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Abstract: Cancer remains a global health challenge, with various types such as lung, breast, and colon cancer posing significant threats. 

Timely and accurate diagnosis is crucial for effective treatment and improved survival rates. Genetic research offers promising avenues 

in the fight against cancer, as identifying gene mutations and expression levels enables the development of targeted therapies and a 

deeper understanding of disease subtypes and progression. This study investigates a novel hybrid method aimed at improving the 

accuracy and efficiency of cancer diagnosis and classification. By combining Discrete Cosine Transformation (DCT) and Univariate 

Feature Selection (UFS) methods, the feature selection process is optimized for the dataset. The extracted features are then rigorously 

tested using established classifiers to assess their effectiveness in cancer classification. The proposed method's performance was 

evaluated using eight distinct datasets, and metrics such as MF1, K-score, and sensitivity were calculated and compared with various 

methods in the literature. Empirical evidence demonstrates that the proposed method outperforms others on 5 out of 8 datasets in 

terms of both accuracy and computational efficiency. The presented method represents a reliable tool for cancer diagnosis and 

classification. 
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1. Introduction 
Microarray data refers to high-dimensional datasets that 

enable the simultaneous examination of genetic changes 

in gene expression across thousands of cells. This 

extensive dimensionality facilitates comprehensive and 

detailed analyses in cancer research, leading to a deeper 

understanding of the molecular basis of cancer. However, 

analyzing and interpreting large datasets poses 

challenges that require specialized data mining and 

statistical techniques to achieve accurate results. As a 

result, cancer researchers and healthcare professionals 

face challenges when processing and interpreting 

microarray data. Nevertheless, the broad perspective 

provided by this technology has resulted in significant 

advancements in cancer diagnosis, treatment, and 

disease comprehension (Golub et al., 1999). 

Cancer research encounters challenges due to the high 

dimensionality of datasets, incorporating thousands of 

genes, which complicates genomic data analyses (e.g., 

microarrays, RNA sequencing). The complexity of the 

analysis processes makes them challenging and hinders 

the achievement of accurate and clear results. Another 

issue is the lack of specific genes acting as classifiers for 

particular cancer types, diminishing the classification 

power of datasets (Kilicarslan et al., 2020). Researchers 

need to create specific algorithms and analysis 

techniques to identify and detect unique genes associated 

with different types of cancer. Furthermore, the higher 

interactivity among genes compared to other datasets 

complicates the understanding of cancer mechanisms. 

Some genes can activate others or trigger gene 

expressions, contributing to uncontrolled cell growth and 

metastatic processes. Thus, a comprehensive 

understanding and examination of gene interactions are 

crucial for developing targeted and effective strategies in 

cancer treatment. 

Integrating data analysis methods is crucial for successful 

cancer research. Given the complexity and high 

dimensionality of datasets in cancer research, traditional 

methods may prove inadequate. Hence, using advanced 

statistical methods, machine learning algorithms, and 

network analysis techniques together is crucial for 

making significant advancements in cancer treatment 

(Orhan and Yavşan, 2023). Cancer research primarily 

aims to comprehend the fundamental mechanisms of 

cancer and define cancer types by analyzing genomic 

data. While microarray datasets encompass gene 

expression profiles, their high dimensionality and noise 

often render traditional feature extraction and 

dimensionality reduction methods insufficient. Studies 

reveal that existing feature extraction or dimensionality 

reduction methods may not be effective for all 
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microarray datasets, necessitating the development of 

new approaches for feature extraction and 

dimensionality reduction. Hence, further work is 

required in this field to establish effective and 

personalized cancer diagnosis and treatment approaches 

(Li et al., 2005). 

Numerous studies in the literature have aimed to classify 

datasets containing gene expression levels and select 

appropriate features. These studies utilize various 

methods, such as filter, wrapper, embedded, and hybrid 

methods for feature selection. Filter methods employ 

statistical criteria (e.g., Pearson Correlation, Mutual 

Information, Information Gain (IG)) to reduce the 

number of genes, and some researchers (Gao et al., 2017) 

have developed original algorithms within this context. 

Relief-F and IG are examples of filter methods that 

exhibit improved performance with an increasing 

number of genes. Wrapper methods, on the other hand, 

combine classification methods like Genetic Algorithm 

(GA), Support Vector Machine (SVM), and k-nearest 

Neighbors (kNN) (Gunavathi and Premalatha, 2014; Kar 

et al., 2015). Embedded methods involve classifiers to 

select features, and preferred techniques include SVM-

Recursive Feature Elimination (RFE), First Order 

Inductive Learner (FOIL) based FRFS, and penalized DVM 

improved with T-test (Guyon et al., 2002; Maldonado et 

al., 2011). Additionally, some studies (Luo et al., 2019; 

Othman et al., 2020; Meenachi and Ramakrishnan, 2021; 

Qaraad et al., 2021) have integrated hybrid methods, 

combining filter, wrapper, and embedded methods. For 

instance, MRMR and SVM-RFE have been combined 

(Mundra and Rajapakse, 2009), the Relief-F filter method 

applied as preprocessing, and classification performed 

using ELM, with the SVM-RFE method enhanced with F-

test (Luo et al., 2019). 

After examining the literature, it is clear that the 

classification methods used are often complex and do not 

perform well. Therefore, this study proposes the 

integration of Discrete Cosine Transformation (DCT) and 

Univariate Feature Selection (UFS). DCT can represent 

gene expression data in a low-dimensional space, 

reducing noise and emphasizing relationships between 

features (Er et al., 2005). Furthermore, several studies in 

various domains demonstrate that DCT positively 

impacts performance and enhances model stability (Efe 

and Özşen, 2022; Efe and Ozsen, 2023). The Univariate 

Feature Selection method evaluates the performance of 

each feature separately through classifiers, identifying 

the most significant features (Efe and Yavsan, 2024). By 

combining these two methods, the objective is to reduce 

the complexity of gene expression data, leading to more 

meaningful and effective feature selection. Consequently, 

this combination can contribute to obtaining less noisy 

and more explanatory features for the classification 

algorithm, reducing the risk of overfitting and enhancing 

the model's generalization capability. As such, the 

integration of Discrete Cosine Transformation and 

Univariate Feature Selection aims to optimize the feature 

selection process in the classification of gene expression 

levels, resulting in more reliable results. 

The proposed method was tested using four primary 

classifiers: Neural Network (NN), Support Vector 

Machine (SVM), k-nearest Neighbors (kNN), and 

Convolutional Neural Network (CNN). The results were 

compared with other studies in the literature. The 

obtained results demonstrate superior performance 

compared to the findings in the literature, indicating a 

promising approach for future studies. 

The main contributions of this research are threefold: 

 High-dimensional microarray datasets utilized in 

cancer research are transformed into a lower-

dimensional space through Discrete Cosine 

Transform (DCT), facilitating analysis and reducing 

noise while accentuating relationships between 

features. 

 Univariate Feature Selection (UFS) evaluates the 

impact of each feature on the classifier individually, 

identifying the most significant attributes to 

enhance the performance of the classification 

algorithm. 

 The integration of DCT and UFS optimizes the 

feature selection process in cancer research, 

refining meaningful features obtained through DCT 

to identify the most salient attributes, ultimately 

leading to improved accuracy and efficiency of the 

classification algorithm. 

 

2. Materials and Methods 
2.1. Dataset and Data Preparation 

In this study, we conducted experimental investigations 

to explore the classification success using eight distinct 

gene microarray datasets, which are among the most 

commonly used datasets in the literature. These datasets 

were carefully selected to represent typical scenarios 

encountered in cancer research and classification tasks. 

As presented in Table 1, each of these microarray 

datasets was collected from various sources within the 

biomedical field and utilized for the classification of 

patients with cancer. Given the substantial number of 

features and the limited number of samples in these 

microarray datasets, dimension reduction was 

considered necessary during the training stage. As such, 

we applied dimension-reduction techniques to address 

this challenge effectively. The datasets listed in Table 1 

have been extensively employed in various research 

studies, making them highly relevant for assessing the 

effectiveness of the methodologies employed in our 

study. 

The leukemia dataset (Golub et al., 1999) comprises 72 

bone marrow and peripheral blood samples obtained 

from individuals diagnosed with leukemia, with the 

specific goal of distinguishing between two cancer 

subtypes: Acute Myeloid Leukemia (AML) and Acute 

Lymphoblastic Leukemia (ALL). Among these samples, 

25 were identified as AML, while 47 were categorized as 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Enes EFE                                                       695 
 

ALL. By employing high-density oligonucleotide 

microarrays, the study investigated the gene expression 

patterns in these two cancer subtypes, analyzing a total 

of 7129 genes. 

 

Table 1. Number of genes, instances, and classes for each 

experimental dataset 
 

Datasets Gene Instance Class 

LEUKEMİA 7129 72 2 

Colon 2000 62 2 

Prostate 12600 136 2 

Ovarian 15154 253 2 

Lymphoma (DLBCL) 7129 77 2 

Breast Cancer 47293 128 2 

Breast Cancer  - 2 24481 97 2 

CNS 3495 1209 2 

 

In their pioneering work (Alon et al., 1999), established 

the colon cancer dataset through the application of 

oligonucleotide microarrays, which facilitated the 

analysis of over 6500 genes in 40 tumor samples and 22 

normal colon tissue samples. With a specific focus on 

colon cancer, the researchers refined the dataset to 

encompass a high-density set of 2000 genes. 

The prostate cancer dataset (Singh et al., 2002) 

comprises 136 samples, with 59 being normal tissues 

and 77 being tumor tissues. It aims to explore gene 

expression patterns associated with prostate cancer for 

potential biomarker discovery and improved 

understanding of the disease. 

The ovarian cancer dataset (Petricoin et al., 2002) 

comprises 253 samples, with 91 being normal tissues 

and 162 tumor tissues, featuring gene expression levels 

from 15,154 genes. It offers valuable data for exploring 

gene expression patterns in ovarian cancer, aiding in 

potential biomarker discovery and a better 

understanding of the disease. 

The DLBCL lymphoma dataset (Shipp et al., 2002) 

contains 77 samples and was constructed specifically for 

differentiating between common diffuse large B-cell 

lymphoma (DLBCL) and follicular lymphoma. Each 

sample in the dataset is characterized by the expression 

levels of 7129 genes. Researchers can utilize this dataset 

to investigate gene expression patterns and develop 

classification models to accurately distinguish between 

these two lymphoma subtypes. 

The breast cancer (BRC) dataset (Naderi et al., 2007) 

consists of 128 samples and is specifically utilized for 

differentiating between luminal and non-luminal breast 

cancer subtypes. Each sample in the dataset is 

characterized by the expression levels of 47293 genes. 

Researchers can leverage this dataset to explore gene 

expression patterns and develop robust models for 

accurate classification of luminal and non-luminal breast 

cancer types. 

The breast cancer-2 (BRC-2) dataset (Van’t Veer et al., 

2002) includes two subsets used to differentiate between 

metastasis occurrence and non-occurrence within the 

first five years following breast cancer diagnosis. These 

subsets provide valuable information for identifying 

potential predictive factors related to early-stage breast 

cancer patients' metastatic outcomes. 

The CNS dataset (Pomeroy et al., 2002) is specifically 

designed to explore the differentiation between survival 

and mortality outcomes in patients with central nervous 

system (CNS) cancer. With a total of 60 samples, each 

dataset entry includes the expression levels of 7129 

genes. This dataset holds significant potential for 

investigating gene expression patterns associated with 

patient prognosis in CNS cancer, potentially leading to 

advancements in personalized treatment approaches. 

2.2. Method 

2.2.1. The discrete cosine transform  

The Discrete Cosine Transform (DCT) is a mathematical 

transformation technique used in analyzing temporal or 

spatial data, such as gene expression levels. It proves to 

be a powerful tool for feature extraction in data analysis 

by converting the data into its frequency components. By 

applying this transformation, the data is broken down 

into fundamental components, thereby unveiling 

essential features and representing the signal's energy 

content in the frequency domain. Employing the DCT on 

gene expression levels or other temporal/spatial data 

allows for the exploration of valuable information, 

leading to advancements in data compression, pattern 

recognition, and data processing applications. 

The DCT equation, which transforms the input data f(x) 

into its frequency domain representation Y(u), is given in 

Equation 1: 
 

𝑌(𝑢) = √
2

𝑁
𝑎(𝑢)∑ 𝑓(𝑥). cos(

𝜋. (2𝑥 + 1). 𝑢

2𝑁

𝑁−1

𝑥=0

),

𝑎(𝑢) = {

1

√2
, 𝑢 = 0

1, 𝑢 > 0

 

(1) 

 

where 𝑁 represents the total number of samples in the 

dataset, 𝑌(𝑢) denotes the DCT result for the particular 

frequency component 𝑢, and 𝑓(𝑥)represents an element 

of the input data at index 𝑥. The 𝑎(𝑢) coefficient takes the 

value 
1

√2
 when 𝑢 = 0 and 1 for 𝑢 > 0, reflecting the 

symmetry properties of the DCT. This equation allows 

the extraction of frequency components from the input 

data, enabling valuable information discovery and 

contributing to data compression, pattern recognition, 

and data processing applications. 

The advantage of combining feature extraction 

techniques in both the time domain (original data 

without DCT) and the frequency domain (DCT-applied 

data) lies in capturing complementary information from 

the data. Considering the benefits of feature extraction in 

the frequency domain, it can be observed that: 

I. Frequency Domain Information: The Discrete 

Cosine Transform (DCT) is primarily used for 

signal processing tasks and is known for its ability 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Enes EFE                                                       696 
 

to represent signals in the frequency domain. By 

applying DCT to the microarray dataset, the model 

can capture frequency-related patterns and 

variations in the data. This enables the model to 

detect periodic or repetitive patterns present in 

the microarray data, which may be challenging to 

identify in the time domain alone. 

II. Noise Reduction: Transforming the data into the 

frequency domain through DCT can help reduce 

the impact of noise or irrelevant features existing 

in the time domain. Noise components typically 

manifest in high-frequency regions, and DCT tends 

to concentrate the signal energy in a smaller 

number of coefficients, effectively reducing the 

noise-related components. 

III. Dimension Reduction: DCT, when applied for 

feature extraction in the frequency domain, 

facilitates dimension reduction, resulting in a 

more concise representation of the dataset. 

Dimensionality reduction helps mitigate the curse 

of dimensionality, improves computational 

efficiency, and potentially prevents overfitting in 

subsequent stages of the model. 

Regarding gene expression level analysis, the usage of 

DCT offers several advantages: 

I. Identification of Relevant Genes: DCT 

transformation of gene expression levels reveals 

frequency-related patterns and variations. This 

transformation can emphasize genes crucial for 

the classification process, which might not be 

easily detectable in the original gene expression 

data. 

II. Detection of Gene Interactions: Genes exhibit 

higher levels of interaction compared to other 

data sets. For instance, certain genes can activate 

or trigger the expression of other genes. By 

applying DCT to gene expression data, such 

interactions can be highlighted, leading to a better 

understanding of gene regulatory networks. 

By contributing to the resolution of these issues, the use 

of DCT in gene expression data can enhance the 

performance and interpretability of classification and 

diagnostic procedures. 

2.2.2. The univariate feature selection  

Univariate Feature Selection (UFS) is a feature selection 

method used to improve the classification or regression 

performance of features within a dataset. In this 

technique, each feature's contribution to the independent 

classification performance is evaluated. The impact of 

each feature on classification or regression is measured, 

enabling the selection of the most significant features and 

elimination of the least relevant ones.  

Univariate Feature Selection is an effective approach to 

reduce dataset high-dimensionality and eliminate 

unnecessary features. This results in decreased 

irrelevant information noise, reduced model complexity, 

and improved performance of classification/regression 

algorithms. Common statistical metrics such as Pearson 

Correlation, Anova F-test, Mutual Information, and Chi-

square test are commonly used in Univariate Feature 

Selection. Widely applied in fields such as data analytics, 

machine learning, and model development, Univariate 

Feature Selection is a valuable tool, particularly in 

managing high-dimensional datasets and enhancing 

model performance. 

2.2.3. Support vector machine  

Support Vector Machine (SVM) is a powerful algorithm 

widely employed in machine learning for tasks such as 

classification, regression, and data separation. Its 

primary objective is to effectively segregate data points 

into specific classes using a hyperplane. SVM is known 

for its effectiveness in handling both low-dimensional 

and high-dimensional datasets. It achieves optimal 

separation between two classes by identifying support 

vectors from the training data and maximizing the 

margin between these vectors. To represent data points 

in higher-dimensional spaces, SVM utilizes various kernel 

functions. These kernel functions facilitate the 

transformation of data, enabling the creation of more 

intricate decision boundaries. Some common kernels 

used in SVM include: 

 Linear Kernel: The basic kernel used for linearly 

separable datasets. It separates data points with a 

linear hyperplane in higher-dimensional space. 

 Polynomial Kernel: This kernel handles nonlinear 

separations by transforming data into higher-

dimensional spaces using polynomials. The degree 

of the polynomial controls the complexity of the 

kernel. 

 Radial Basis Function (RBF) Kernel: A popular 

kernel that transforms data into infinite-

dimensional spaces to address nonlinear 

classification problems. RBF is frequently 

preferred in SVM and delivers good results across 

various problems. 

 Sigmoid Kernel: This kernel employs a hyperbolic 

tangent function similar to the activation function 

used in neural networks. It transforms data into 

higher-dimensional spaces. 

SVM is a versatile and powerful classification algorithm 

that employs different kernel functions to map data into 

higher-dimensional spaces and achieve linear separation 

of classes in that space. However, selecting the 

appropriate kernel function and tuning the model's 

hyperparameters are crucial factors that significantly 

impact SVM's performance. 

2.2.4. K-nearest neighbors 

K-Nearest Neighbors (KNN) is a fundamental algorithm 

utilized in machine learning and statistical classification. 

KNN performs classification or value estimation based on 

the nearest neighbors surrounding a data point. The 

underlying principle of the KNN algorithm is 

straightforward. To classify or evaluate a given sample, 

KNN calculates the distances between the sample and all 

other examples in the dataset. Subsequently, it identifies 

the K closest neighbors and uses their labels or values to 
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make predictions. KNN is particularly renowned for 

classification problems, though it can also be applied to 

regression problems. In classification tasks, the labels of 

examples are categorical (e.g., "red" or "blue"), while in 

regression tasks, the values of examples are continuous 

numbers (e.g., the price of a house). One of the strengths 

of KNN lies in its simplicity during the training process 

and its adaptability to new data. Furthermore, it does not 

make any specific assumptions about the structure or 

size of the training data, rendering it suitable for various 

data types. However, when dealing with large datasets, 

the computational load may increase, necessitating 

careful data preprocessing. 

The primary parameter of the KNN algorithm is K, which 

represents the number of nearest neighbors. The 

selection of an appropriate K value significantly 

influences the model's accuracy. Smaller K values can 

make the model sensitive to data noise, while larger K 

values may result in smoother classification boundaries. 

In conclusion, the K-Nearest Neighbors algorithm is 

favored for its simplicity, interpretability, and versatility 

in handling different data types for classification and 

regression tasks. Nonetheless, careful consideration of 

the K value and thoughtful data preprocessing are vital 

factors, especially when dealing with sizable datasets to 

achieve optimal performance. The KNN algorithm is a 

fundamental technique used in machine learning and 

statistical classification. KNN performs either 

classification or value estimation by considering the 

closest neighbors surrounding a data point. The 

mathematical formulation of the KNN algorithm is as 

follows: 

For Classification using KNN: 

Let the dataset be denoted as D = {(x₁, y₁), (x₂, y₂), ..., (xₙ, 

yₙ)}, where xᵢ represents the features of the examples, 

and yᵢ represents their corresponding class labels. 

Assume we have a new example that we want to classify, 

and we denote it as x'. 

Step 1: If the size of the dataset is smaller than K, set K 

equal to the dataset size. Otherwise, utilize a distance 

metric (e.g., Euclidean distance) to select K nearest 

examples to x'. 

Step 2: Obtain the class labels of these K neighbors. 

Step 3: For classifying x', use the most frequently 

occurring class label among the K neighbors. This label 

will be the final classification result. 

2.2.5. Neural network and convolutional neural 

networks 

A Neural Network is a type of machine-learning model 

inspired by the structure and functioning of the human 

brain. It consists of interconnected nodes, called neurons, 

organized in layers. The three main types of layers in a 

typical neural network are: 

I. Input Layer: It receives raw data or features as input 

and passes them to the subsequent layers for 

processing. 

II. Hidden Layers: These layers process the input data 

using a combination of weights and activation 

functions. The number of hidden layers and neurons 

in each layer can vary depending on the complexity 

of the problem. 

III. Output Layer: The final layer produces the 

predictions or output of the model, which can be a 

single value or a set of values, depending on the type 

of problem (classification or regression). 

The information flow between layers is determined by 

weights (parameters) associated with the connections 

between neurons. The neural network learns from 

training data by adjusting these weights to minimize the 

difference between predicted outputs and actual outputs, 

using techniques like backpropagation and optimization 

algorithms. The general equation for a single neuron in a 

neural network can be written as given in Equation 2: 
 

𝑧 = ∑(𝑖𝑛𝑝𝑢𝑡 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡) + 𝑏𝑖𝑎𝑠 (2) 

 

where z is the weighted sum of inputs, bias is a constant 

term added to the weighted sum, and the activation 

function is a non-linear function that introduces non-

linearity into the model. 

A Convolutional Neural Network (CNN) is a specialized 

type of neural network designed for image and visual 

data processing. CNNs use a unique layer called the 

convolutional layer, which applies filters (also called 

kernels) to input images to detect features like edges, 

textures, and patterns. CNNs are particularly effective for 

tasks such as image classification, object detection, and 

image segmentation. The main components of a CNN are: 

I. Convolutional Layer: This layer applies 

convolutional filters to the input image, generating 

feature maps that highlight specific patterns in the 

image. 

II. Activation Function: After the convolutional 

operation, an activation function (often ReLU - 

Rectified Linear Unit) is applied element-wise to 

introduce non-linearity. 

III. Pooling Layer: Pooling layers reduce the spatial 

dimensions of feature maps, helping to make the 

model more computationally efficient and robust to 

variations in the input. 

IV. Fully Connected Layers: After several convolutional 

and pooling layers, the extracted features are 

passed to fully connected layers to make the final 

predictions. 

The equations for the convolution operation and Leaky 

ReLU activation function are as given in Equation 3: 
 

𝑜𝑢𝑡𝑝𝑢𝑡[𝑖, 𝑗] =∑∑(𝑖𝑛𝑝𝑢𝑡[𝑥, 𝑦] ∗ 𝑘𝑒𝑟𝑛𝑒𝑙[𝑖, 𝑗]) (3) 

 

Leaky ReLU Activation function (Equations 4): 
 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = max(∝ 𝑥, 𝑥) (4) 
 

In Leaky ReLU, ∝ represents a hyperparameter typically 

set to a small positive value (e.g., 0.01). When the input, 

𝑥, is positive, Leaky ReLU behaves like the regular ReLU, 

returning the input value, 𝑥. However, if 𝑥 is negative, 

Leaky ReLU returns ∝ 𝑥, introducing a small positive 
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slope in the negative range, which allows for activations 

even in the negative domain. This characteristic of Leaky 

ReLU effectively addresses the "dying ReLU" problem, 

where traditional ReLU neurons become inactive in the 

negative region, hindering learning. The adaptive nature 

of Leaky ReLU, especially in larger and more intricate 

neural architectures, offers advantages in reducing 

overfitting, a common challenge in deep learning. By 

enabling non-zero gradients in the negative range, Leaky 

ReLU ensures that neurons in those regions remain 

active and continue to learn from the data, promoting 

improved generalization of the model. Overall, 

incorporating Leaky ReLU in neural networks serves as a 

remedy to tackle the vanishing gradient problem 

associated with standard ReLU activation, leading to 

enhanced training procedures and facilitating 

convergence of learning models across various complex 

tasks. 

2.2.6. Proposed hybrid model of DCT-UFS 

This study presents the DCT-UFS hybrid model as an 

innovative approach for diagnosing and classifying 

microarray datasets. The key advantage of this hybrid 

model lies in its inherent capability to incorporate 

feature extraction from both the time domain (original 

data without DCT) and the frequency domain (DCT-

applied data), thereby effectively capturing 

complementary information from the dataset. The block 

diagram of the DCT-UFS hybrid model is depicted in 

Figure 1. The model's workflow commences with the 

preprocessing step, wherein missing records are 

meticulously removed from the microarray data to 

ensure data integrity. To extract meaningful features, the 

DCT-UFS dimension reduction algorithm is judiciously 

employed. By leveraging the Discrete Cosine Transform 

(DCT) in the frequency domain, the model adeptly 

captures frequency-related patterns and variations 

inherently present in the data. Moreover, the DCT 

concentrates signal energy in a succinct number of 

coefficients, thereby facilitating noise reduction and 

augmenting the representation of pivotal features. A 

salient strength of the DCT-UFS hybrid model lies in its 

ability to perform dimension reduction, culminating in a 

more compact dataset representation. This efficacious 

dimensionality reduction strategy effectively mitigates 

the curse of dimensionality, improves computational 

efficiency, and holds the potential to preempt overfitting 

in subsequent stages of the model. 

After the feature extraction phase, the reduced dataset is 

systematically fed into a standard artificial neural 

network (ANN). The ANN architecture entails multiple 

layers of neurons, and the Leaky ReLU activation function 

is proficiently utilized to introduce non-linearity and 

adeptly capture intricate relationships within the data. 

By leveraging Leaky ReLU, the model effectively 

circumvents the vanishing gradient problem that may 

impede the training of deep neural networks. The 

concluding layer of the ANN thoughtfully adopts the 

Sigmoid activation function, rendering it particularly 

suitable for binary classification tasks. Table 2 furnishes 

a comprehensive overview of the architecture and 

activation functions deftly employed in the artificial 

neural network model. By seamlessly integrating feature 

extraction from both the time and frequency domains, 

the DCT-UFS hybrid model achieves a holistic and robust 

representation of the microarray dataset. This 

comprehensive representation perceptibly contributes to 

the amplified classification accuracy and heightened 

diagnostic performance, underscoring the promise and 

efficacy of the proposed model as a discerning and potent 

approach for the meticulous analysis of microarray data. 

Additionally, the study performed tests with three 

different classifiers, namely kNN, SVM, and CNN, to 

compare their performance with the artificial neural 

network (NN) used as the primary classifier. Figure 2 

depicts a diagram showing four separate scenarios 

designed for each classifier. 

 

 

 

 

 

 

 

 

 

 

Figure 1. The architecture of the DCT-UFS hybrid model. 

 

Table 2. Architecture of the artificial neural network (ANN) 

Layer Number Layer Type Output Shape Activation Function 

1 Dense_1 (Dense) (None, 64) Leaky ReLU (alpha=0.9) 

2 Dropout (Dropout rate: 0.5) (None, 64) - 

3 Dense_2 (Dense) (None, 16) Leaky ReLU (alpha=0.9) 

4 Dropout (Dropout rate: 0.5) (None, 16) - 

5 Dense_3 (Dense) (None, 1) Sigmoid 
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Figure 2. A block diagram illustrating the scenarios 

designed for different classifiers. 

 

The CNN model depicted in Table 3 is specifically 

designed for the classification of time series data. 

Comprising 1D convolutional layers, max pooling, batch 

normalization, and dropout layers, the model boasts a 

total of 4,241 parameters. During the training process, it 

utilizes the 'adam' optimizer and 'binary_crossentropy' 

loss function, with performance evaluation conducted 

through the accuracy metric. 

 

 

 

 

Table 3. Architecture of the Convolutional Neural Network 

Layer Number Layer Type Output Shape Activation Function 

1 Conv1D (None, feature_count, 64) LeakyReLU(alpha=0.9) 

2 MaxPooling1D (None, feature_count /3, 64) None 

3 BatchNormalization (None, feature_count /3, 64) None 

4 Dropout (None, feature_count /3, 64) None 

5 Conv1D (None, feature_count /3, 16) LeakyReLU(alpha=0.9) 

6 MaxPooling1D (None, feature_count /9, 16) None 

7 BatchNormalization (None, feature_count /9, 16) None 

8 Dropout (None, feature_count /9, 16) None 

9 Flatten (None, feature_count *16/9) None 

10 Dense (None, 1) Sigmoid 

 

3. Results and Discussion 
The study involved conducting experiments with hybrid 

models that incorporated dimension reduction, machine 

learning, and deep learning techniques to diagnose 

diseases using eight different microarray datasets related 

to LEUKEMIA, Colon, Prostate, Ovarian, DLBCL, Breast 

Cancer, Breast Cancer-2, and CNS diseases. Dimension 

reduction was achieved using Discrete Cosine Transform 

(DCT) and Unsupervised Feature Selection (UFS) 

methods, while classification utilized NN, SVM, kNN, and 

CNN models. The models were tested on a computer 

equipped with an Intel Xeon E5-2630 2.3 GHz CPU and 12 

GB RAM. 

3.1. Evaluation Criteria 

The datasets were divided into training and test datasets 

using three different ratios, ranging from 60% to 80%, 

using the hold-out method. The division of the data was 

done randomly. In addition to the hold-out method, for 

robust evaluation, 10-fold cross-validation was applied to 

each proposed model. The average experimental results 

were then calculated for accuracy, sensitivity, specificity, 

precision values, the Kappa score, and the Macro F1 

score, as given in Equations 5, 6, 7, 8, 9, and 10, 

respectively. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
𝑥100 (5) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑥100 (6) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
𝑥100 (7) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑥100 (8) 

 

𝐾𝑎𝑝𝑝𝑎 =
𝑃𝑜 − 𝑃𝑒
1 − 𝑃𝑒

 (9) 

 

𝑀𝑎𝑐𝑟𝑜𝐹1 =
2𝑥𝑀𝑎𝑐𝑟𝑜𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑀𝑎𝑐𝑟𝑜𝑅𝑒𝑐𝑎𝑙𝑙

𝑀𝑎𝑐𝑟𝑜𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑀𝑎𝑐𝑟𝑜𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 

 

The accuracy metric measures the proportion of 

correctly classified instances, encompassing true 

positives and true negatives, concerning the total 

instances. True positive (𝑇𝑃) refers to correctly predicted 

positive instances, while true negative (𝑇𝑁) indicates 

correctly predicted negative instances. False positive 

(𝐹𝑃) represents instances that were incorrectly 

predicted as positive, and false negative (𝐹𝑁) represents 

instances that were incorrectly predicted as negative. 

Sensitivity (recall) evaluates the model's ability to 

correctly identify actual positive instances, while 

specificity assesses the model's capability to correctly 

identify actual negative instances. The Kappa score 

assesses the agreement between the predicted 

classifications and the actual classifications, considering 

the agreement that could have occurred by chance. 𝑃𝑜 

represents the relative observed agreement, and 𝑃𝑒  is the 

hypothetical probability of chance agreement. Precision 

measures the proportion of correctly predicted positive 

instances out of all instances predicted as positive. The 

Macro F1 score aims to strike a balance between 
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precision and recall on a per-class basis by calculating 

the F1 score independently for each class and then taking 

the unweighted average (macro-average) across all 

classes. These equations provide a comprehensive 

evaluation of the proposed models, considering their 

ability to accurately classify instances, handle imbalanced 

datasets, and measure the agreement between predicted 

and actual classifications. The results obtained for each 

metric allow for a comparison of the effectiveness of the 

different models studied. 

Furthermore, given the stochastic nature of the neural 

network model, it was executed ten times to account for 

any variations in the outcomes. The final evaluation 

metric was then calculated as the average of these ten 

runs. This approach ensures a more robust and 

dependable assessment of the neural network model's 

performance, accounting for potential variability in its 

predictions across multiple executions. 

 

3.2. Results 

This study utilizes sensitivity, specificity, accuracy, macro 

F1 (MF1), and Cohen's Kappa coefficient (K) as 

performance criteria. The results of the proposed model 

were obtained through 10-fold cross-validation and hold-

out. Furthermore, experiments were conducted on eight 

different datasets in four different scenarios. 

In these experiments, four different classifiers were 

employed, and the results obtained using the hold-out 

method revealed that the NN (Artificial Neural Network) 

based classifier exhibited the highest performance 

among all classifiers. The detailed outcomes of these 

experiments can be found in Table 4. 

The detailed outcomes of these experiments, obtained 

using the 10-fold cross-validation method, are presented 

in Table 5. The highest results are highlighted in bold for 

easy identification. Upon examination of the table, it can 

be generally observed that the NN model outperforms 

the other models. 

 

Table 4. Experimental results of microarray dataset using the hold-out method with NN 

Datasets Tests Sensitivity Specificity Accuracy MF1 K 

Leukemia 

Test1(80-20) 100.00 100.00 100.00 100.00 100.00 

Test1(70-30) 100.00 98.57 99.09 99.04 98.08 

Test1(60-40) 100.00 95.62 97.58 97.57 95.16 

Mean 100.00 98.06 98.89 98.87 97.75 

Colon 

Test1(80-20) 85.00 84.00 84.61 83.90 67.95 

Test1(70-30) 85.00 82.85 84.21 83.27 66.64 

Test1(60-40) 86.42 80.90 83.99 83.71 67.45 

Mean 85.47 82.58 84.27 83.63 67.35 

Prostate 

Test1(80-20) 76.66 93.33 88.57 85.60 71.26 

Test1(70-30) 89.28 94.11 91.93 91.82 83.65 

Test1(60-40) 90.55 96.08 93.65 93.52 87.05 

Mean 85.50 94.51 91.38 90.31 80.65 

Ovarian 

Test1(80-20) 100.00 100.00 100.00 100.00 100.00 

Test1(70-30) 100.00 100.00 100.00 100.00 100.00 

Test1(60-40) 99.83 100.00 99.90 99.89 99.76 

Mean 99.94 100.00 99.97 99.96 99.92 

DLBCL 

Test1(80-20) 100.00 100.00 100.00 100.00 100.00 

Test1(70-30) 98.88 89.33 92.91 92.66 85.40 

Test1(60-40) 99.09 90.99 93.87 93.52 87.09 

Mean 99.32 93.44 95.59 95.39 90.83 

BRC 

Test1(80-20) 93.75 80.99 88.84 87.99 76.01 

Test1(70-30) 94.80 68.57 85.38 83.15 66.58 

Test1(60-40) 94.06 74.00 86.34 85.02 70.20 

Mean 94.20 74.52 86.85 85.39 70.93 

BRC-2 

Test1(80-20) 87.77 87.27 87.50 87.39 74.83 

Test1(70-30) 80.90 89.47 86.33 85.26 70.55 

Test1(60-40) 83.84 91.92 89.23 87.89 75.80 

Mean 84.17 89.55 87.69 86.85 73.73 

CNS 

Test1(80-20) 100.00 100.00 100.00 100.00 100.00 

Test1(70-30) 91.66 100.00 97.22 96.65 93.35 

Test1(60-40) 80.00 97.22 92.91 89.95 80.03 

Mean 90.55 99.07 96.71 95.53 91.13 
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Table 5. Experimental results of microarray dataset using the 10-fold cv method with classifiers 

Datasets Classifiers Sensitivity Specificity Accuracy MF1 K 

Leukemia 

NN 100.00 94.00 95.89 95.61 91.41 

SVM 95.00 98.00 97.14 96.32 92.83 

KNN 85.00 100.00 95.71 93.63 87.64 

CNN 85.00 86.00 86.07 79.19 69.47 

Colon 

NN 90.00 81.66 87.38 85.99 72.31 

SVM 95.00 78.33 89.04 85.13 73.21 

KNN 92.50 70.00 84.28 79.89 62.68 

CNN 67.50 60.00 64.76 68.23 26.11 

Prostate 

NN 96.00 98.00 97.09 97.03 94.13 

SVM 88.66 96.00 92.27 92.24 84.59 

KNN 90.33 98.00 94.18 94.12 88.33 

CNN 68.33 78.00 72.72 67.05 46.33 

Ovarian 

NN 100.00 100.00 100.00 100.00 100.00 

SVM 100.00 96.66 98.81 98.64 97.30 

KNN 100.00 95.55 98.43 98.20 96.43 

CNN 100.00 91.11 96.87 97.77 92.61 

DLBCL 

NN 100.00 100.00 100.00 100.00 100.00 

SVM 100.00 98.00 98.57 98.44 96.95 

KNN 85.00 96.33 93.39 91.11 82.33 

CNN 95.00 70.00 76.60 69.42 53.56 

BRC 

NN 95.41 87.50 92.17 91.27 82.79 

SVM 90.83 78.00 85.89 84.01 68.59 

KNN 96.52 71.00 87.43 84.85 70.40 

CNN 88.33 69.00 81.08 85.79 56.99 

BRC-2 

NN 92.50 90.66 91.55 91.30 82.92 

SVM 79.00 79.00 79.11 77.88 57.82 

KNN 71.50 83.00 77.22 76.08 54.14 

CNN 65.50 71.00 67.88 61.65 36.04 

CNS 

NN 96.66 90.00 91.66 91.52 84.00 

SVM 91.66 89.16 90.00 89.30 79.04 

KNN 73.33 95.00 86.66 84.11 69.64 

CNN 33.33 80.83 64.99 36.66 15.23 

 

Table 6 provides a comparative analysis of studies 

conducted on microarray datasets for diverse cancer 

types. These investigations aim to assess the distinctions 

between Leukemia, Colon, Prostate, Ovarian, Diffuse 

Large B-cell lymphoma (DLBCL), Breast Cancer (BRC), 

Breast Cancer Type 2 (BRC-2), and Central Nervous 

System (CNS) tumors. In numerous scholarly works 

(Alrefai and Ibrahim, 2022; Gunavathi and Premalatha, 

2014; Panda, 2020; Sönmez et al., 2021), evolutionary 

computations have been employed. However, due to the 

substantial computational burden associated with 

numerous iterative calculations and population-based 

optimizations, evolutionary computations can lead to 

significant delays during the training and testing 

processes. Our proposed hybrid DCT-UFS (Discrete 

Cosine Transform - Univariate Feature Selection) method 

aims to minimize processing time by reducing data 

dimensions and requiring fewer computations through 

coefficient representations. While DCT is employed for 

dimensionality reduction, UFS evaluates the individual 

feature's relationship with the target variable during the 

feature selection process. This approach reduces 

computational time by independently examining each 

feature and presents a straightforward solution. 

Consequently, the hybrid DCT-UFS method completes 

both training and testing procedures in a matter of 

seconds. Furthermore, it has demonstrated superior 

performance in 5 out of 8 different datasets and achieved 

competitive results on the remaining 3 datasets. 

 

4. Conclusion 
The increasing global prevalence of cancer has led to a 

significant rise in generating and analyzing microarray 

data from tissue samples. The accurate classification of 

this data is crucial for disease diagnosis and 

distinguishing between various tumor types. However, 

classifying microarray data is highly complex due to 

challenges like a limited number of samples, a large 

number of features, and the presence of data noise. In 

particular, genomic data analysis, including microarrays 

and RNA sequencing, often involves datasets with 

thousands of genes but only a few samples. This high 

data dimensionality further complicates the analysis 

process.  
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Table 6. Comparison of the studies on microarray datasets 

Authors Leukemia Colon Prostate Ovarian DLBCL BRC BRC-2 CNS 

(Gunavathi and Premalatha, 2014) 5-Fold CV - 85.00 92.68 - 84.00 - - 81.25 

(Gunavathi and Premalatha, 2014) 5-Fold CV - 95.00 65.25 - 100.00 - - 81.25 

(Kumar and Rath, 2015) Hold-Out 97.22 - - 98.42 - - - - 

(Gao et al., 2017) 10-Fold CV - 89.09 96.54 - - - - - 

(Gao et al., 2017) 10-Fold CV - 90.32 96.08 - 100.00 - - - 

(Medjahed et al., 2017) Hold-Out 95.81 - - 98.19 - - - - 

(Sun et al., 2018) 10-Fold CV - 88.00 80.00 - - - - - 

(Panda, 2020) 10-Fold CV 92.11 79.03 - 99.21 - - 73.43 53.34 

(Baliarsingh et al., 2019) 10-Fold CV - 96.74 - - - - - - 

(Pragadeesh et al., 2019) 10-Fold CV - - - - - - - 92.86 

(Luo et al., 2019) Hold-Out - - - - - - - 75.00 

(Kilicarslan et al., 2020) Hold-Out 99.86 - - 98.60 - - - 83.95 

(Zhang et al., 2020) 10-Fold CV - 96.74 - - - - - 90.34 

(Othman et al., 2020) 10-Fold CV - - - - - - - 76.30 

(Sönmez et al., 2021) 10-Fold CV - 98.33 99.00 - 100.00 67.00 90.77 95.00 

(Alrefai and Ibrahim, 2022) 10-Fold CV 100 92.86 - 100.00 - - 86.36 85.71 

This work (DCT-UFS with NN) Hold-Out 98.89 84.27 91.38 99.97 95.59 86.85 87.69 96.71 

This work (DCT-UFS with NN) 10-Fold CV 95.89 87.38 97.09 100.00 100.00 92.17 91.55 91.66 

This work (DCT-UFS with SVM) 10-Fold CV 97.14 89.04 92.27 98.81 98.57 85.89 79.11 90.00 

This work (DCT-UFS with KNN) 10-Fold CV 95.71 84.28 94.18 98.43 93.39 87.43 77.22 86.66 

This work (DCT-UFS with CNN) 10-Fold CV 86.07 64.76 72.72 96.87 76.60 81.08 67.88 64.99 

 

Moreover, the majority of genes in these datasets may 

not directly contribute to the classification process or be 

relevant to the classes being studied. Therefore, 

identifying essential genes while disregarding others 

becomes critical in the classification process. Another 

significant challenge is the high level of gene interactions 

compared to other types of data. Some genes can activate 

others or trigger gene expressions, making the analysis of 

microarray data intricate and affecting result accuracy. 

To address these challenges, the DCT-UFS method can be 

employed in microarray data analysis. DCT-UFS is an 

effective technique used for dimensionality reduction 

and feature selection. It transforms high-dimensional 

data into smaller, meaningful features, which aids in 

identifying important genes and considering gene 

interactions. 

The DCT (Discrete Cosine Transform) reduces processing 

time by reducing data dimensionality and representing it 

with less computationally demanding coefficients. On the 

other hand, UFS (Univariate Feature Selection) evaluates 

each feature's relationship independently with the target 

variable during selection. Its efficiency lies in analyzing 

each feature in isolation, disregarding relationships with 

other features, which reduces computation time and 

provides a straightforward approach. While literature 

reviews often mention the usage of evolutionary 

computations, such methods typically require substantial 

computational resources due to numerous repetitive 

calculations and population-based optimization 

requirements. This study proposed the utilization of the 

DCT-UFS method in their microarray data analysis. DCT-

UFS serves as an effective approach for reducing data 

dimensionality and selecting relevant features. 

Transforming high-dimensional data into meaningful 

features aids in identifying essential genes and 

considering gene interactions. The insights gained from 

utilizing the computationally efficient DCT-UFS method 

in microarray data analysis may ultimately contribute to 

the development of improved diagnostic and therapeutic 

strategies for cancer. Future work will focus on validating 

these findings in larger and more diverse datasets, as 

well as exploring the potential for integrating DCT-UFS 

with other machine learning techniques to further 

enhance the accuracy and efficiency of cancer 

classification. 
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