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Introduction 

In our modern world, computers are so widely used that 

evaluating the performance of a computer system, or more 

specifically, the central processing unit (CPU) of a 

computer, is incredibly important in various decisions [1]. 

A computer's CPU performs various functions such as 

calculations, logical decisions, transferring data from one 

place in the computer's memory to another, and 

multitasking between applications running on your desktop. 

Therefore, CPU performance is not only incredibly 

important for choosing your next computer, but also for 

computer system configuration and system design. 

Research has explored the use of performance counters and 

power weights to create a prediction model for CPU power 

consumption and potential applications in power-aware 

embedded systems, mapping hardware performance 

counter values to processor power consumption and 

utilizing this model to predict runtime and CPU power 

consumption [2]. Machine learning regression algorithms 

are increasingly used to predict CPU performance based on 

hardware components and other observable data. 

Regression analysis enables indirect prediction of resource 

consumption and performance based on easily observed 

data [3]. For example, one study proposed a number of 

methods to predict CPU performance based on hardware 

characteristics such as the amount of memory and processor 

speed [4]. 

In our case, we decided that it would be appropriate for us 

to use regression analysis to understand how CPU 

performance scores vary with CPU specifications. 

Regression analysis is a statistical method that helps 

understand how one variable changes with respect to 

another variable. This research paper aims to predict CPU 

performance scores from CPU features using regression 

analysis. To do so, a dataset containing various CPU 

features will be used to create a regression model. The 

accuracy and reliability of the model will then be evaluated 

using test data. This research will help to predict CPU 

performance scores more accurately, providing computer 

users with better purchasing options. Users will be able to 

avoid wasting money and time by selecting a CPU that fits 

their desired performance level. 

Additionally, this research might benefit the CPU 

production process and contribute to optimized CPU 

production. It can provide manufacturers with the 

opportunity to create an optimal design, produce fewer  
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CPU's performance score. As a result, the NNR has the highest coefficient of determination score, which 

is 0.9765, followed by GBR, 0.9588. MLR, RFR, and SVR algorithms have the R-squared score of 0.9522, 
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faulty products, and increase customer satisfaction. This 

will increase the competitiveness of these companies and 

lead to positive results for end-users and firms alike. 

Materials and Methods 

Data Gathering 

There are several features that affect the performance of a 

CPU. At the top of these are features such as core speed and 

clock speed. The whole list of features is explained below. 

1. Base Clock: Base clock defines the speed at which 

the processor's transistors open and close. Base 

clock is the operating point at which Thermal 

Design Power (TDP) is defined. It is calculated in 

Gigahertz (GHz) or cycle per second. 

2. CPU Mark [5]: CPU Mark/CPU Point refers to the 

score of the processor after benchmarking tests. 

This will be output for our models. 

3. Date: Release date of CPU. 

4. Lithography [6]: It refers to the thickness of the 

processor's print on the silicon. 

5. L3 Cache: It refers to part in the processor where 

fast memory is located. 

6. Max. Boost Clock: Maximum boost clock is the 

maximum single-core frequency at which the 

processor can operate using various technologies, 

if available. It is calculated in Gigahertz (GHz) or 

cycle per second. 

7. Number of Cores: The number of cores of the 

CPU. Cores are a hardware term that indicates the 

number of individual central processing units in a 

single computing component (chip). 

8. Number of Threads: The number of threads of the 

CPU. Thread and thread processing are software 

terms for a simple regular sequence of instructions 

that pass through or are processed by a single CPU 

core. 

9. Platform: Target platform of CPU. 

10. Series: Series of CPU 

11. TDP: TDP reflects the average power, in watts, 

that the processor dissipates at Base Clock with all 

active cores under a high complexity workload. 

12. Tjmax: Tjmax is the maximum temperature allowed in 

the processor chip. 

The CPUs in our collected dataset are the Intel [7] and AMD 

[8] branded CPUs, which are currently the two most 

commonly used brands. The data for these CPUs were 

collected from the official websites of the brands. The CPUs 

selected for use in the dataset have benchmark scores 

between 2749 and 63599. The statistical data related to the 

dataset is shown in Table 1. Although the range value of the 

date feature is 12, it can be seen that relatively new 

processors were selected by looking at the mean and mode 

values. The values of the base clock, max. boost clock, and 

series features did not vary much among the selected CPUs 

and remained in a narrow range. Although 𝑇𝑗𝑚𝑎𝑥 values 

are mostly clustered around the mean, the wide range 

indicates the presence of extreme values. The core and 

thread counts are also centered around the mean, but since 

the median values are lower than the mean and the range 

values are higher, we can conclude that they are more 

widely distributed. The output value, the CPU Mark value, 

is in a wide range and the variance value is quite high. In 

the light of all this data, it can be concluded from Table 1 

that the slightest change in the input values can make a big 

difference in the CPU Mark value.  

Methods 

Data Collection and Pre-processing 

Data mining in computer science is a field that involves the 

automated extraction of valuable patterns and knowledge 

from large datasets. It is an interdisciplinary subfield of 

computer science that utilizes techniques from artificial 

intelligence, statistics, and database management [9]. 

Data is considered to be of good quality if it meets the 

requirements of the intended use. Apart from this, there are 

three elements that define data quality: accuracy, 

completeness and consistency [10]. Different attribute types 

and data properties can help detect false values and outliers. 

This will be useful in data cleaning and integration steps. 

Data processing techniques, when applied before mining, 

can significantly improve the overall quality of the 

Table 1. Statistical Data 

Base 

Clock 

CPU 

Mark 
Date Litography 

L3 

Cache 

Max. 

Boost 
Clock 

# of 

Cores 

# of 

Threads 
Platform Series TDP Tjmax  

3.10 14743.98 2018.54 12.92 13.37 4.00 6.80 12.17 6.26 6.20 66.06 97.51 Mean 

0.58 10648.6 3.11 5.69 10.64 0.75 3.75 6.92 1.70 1.89 45.92 6.81 STD 

3.10 12714.00 2019.00 14.00 12.00 4.00 6.00 12.00 7 7.00 56.5 100.00 Median 

3.00 16979.00 2022.00 14.00 8.00 4.00 4.00 8.00 7 7.00 65.00 100.00 Mode 

3.20 63591.1 12.00 27.00 61.00 2.00 22.00 32.00 6 8.00 247.00 41.00 Range 

0.33 1.13E+08 9.67 32.39 113.41 0.56 14.11 48.00 2.89 3.57 2109.44 46.41 Variance 
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extracted patterns and/or the time required for actual mining 

[11]. 

Data mining methods and techniques cover various areas 

such as classification, clustering, exploratory analysis, 

relationship analysis, prediction and text mining. These 

methods are used to transform complex data sets into 

meaningful information and improve decision-making 

processes. 

The steps in the data mining process can be listed as 

follows: 

1. Data Cleaning: The removal of meaningless data 

from the dataset. 

2. Data Integration: The meaningful combination of 

different data. 

3. Data Reduction: Determining the data to be used 

for obtaining meaningful information. 

4. Data Transformation: Preparing the data to be 

applied to data mining, making it suitable for the 

data mining algorithm to be used. 

5. Data Mining: Applying a machine learning 

algorithm to the dataset that has been prepared for 

data mining. 

6. Pattern Evaluation: Identifying different patterns 

within the pattern obtained as a result of the used 

algorithm. 

7. Knowledge Representation: Presenting the new 

information obtained as a result of data mining to 

the user. 

The dataset used in this study has categorical data alongside 

numerical data. Platform and series features are encoded to 

representative numbers during preprocessing phase. 

Processors produced for the desktop platform tend to have 

higher benchmark scores than those produced for the laptop 

platform. Similarly, Series feature indicates the generation 

of CPU. That means the higher the series, the higher the 

performance tends to be. 

Algorithms 

The data, which has been made suitable for the use of 

machine learning algorithms, has been processed through 

regression analysis algorithms to predict performance 

scores. The algorithms used are as follows: 

Support Vector Regression 

The Support Vector Machine was presented in 1995 [12] 

and generalizes to Support Vector Regression (SVR) by 

creating an 𝜀-tube, an 𝜀-insensitive region around the 

function. SVR is a machine learning technique that involves 

training a model to predict a continuous output variable by 

finding a hyperplane that best fits the data. In support vector 

regression, the goal is to find a hyperplane that fits the data 

while allowing some points to be on the wrong side of the 

hyperplane, within a certain margin of error. These points 

are called support vectors, and they are used to define the 

hyperplane [13]. 

The SVR using a linear kernel function is shown in 

Equation 1 [14]. 

𝑦 = 𝜔𝑥 + 𝑏 (1) 

The Error Function (Equation 2) can be minimized based 

on the target being 𝑧𝑖 [14]. 

𝑚𝑖𝑛
1

2
‖𝜔‖ + 𝑐 ∑(𝜉𝑗 + 𝜉𝑖

∗)

𝑛

𝑖=1

 (2) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑧𝑖 − (𝜔𝑥 + 𝑏), ≤ 𝜀 + 𝜉𝑖

(𝜔. . 𝑥) + 𝑏 − 𝑧𝑖 , ≤  𝜀 + 𝜉𝑖
∗

𝜉𝑖𝜉𝑖
∗, ≥ 0

 (3) 

The linear kernel function can be described as follows [14]: 

K(x, y) = 〈𝑥, 𝑦〉 (4) 

 

 

Random Forest Regression 

Random Forest Regression (RFR) is a machine learning 

technique that involves creating an ensemble of unpruned 

decision trees through the use of bootstrap samples of the 

training data and random feature selection during tree 

induction [15]. This method, first developed by Breiman in 

2001 [16] and has been shown to outperform linear 

regression in terms of fitting observed data due to its ability 

to handle variance in the data more effectively [17]. It is 

capable of handling relatively small samples with a large 

number of variables, making it a robust choice for various 

applications [18]. 

The process of constructing a RFR model involves tuning 

several hyperparameters, such as the number of trees in the 

forest and the maximum depth of each tree. These 

hyperparameters can be optimized using techniques such 

as grid search or random search [19]. 

Multiple Linear Regression 

Multiple Linear Regression (MLR) is a statistical technique 

used to analyze the relationship between multiple 

independent variables and a single dependent variable. It 

extends the concept of simple linear regression by allowing 

for more than one predictor variable to be included in the 

model [20]. In computer science, linear and multiple linear 

regression finds various applications such as in developing 

predictive models, analyzing sensor data, and calibrating 

sensor technologies [21][22]. MLR can be used to 

understand the relationship between CPU performance and 

different hardware components and other observable data. 

The mathematical model of multiple linear regression can 

be explained as follows [23]: 
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𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖 ,       𝑖 = 1, … , 𝑛 (5) 

Here, 𝑦 is the dependent variable and 𝑥 is the independent 

variable. 𝛽0 represents the constant, and 𝛽𝑛 represents the 

coefficients.  

Gradient Boosting Regression 

Gradient boosting is a technique in ensemble learning 

where numerous weak learners, like decision trees, are 

merged to form a powerful learner [24][25]. In Gradient 

Boosting Regression (GBR), each decision tree is trained to 

predict the residual error of the previous tree, and the final 

prediction is obtained by adding the predictions of all the 

trees. This approach allows the model to focus on the most 

difficult cases and improve its performance over time. 

The algorithm operates by iteratively incorporating decision 

trees into the model, [26], with each new tree trained to 

predict the negative gradient of the loss function with 

respect to the output variable. The negative gradient 

represents the direction in which the loss function is 

decreasing, and thus helps the algorithm to focus on the 

most difficult cases. 

Neural Network Regression 

Neural Networks was first proposed in 1943 and inspired 

by the biological nervous system [27]. Lately, they have 

become extensively used in classification, regression, 

pattern recognition, forecasting, and time series problems 

[28]-[30]. 

Neural Network Regression (NNR) is a method in machine 

learning where a neural network is trained to forecast a 

continuous output. A neural network comprises 

interconnected nodes, known as neurons, arranged in layers. 

The input layer receives data, while the output layer 

generates predictions. Intermediate hidden layers allow the 

network to grasp intricate non-linear connections between 

input and output variables. The objective in neural network 

regression is to minimize the disparity between predicted 

and actual outputs through training. 

Neural networks can be tuned by adjusting several 

hyperparameters, such as hidden layer sizes, solver class 

and the learning rate of the optimization algorithm [31-37]. 

Feature Scaling 

Min-Max Scaling 

Due to the differences in scales between the CPU features 

in the dataset, it was decided to use data scaling. The Min 

Max Scaler method was applied for this purpose. 

Min Max Scaler performs the scaling (normalization) of 

values in a dataset within a certain range. This is similar to 

standardizing the data, but while standardization scales the 

data based on the mean value, Min Max Scaler squeezes the 

data into a specified minimum and maximum range [38]. 

This can be useful, especially when there are many outliers 

in the dataset. 

Min Max Scaler scales each feature in the dataset (which 

includes the attributes used by the learning algorithm) using 

the following formula: 

𝑥′ =
(𝑥 − min(𝑥))

(max(𝑥) − min (𝑥))
 (6) 

Here, 𝑥 is the value of a feature in the dataset, and 𝑚𝑎𝑥(𝑥) 

and 𝑚𝑖𝑛(𝑥) are the maximum and minimum values of that 

feature. This formula scales the values of each feature in the 

dataset between 0 and 1 [38]. 

Evaluation Metrics 

In this model, Mean Absolute Error (MAE), Mean Squared 

Error (MSE), Root Mean Squared Error (RMSE) [39], and 

R-Squared (R2) [40] metrics used to measure the difference 

between the predicted value and the actual value. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

 (7) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − ŷ𝑖)

2

𝑛

𝑖=1

 (8) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (9) 

𝑅2 = 1 − (
∑ (𝑡𝑗 − 𝑜𝑗)

2
𝑗

∑ (𝑜𝑗)
2

𝑗

 (10) 

Experimental Results & Discussion 

In the collected dataset, 70% of the 206 data points were 
separated for training and 30% for testing, randomly. 

Support Vector Regression 

SVR results were the worst out of all five algorithms we 
compared. Results of each metric for SVR shown below. 

 - MAE: 2268.27 

 - MSE: 18808394.80 

 - RMSE: 4336.86 

- R²: 0.8658 

In SVR, the hyperparameters that need to be tuned includes 
the choice of kernel function, gamma value and the 
regularization parameter that controls the trade-off between 
the margin and the error. These hyperparameters can be 
optimized using techniques such as grid search or random 
search. In our case, 'linear', '1' and '1000' values were the 
best fit for these parameters in order. 
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Figure 1. Distribution Plot of SVR. 

Figure 1 shows the distribution of the residuals. Ideally the 
residuals should be symmetric around the zero line. If the 
residuals are skewed to one side, it suggests that the model 
is overpredicting or underpredicting the target variable in 
that region. We can see that residuals we have slightly 
skewed to right which means the model is not capturing 
some patterns in the data, or there may be outliers in the data 
that are affecting the model's performance. 

Figure 2. Residual Plot of SVR. 

 

The Figure 2 appears to have a roughly asymmetric 
distribution around zero, which suggests that the SVR 
model is not making predictions that are on average equally 
overpredicting and underpredicting the true values. 

It is clear that there are some outliers in the residual plot, 
particularly at the higher end of the x-axis, which suggests 
that the SVR model is struggling to accurately predict these 
extreme values. 

Figure 3. Scatter Plot of SVR. 

 

Figure 3 shows us the scatter plot of the predicted and actual 
values. The dashed line represents the ideal prediction 
where actual and predicted values are the same. Points 
above the dashed line indicate that the model has over-
predicted the target variable, whereas points below the line 
indicate under-prediction. The scatter plot can be used to 
identify areas where the model is performing well and 
where it needs improvement. For this instance, the SVR 
model heavily under-predicts values over 20000, making it 
unreliable for predicting high-end CPUs scores. 

Figure 4. Actual vs Predicted Values of SVR. 

 

This Figure 4 displays the comparison of the predicted and 
actual values of test CPUs. The blue line represents the 
actual values, while the orange line represents the predicted 
values. Ideally, these lines would overlap, with the 
predicted line covering the actual line, indicating that the 
model is providing accurate results. It is clear that the 
predicted values are significantly inaccurate for CPUs with 
score values of 20000 and above. 

Random Forest Regression 

RFR gave the second worst results out of all five algorithms 
we compared. Results of each metric for RFR shown below. 

 - MAE: 1828.75 

 - MSE: 9210826.03 
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 - RMSE: 3034.93 

- R²: 0.9346 

In RFR, after tuning several hyperparameters, we found that 
the number of trees parameter '100' and the function to 
measure the quality of a split 'squared error' gave better 
results than others we tried. 

Figure 5. Scatter Graph of RFR. 

 

Figure 6. Actual vs Predicted Values of RFR. 

 

Both Figure 5 and Figure 6 show us the comparison of 
predicted and actual values for their respective data points. 
It is clear that the RFR algorithm provides good results for 
lower values of CPU Score while still heavily under-
predicting most values above 30000. 

Multiple Linear Regression 

MLR results showed that this algorithm was the third best 
among all the algorithms we compared. Results of each 
metric for MLR are demonstrated below. 

 - MAE: 1724.65 

 - MSE: 6701067.82 

 - RMSE: 2588.64 

- R²: 0.9522 

Figure 7. Coefficients Pie Chart of MLR. 

 

Coefficient plots can be used to understand how each 
feature affects the outcome (Figure 7). In this pie chart, we 
can see the coefficients of 11 features that affect the target 
variable. According to the results, the most influential 
features are the number of cores and L3 cache, while the 
least influential ones are release date and platforms. 
Assuming that the features indicating the number of cores, 
CPU clock speed, L3 cache, and lithography of the CPU are 
also the most repeated and highlighted features in the 
introduction and advertisements of newly released CPUs, 
we can confirm that their impacts on the result are quite high 
as expected. 

Figure 8. Residuals / Predictions Scatter Graph of MLR. 

 

In Figure. 8, it is shown that the predicted values and their 
difference with actual values. Looking at the area between 
the +2500 and -2500 difference lines we drew, it can be 
understood that the absolute difference between most of the 
predicted values and the actual values is not more than 
2500. 
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Figure 9. Q-Q Plot of MLR. 

 

This Q-Q plot of MLR allows us to compare the status of 
our data's normal distribution with its theoretical quantity  
(Figure 9). The closer the data is to the center line, the closer 
the spread of the data is to a normal distribution. 

 

Figure 10. Scatter Plot of MLR. 

Figure 11. Actual vs Predicted Values of MLR. 

 

Figure 10 and Figure 11 show that the model makes more 
mistakes in predicting CPU scores above 40000 on average. 
This may be due to the fact that these processors are 
relatively new, powerful, and rare, and there may not be 
enough data for them in the dataset for training. 

Gradient Boosting Regression 

GBR has the second-best results among all the five 
algorithms we compared. Results of each metric for GBR 
are shown below. 

 - MAE: 1608.57 

 - MSE: 5776080.55 

 - RMSE: 2403.34 

- R²: 0.9588 

The process of constructing a gradient boosting regression 
model involves tuning several hyperparameters, such as 
loss function, the number of boosting stages to perform (n-
predictors), the maximum depth of each tree, and the 
learning rate of the optimization algorithm. In our case, we 
found 'squared-error', '143', '1', '0.1' values were the best fit 
for these parameters in order. 

 

Figure 12. Scatter Plot of GBR. 

Figure 13. Actual vs Predicted Values of GBR. 

 

Figure 12 and Figure 13 show the actual values of the target 
variable against the predicted values using GBR model for 
each data point. It is clear that this model's accurate 
prediction rate is higher than others we compared, which is 
also seen from metric results as well. We can see that the 
higher values of target variable show slightly under-
predicted results, although not as much as the first three 
algorithms. 
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Neural Network Regression 

NNR gives the absolute best results out of all the five 
algorithms that were discussed. Results of each metric for 
NNR are demonstrated below. 

 - MAE: 1245.61 

 - MSE: 3358348.46 

 - RMSE: 1832.57 

- R²: 0.9765 

As mentioned earlier, neural networks can be tuned by 
adjusting several hyperparameters, such as hidden layer 
sizes, solver class, and the learning rate of the optimization 
algorithm. 

Using hyperparameter tuning, it was found that '(10,)', 
'lbfgs', and 'constant' values were the best fit for these 
parameters in order. 

We used the L-BFGS optimization algorithm for our NNR 
model, as it provided better results compared to the other 
well-known solver 'Adam'. We chose L-BFGS because our 
dataset was relatively small, and L-BFGS is known to work 
well with small datasets. L-BFGS is a gradient-based 
method that uses limited memory to approximate the 
inverse Hessian matrix and update the weights in each 
iteration. It is particularly effective in handling non-convex 
problems, which are common in NNR [41]. 

Figure 14. Scatter Plot of NNR. 

 

Figure 15. Actual vs Predicted Values of NNR. 

NNR model gave the most accurate predictions, noticeably 
better than other algorithms. We know that the closer the 
points to the dashed line for Figure 14, and the more the 
lines overlap for Figure 15, the better the model's prediction 
performance. It is demonstrated that NNR has great 
accuracy on both lower values of CPU Score and higher 
values of CPU Score. Since dataset has more training data 
with lower values, the prior algorithms had a rough time to 
accurately predict, most of them ended up greatly under-
predicting higher values, while NNR gave almost spot on 
predictions. 

Figure 16. Histogram of Layer 1 Weight Distribution. 

 

Figure 17. Histogram of Layer 2 Weight Distribution. 

 

Figure 16 and Figure 17 are visual representations of the 
weights assigned to the nodes in a neural network model's 
layers. These graphs can be used to analyze how the weights 
change during training and to identify patterns or anomalies 
in the weight distribution. 

The weights shown in Figure 16 and Figure 17 correspond 
to the connections between the input and hidden layers 
(layer 0 to layer 1) and the connections between the hidden 
and output layers (layer 1 to layer 2). 

We can see on the layer 2 weight distribution Figure 17 that 

4 out of 11 features have weights close to 0 on nodes, while 

5 features have weight values of 40-60, and one feature has 

a weight value of more than 80. These results align well 

with what we have seen on coefficient charts, assigning 
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corresponding weight values to features that matter most 

like Number of Cores and Threads, L3 Cache, Clock 

Speeds, and features that matter least like Platform, Series, 

and . 

Comparison of these algorithms is shown in Table 2. 

 

Table 2. Comparison of the results of the models used. 

 SVR RFR MLR GBR NNR 

MAE 
2268.2

7 1828.75 1724.65 1608.57 1245.61 

MSE 

188083

94.80 

9210826.

03 

6701067

.82 

5776080

.55 

3358348

.46 

RMSE 

4336.8

6 3034.93 2588.64 2403.34 1832.57 

R2 0.8658 0.9346 0.9522 0.9588 0.9765 

 

Conclusion 

In this study, we attempted to predict the performance 

scores of CPUs ranging from 2749 to 63599 using 

regression analysis with a dataset consisting of 11 features. 

We evaluated several regression algorithms, including 

SVR, RFR, MLR, GBR and NNR.  

Our results showed that the NNR algorithm achieved the 

best performance on the dataset.    NNR achieved a value of 

0.97 according to the R-Squared value. This result indicates 

that the NNR algorithm was able to capture the underlying 

relationships in the dataset more accurately than the other 

algorithms we tested. However, other algorithms such as 

MLR, RFR, GBR, and SVR also yielded moderate to good 

performance results, with R-squared values ranging from 

0.8658 to 0.9588. These findings suggest that different 

algorithms may be suitable for different datasets, and the 

selection of the appropriate algorithm can have a significant 

impact on the accuracy of the predictions. 

In conclusion, our study demonstrates the potential of using 

machine learning algorithms to predict the performance 

scores of CPUs. The NNR algorithm showed the best 

performance in our study, but the results from other 

algorithms also suggest that a variety of approaches should 

be considered when applying regression analysis to similar 

datasets. Future research could investigate the performance 

of these algorithms on larger or more diverse datasets, as 

well as the potential for further optimization of the 

algorithms themselves.  

Furthermore, predicting a processor's benchmark score 

based on its features can be useful for evaluating 

performance without running benchmarks, saving time and 

resources. It allows users to make informed decisions about 

CPU’s capabilities for specific tasks, such as gaming or data 

processing, by comparing predicted performance across 

models. This approach is particularly valuable for system 

builders and buyers looking to optimize cost and 

performance before purchasing. 
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