi tanımlama, Basıklık, Fotopletismografi, Dalgacık seçimi, Sıralı ileri, Özellik çıkarımı, 

Sınıflandırma. 
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1. Introduction 

 

Person identification (PI) is the process of recognizing a person from a group by comparing newly 

extracted features to their corresponding baseline values, extracted from signals recorded earlier. 

Computer vision-based PI studies have mostly been reported (Bedagkar-Gala and Shah, 2014; Chao et 

al., 2020; Kim et al., 2021) because as public security and safety demands increase every day, biometric 

PI-based studies have attracted significant interest in recent years (Jijomon and Vinod, 2021; Mazaira-

Fernandez et al., 2015; Aydemir, 2020). The biometric PI uses physiological and/or behavioral 

characteristics of a person, such as voice, fingerprint, signature, retina, iris, electroencephalography, and 

near-infrared spectroscopy. Each technique has a proper and limited application field and its pros and 

cons. For example, fingerprints might be dirty, cut, or tear and can be reproduced using a latex or gummy 

finger, face identification can be fraudulent by a photo, a person might be wearing glasses or eye lenses 

for iris identification, and voice can be synthesized or pre-recorded. Therefore, newly developed 

biometric PI-based methods have been yet proposed.  

Developments in biosensor technology help realize new or high-performance applications 

including monitoring individual health metrics, allowing usage of wireless brain-computer interfaces, 

and admitting alternative biometric PI systems. It can be said that these advances offer to establish robust 

and accurate human identification systems, which are difficult to be stolen or hacked, and proof of 

liveness since they only exist if the person is alive. Physiological signals like electroencephalography 

(Rodrigues et al., 2016; Alyasseri et al., 2020; Wilaiprasitporn et al., 2019), electromyography (Li et al., 

2020a; Lu et al., 2020; He and Jiang, 2020), and electrocardiography (Pinto et al., 2017; Li et al., 2020b; 

Wu et al., 2018) have also been used for PI approaches. Due to such kinds of systems requiring many 

electrodes attached to different parts of the body to acquire signals, they might not be practical for real-

life biometric applications (Siam et al., 2021). Compared with other physiological signals, 

photoplethysmography (PPG) has received considerable attention for PI approaches in the last few years 

since it is a non-invasive, easily acquired, portable, and low-cost technique that takes measures from the 

skin surface. 

In a PPG-based human identification study, Siam et al. used a dataset of PPG signals recorded from 

35 healthy persons (50 to 60 6-seconds-PPG trials for each one). The features were extracted by the Mel 

frequency cepstral coefficients, which fed into an artificial neural network classifier. Although they 

achieved 100% classification accuracy (CA) rate using the holdout cross-validation method, an unseen 

test set CA rate was not reported (Siam et al., 2021). In another study, Kavsaoglu et al. proposed a feature 

ranking algorithm for biometric recognition with PPG signals, where each trial included 15 periods 
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(Kavsaoğlu et al., 2014). They obtained the dataset from 30 subjects, who were seated in a calm position. 

They reached a maximum CA rate of 94.44% by using time-domain features of the first and second 

derivatives of the PPG signals. In another PPG-based biometric study, Xiao et al. achieved a CA rate of 

91.31% by using wavelet transform features (Xiao et al., 2019). They recorded the dataset from 23 

subjects who were in a relaxed position. To the best of our knowledge, instead of the signals recorded in 

the relaxed position of the subjects in the literature, this study was the first work attempting to identify a 

person from PPG signals during recorded stepper activity. In this way, it has been shown that PPG signals 

can be used in person recognition not only in a relaxed state but also when people are recorded while 

they are moving. Because the stepper exercise might contaminate the PPG signals at an unanalyzable 

level, we proposed a kurtosis rejection-based person identification method to increase the CA 

performance. It is also worth mentioning that we tested 3-s, 4-s, 5-s, 6-s, and 7-s length PPG trials with 

thirteen wavelets. The proposed method was successfully applied to the same dataset and achieved a CA 

rate of 88.64%. 

After the introduction section, the rest of the paper is organized as follows. In section 2, first, the 

dataset and preprocessing description are given. Afterward, the feature extraction techniques and 

sequential forward mother wavelet selection (SFMWS) method are introduced in detail.  In section 3, the 

results are given in tables. Finally, we concluded the results in the last section and discussed the findings.  

 

2. Material and Methods 

 

In the following subsections, first, the dataset used is described. Afterward, the parts of the 

proposed method are introduced in detail. 

 

2.1. Data Set and Preprocessing Description 

 

In this study, the PPG signals were recorded from three males and four females aged between 20 

and 52 years during a voluntary step exercise (Aydemir et al., 2020; Biagetti et al., 2020). The signals 

were acquired with a sampling frequency of 400 Hz using the wrist using the wireless Maxim Integrated 

MAXREFDES100 equipment. A specific and elastic weightlifting cuff has been used to have better 

signal quality and ensure a tight junction between the skin surface and the PPG sensor.  It had an 

adjustable property by a tear-off closure. After all participants gave informed written consent, they 

performed five acquisition sessions. Table 1 shows the total acquisition time for each subject (S1, S2,…, 

S7). The proposed kurtosis rejection-based method was applied by splitting the PPG signals into the 3 s, 
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4 s, 5 s, 6 s, and 7 s segments (trials). It is worthwhile to mention that because the data splitting process 

was done session by session, the total number of trials might not be equal to the total acquisition time.  

 

Table 1. Total recording time and number of trials 

 S1 S2 S3 S4 S5 S6 S7 

Whole dataset Total time 

(second) 

443.0 397.6 271.0 269.7 242.0 325.9 254.9 

Number of trials for 3 s 

Before 

elimination 

146 130 88 87 78 107 83 

After elimination 115 99 71 66 63 93 65 

Number of trials for 4 s 

Before 

elimination 

110 111 111 111 57 79 61 

After elimination 85 86 92 86 48 67 45 

Number of trials for 5 s 

Before 

elimination 

86 76 52 51 47 63 49 

After elimination 78 63 50 45 43 61 43 

Number of trials for 6 s 

Before 

elimination 

72 73 43 43 37 53 41 

After elimination 63 57 35 36 28 46 30 

Number of trials for 7 s 

Before 

elimination 

61 54 36 36 32 44 34 

After elimination 57 49 35 32 27 44 30 

 

After close observation of the signals, we realized that some segments were substantially 

contaminated by physical activity noise and did not show the properties of a PPG signal. For this reason, 

we utilized a kurtosis-based threshold level to omit such kinds of trials (non-PPG trials) from the 

classification dataset. The kurtosis value was calculated as follows 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

1
𝐿

∑ (𝑥𝑖 − �̅�)𝐿
𝑖=1

(
1
𝐿

∑ (𝑥𝑖−�̅�)2𝐿
𝑖=1 ))

2    (1) 

 

where xi  is the ith  sample of a trial x,   �̅� is the mean value of x, and L is the length of a trial. Some 

examples of such 3-s trials are shown in Figure 1. We empirically decided the kurtosis threshold level as 

five, where any PPG trial has a kurtosis value bigger than five, we rejected this trial from feature 

extraction and classification procedures. This value was found empirically. While the first line of this 

figure shows 3-s length PPG trials, which have a kurtosis value smaller than five, the second line 

illustrates PPG trials, with a kurtosis value bigger than five. In order to decide on the non-PPG trial, we 

used kurtosis because it was a measure of the combined size of two tails. Additionally, it is often used as 

a quantitative measure of the non-Gaussianity of a random signal. Therefore, it can be used as a simple 
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measure of PPG and non-PPG (Choi and Lee, 2021; Zhang and Ding, 2016). After that process, the 

number of considered trials is also given in Table 1. The main purpose is to classify the trials in the test 

set as S1, S2,…, S7. Note that we randomly selected half of the trials as the training set and the rest of 

them as the test set. 

 

 

Figure 1. Example of 3-s length PPG trials 

 

2.2. Feature Extraction 

 

Recently, wavelet transform has been widely applied for extracting discriminative features from 

physiological signals by means of its wavelet type, translation, and scaling parameters (Prasad et al., 2021; 

Krishnan and Athavale, 2018). The wavelet transform is a convolution between the mother wavelet 

function ψm,n(t) and the analyzed signal f(t) in the time domain. It can be defined as follows  

 

𝑊𝑇𝐶 (𝑚, 𝑛) = 𝑛−1/2 ∫ 𝑓(𝑡)𝜓∗(
𝑡 − 𝑚

𝑛
)𝑑𝑡         (2) 

 

where WTC indicates the wavelet transform coefficients. Moreover, ψ*, m and n represent complex 

conjugate, translation, and scaling parameters, respectively. The multiplier factor of 𝑛−1/2 normalizes the 

energy. Hence, it is taken into account as the same level for different values of m and n. The wavelet basis 

functions localize in time by m and capture the spatial frequency content by n, which provides the mother 

wavelet wider or narrower. In addition to the impact of scaling and translation parameters, the type of 

mother wavelet is a vital issue for the feature extraction phase. However, there is not a specified procedure 

for selecting the most suitable mother wavelet. Nevertheless, the previous applications or cross-validation 
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process can help to determine the useful mother wavelet (Aydemir, 2017). In this paper, we used the 

standard deviation and the average of WTCs as a feature, which was respectively calculated as follows:  

 

𝑆𝑊𝑇𝐶 = √
1

𝐿 − 1
∑(𝑊𝑇𝐶 − 𝐴𝑊𝑇𝐶)2 

(3) 

𝐴𝑊𝑇𝐶 =
1

𝐿
∑ 𝑊𝑇𝐶 

(4) 

 

where L represents the length of the WTCs. 

 

2.3.  Sequential Forward Mother Wavelet Selection Method 

  

In this study, we used the SFMWS method (Aydemir et al., 2021), which selects a sufficient mother 

wavelet type combination on the training dataset. A general flowchart of the proposed method is given in 

Figure 2. In the training section, first, we independently extracted the features from the training dataset 

for each mother wavelet. Then, CAs were individually obtained for each mother wavelet and determined 

the most suitable single-use wavelet that achieved the highest leave-one-out cross-validation accuracy 

(LOOCVA). Afterward, the remaining mother wavelet’s features were randomly added and re-evaluated 

to improve the previously obtained LOOCVA. This process was utilized until all considered mother 

wavelet combinations were assessed. It is worthwhile to mention that in every step for evaluating specific 

wavelet because the frequency band of the respiration is 0.04-1.6 Hz and the frequency band of the PPG 

signal pulse is in the range of 0.5-4 Hz. We searched for the best scale parameter of wavelet between 1.6 

Hz and 4 Hz to avoid respiration artifact (Lee et al., 2007). After determining the most suitable mother 

wavelet(s) with their parameters, we applied the testing phase, which is illustrated with the green blocks 

in Figure 2. In this section, we predicted test trial labels and calculated the CA performance of the test set. 

The CA was calculated in terms of percentage as follows: 

 

𝐶𝐴 =
𝑁𝐶𝑃𝑇

𝑇𝑁𝑇
𝑥100      (5) 

 

where NCPT and TNT represent the number of correctly predicted trials and the total number of trials, 

respectively. We evaluated 13 different mother wavelets, including Symlet 2 (sym2), Symlet 3 (sym3), 
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Symlet 4 (sym4), Haar, Morlet (morl), Meyer (meyr), Mexican hat (mexh,) Coiflet 1 (coif1), Coiflet 2 

(coif2), Coiflet 3 (coif3), Daubechies 1 (db1), Daubechies 2 (db2), and Daubechies 3 (db3). Since the 

wavelet transform was a time-consuming process, we proposed to use the k-NN classifier, which is a 

simple and fast algorithm (Timus and Bolat, 2017). The Euclidean distance metric was used to determine 

the most suitable k parameter of the classifier. It was searched between 1 and 15 with step size 1 in the 

training stage.  

 

 

Figure 2. The flowchart of the SFMWS method 

 

3. Results 

 

In order to show the most suitable PPG length for PI, we tested the proposed method with different 

lengths of PPG trials, including 3 s, 4 s, 5 s, 6 s, and 7 s lengths. Moreover, the performance of the 

features, which were AWTC and SWTC, were individually calculated. The results are given in Table 2. In 

this table, the obtained mother wavelet combination and their intervals were given in parenthesis. As 

seen from the results, the highest performance was achieved as 88.64% with 7 s PPG lengths by sym4 

mother wavelet. Contrary to this, the lowest CA was calculated by the combination of db2 and meyr as 

63.27% with 4 s length trials. It should also be noted that morl and sym4 were the most frequently used 

mother wavelets, which were selected 6 and 5 times, respectively.  
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Figure 3. Improvement rates of the SFMWS method 

 

Moreover, we calculated the CA improvement rates, which are given in Figure 2, by subtracting 

the CA of the first iteration from the last achieved CA performance. While the biggest improvement was 

provided for 6 s length trials with AWTC + SWTC features as 1.82%, there were no performance 

improvements for six different situations, where most of them were for AWTC +SWTC features. Figure 3 

shows the improvement rates of SFMWS method. It should be noted that AWTC provided improvements 

for 3s, 4s, 5s, 6s and 7s signals. However, SWTC provided improvements only for the 3s, 4s and 6s signals. 

Moreover, their hybrid usage as AWTC and SWTC improved the CA rates only for 4s and 6s signals. 

 

Table 2. The obtained results 

Trial 

Length 

 AWTC SWTC AWTC + SWTC 

3 s 

Wavelet 

(scale) 

morl (197-201) + haar (75-

167) + meyr (87-171) 

sym4 (143-171) + coif1 

(71-95) 

sym4 (71-79) 

CA 81.13 80.37 78.80 

4 s 

Wavelet 

(scale) 

db2 (67-75) + meyr (71-

119) 

db2 (67-103) + sym4 (155-

171) 

morl (85-89) + db3 

(71-95) + coif2 (71-

75) 

CA 63.27 65.66 66.84 

5 s 

Wavelet 

(scale) 

morl (81-105) + db2 (71-

111) 

morl (89-177) Coif1 (85-97) 

CA 84.92 80.15 84.38 

6 s 

Wavelet 

(scale) 

sym4 (115-179) + meyr 

(107-175) 

meyr (153-157) + haar 

(79-175) 

haar (168-248) +mexh 

(143-171) 

CA 78.86 76.92 83.64 

7 s 

Wavelet 

(scale) 

morl (125-137) + mexh 

(71-75) 

sym4 (159-175) morl (93-101) 

CA 76.67 88.64 83.70 
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4. Conclusion 

  

Parallel to the technological developments, the usage areas of biometric systems are getting more 

attention. Because of its properties like being safe and practically applicable, PPG-based biometry 

applications have attracted attention in recent years. In this paper, we proposed a kurtosis rejection-based 

PI method using PPG signals, which were recorded during a step exercise. Although the PPG signal-

based PI studies were almost recorded during the resting state, we showed that PPG can be used for PI 

even it acquired during a step exercise. The highest CA was achieved with 7 s PPG segments as 88.64% 

by the k-NN classifier. 

It is well-known that physical activities can significantly contaminate physiological signals. These 

undesired sources directly affect the performance of the machine learning applications. While the 

contamination level might be eliminated in some cases, the noise amplitude might be much higher than 

the physiological signals such that the trials could not be correctly classified.  In this study, if the PPG 

trial has a kurtosis value greater than 5, we called it non-PPG and rejected it for classification. The results 

showed that the kurtosis rejection-based PI method increased the CA performance by 6.08% compared 

with the non-rejection process. Consequently, we believe that the proposed method can successfully 

identify subjects during a step exercise from their PPG signals.  
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