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Abstract 

In this paper, we study the congruence of curves in Weyl-Otsuki spaces using Ricci's 

coefficients of that congruence in the orthogonal case. We first prove that Ricci’s coefficients 

abc  determine the regular general connection of an Otsuki space. Then, we give the condition 

for these coefficients in Weyl-Otsuki spaces to be skew-symmetric in the first two indices as in 

Riemannian spaces. We obtain the necessary and sufficient conditions for the curves of 

congruence to be geodesic, normal, and irrotational. Finally, we prove that if a congruence 

satisfies the equation, 
   '' 2 ' 0,h h i h

kj i j n n k k j
T T U U  − + =  and any two of the conditions to be 

geodesic, normal, and irrotational, then it also satisfies the other third one. 

Keywords: Weyl-Otsuki spaces; General connections; Ricci's coefficients; Congruence of 

curves; Geodesic curves. 
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Weyl-Otsuki Uzaylarında Kongrüans Eğrileri 

Öz 

Bu makalede Weyl-Otsuki uzaylarında kongrüans eğrilerini bu eğrilerin ortogonal olması 

durumda Ricci katsayılarını kullanarak inceledik. İlk olarak, abc  Ricci katsayılarının bir Otsuki 

uzayının regüler genel koneksiyonunu belirlediğini gösterdik. Ardından Riemann uzaylarda 

olduğu gibi Weyl-Otsuki uzaylarında bu katsayıların ilk iki indisine göre ters-simetrik olma 

koşulunu verdik. Kongrüans eğrilerinin, sırasıyla, jeodezik, normal ve irrotasyonel olması için 

gerek ve yeter koşulları elde ettik. Son olarak bir kongrüans eğrisinin 

   '' 2 ' 0l l k l

ji k i n n j j i
T T V V  − + =  denklemi ile birlikte jeodezik, normal ve irrotasyonel olma 

koşullarından herhangi ikisini sağlaması durumunda diğer üçüncü koşulu da sağladığını 

kanıtladık. 

Anahtar Kelimeler: Weyl-Otsuki uzayları; Genel koneksiyonlar; Ricci katsayıları; 

Kongrüans eğrileri; Jeodezik eğriler. 

1. Introduction 

The theory of Otsuki spaces is based on the notion of regular general connection, 

introduced by T. Otsuki [1]. He gave the theoretical foundation for general connections and 

showed that they are the generalizations of the classical connections, for instance, the affine, 

projective, and conformal connections [2, 3]. The general connections were first noticed by A. 

Moor and were linked with Weyl spaces [4]. These spaces are then called Weyl-Otsuki spaces. 

Then D.F. Nadj obtained curvatures [5] and the Frenet formulas [6] of the Weyl-Otsuki spaces 

and also studied Riemann-Otsuki spaces, which are the special cases of the Weyl-Otsuki spaces 

[7-9]. The general connections were also introduced into vector bundles by N. Abe [10, 11], into 

general relativity by H. Nagayama [12, 13], and the theory of black holes by T. Otsuki [14-16].  

The coefficients of an affine connection on an orthonormal basis are called Ricci’s 

coefficients. Since these coefficients can determine an affine connection, they have great 

importance in studying some geometric properties of a Riemannian space, such as the parallelism 

of the unit tangent vector field of an orthogonal ennuple and the conditions for the curves of an 

orthogonal ennuple to be normal or to be irrotational. Moreover, since Ricci’s coefficients with 

respect to an affine connection are skew-symmetric with its first two indices, they provide an 

easier investigation of the above geometric properties for Riemannian spaces. But this is not the 
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case for Weyl-Otsuki spaces. The purpose of the paper is to get some conditions on Weyl-Otsuki 

spaces, which will be called co-recurrence conditions, for a proper investigation of the above 

geometric properties of these spaces. 

2. Preliminaries 

In this section, we will introduce the notion of regular general connection and its properties. 

Then we will define the co-recurrence condition on Weyl-Otsuki spaces to obtain the geometric 

properties of these spaces. 

Definition 1. A regular general connection1 of an n-dimensional space nM  is defined as 

any cross-section   of the vector bundle ( ) ( )2

n nT M MD  over nM , where ( )nT M  and 

( )2

nMD  are tangent bundle of order 1 and cotangent bundle of order 2 of nM  respectively, [1]. 

In a coordinate neighborhood,   is written as 

( )2k i k i j

k i iju P d u du du =   +  , 

where ( )k

iP P=  is an isomorphism of ( )nT M .  

If P  is the identity transformation, then   becomes a classical affine connection. So, 

general connections2 are the generalizations of the classical connections, for instance, the affine, 

projective, and conformal connections.  

It follows from Definition 1 that there exist a ( )1,1 -tensor ( )k

iQ Q=  such that 
1 ,P Q− =  

since ( )det 0k

iP  . Therefore   and P  determine two affine connections '  and ''  which 

are called contravariant and covariant part of  , respectively, in the following way: 

( )'    and   '' .k k l k k k l

ij l ij ij lj j l iQ P Q =   =  −  

Using the above equations, we can define the basic covariant differential of a ( ),p q -

tensor ( )1

1

...

...
s

r

j j

i iU U=  with respect to a regular general connection   by 

 
1 It was called Otsuki connection by Nadj [7]. 
2 If P is only a homomorphism, then Γ is called a general connection. 
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1 1

1 1

1 1 11 1 1

1 1 1 1 1 1

... ...

... ...

... ...... ... ...

... ... ... ... ...

1 1

,

' '' .

s s

r r

p p p ss s s

r r r q q q r

j j j j k

i i k i i

s r
j j j hj jj j j j j jh

k i i k i i hk i i i k i i hi i

p q

U U du

U U U U− +

− +

= =

 =

 =  +  −  
                      (1) 

Using (1), one can easily see that the basic covariant differentiation of the tensor product 

of any two tensors obeys the classical rule;  

( ) ( ) ( )1 1 11 1 1

1 1 1 1 1 1

... ... ...... ... ...

... ... ... ... ... ... .s s p s s p s s ps s s

r r r q r r r q r r r q

j j j j j jj j j j j j

k i i i i k i i i i i i k i iU V U V U V+ + + + + +

+ + + + + +
 =  +  .                      (2) 

It is well-known that the covariant differentiations and the contractions are commutative 

operators in classical differential geometry. This is due to the fact that the covariant derivative of 

the identity transformation 𝐼 is constant. Hence, if we use (1) for the identity transformation 

' ''k k k

j i ij ij =  −  ,                            (3) 

Then, we have the relations between basic covariant differentiation and contractions as follows: 

( ) ( )1 1 1

1 1 1

... ... ...

... ... ...
s s s

r r r

j j j j j j j j ji i i

j k i i i k i i i j i i i k jU U U   = +  .                                     (4) 

Now, we will give the curvature and the torsion tensors for the affine connections '  and 

'' . Let ' ,  ''k k

ilj iljR R  and ' ,  ''k k

ij ijT T  be the components of the curvature and the torsion tensors of 

'  and '' , respectively. Then, we have 

' ' ' ' ' ' '

'' '' '' '' '' '' ''

k k k k h k h

ilj l ij j il hl ij hj il

k k k k h k h

ilk l ij j il hl ij hj il

R

R

=   −  +   −  

=   −  +   −  
                         (5) 

and 

' ' ' ,        '' '' ''k k k k k k

ij ij ji ij ij jiT T=  −  =  −  .                         (6) 

Using the equations (1)-(6), we obtain the following Ricci formulas: 

 
1 1 1

1 1 1

1 1 1

1 1 1

... ... ...

... ... ...

... ... ... ...

... ... ... ...

1 1

2

                     ' '' ''

s s s

r r r

p s s s

r q r r

j j j j j j

i i k l i i l k i ik l

s r
j j h j j j j jh h

hkl i i i kl i h i lk h i i

p q

U U U

R U R U T U
= =

  =  − 

= − −  
                      (7) 

A. Moor [4] introduced the concept of Weyl-Otsuki space by associating the theory of 

Otsuki space with the Weyl metric as follows: 
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Definition 2. Let nM  be an n-dimensional space with a regular general connection   and 

a Riemannian metric ( )ijg g= . Then nM  is called a Weyl-Otsuki space if the covariant 

differential of the metric tensor with respect to   holds the recurrence equation, 

k ij k ijg g = ,                             (8) 

for a covariant vector field ( )k = . In this case, g  is also called recurrent metric tensor. 

Remark 1. We will denote the Weyl-Otsuki space with regular general connection  , 

Riemannian metric g  and covariant vector field ( )k =  by a quadruple ( ), , ,nM g  . 

Unlike an affine connection, the co-recurrence equation 
ij ij

k kg g = −  does not hold 

for a regular general connection. Now, we will give the condition that the metric tensor satisfies 

the co-recurrence equation for regular general connections. In virtue of (2), (4) and (8), we obtain 

( )k kl kl k kh l

j i j li li j j i li j hg g g g g g    = =  + −   

or equivalently 

kl kl ki l li k

j j j i j ig g g g   = − +  +  . 

Hence, we have the following lemma: 

Proposition 1. Let ( ), , ,nM g   be a Weyl-Otsuki space. Then the co-recurrence equation 

 ,ij ij

k kg g = −                                                    (9) 

holds in a Weyl-Otsuki space if and only if 

0ih j jh i

k h k hg g  +  = . 

3. Congruence of Curves in Weyl-Otsuki Spaces 

In this section, we will show that Ricci’s coefficients determine the connection in Weyl-

Otsuki spaces as well as in Riemann spaces. We will use Ricci’s coefficients to examine the 

condition for congruence of curves to be geodesic. Moreover, if the co-recurrence equation is 

satisfied, we will provide the properties of these coefficients in Weyl-Otsuki spaces. 
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Definition 3. Let ( )1, , nU U U=  be a vector field on a Weyl-Otsuki space 

( ), , ,nM g  . The system of differential equations 

1

1

n

n

dx dx

U U
= =  admits 1n−  independent 

solutions ( )1, ,i n ix x c = , ( )1, , 1i n= − , where c ’s are constants [17]. If we substitute 

any point np M  in the last equations, the constants c  are determined so that these 1n−  

equations define a curve through p . Since one can define such a curve through each point, U  

determines a family of curves, one of which passes through each point of that space. This family 

of curves is called a congruence of curves in a Weyl-Otsuki space3. An orthogonal ennuple in a 

Weyl-Otsuki space consists of n  mutually orthogonal congruences of curves4. 

Let 
a

U 5, ( )1,...,a n= , be the unit tangents to the n  congruences of an orthogonal 

ennuple. The contravariant and covariant components of 
a

U  will be denoted by i

a
U  and 

a i
U  

respectively. Since the n  congruences are mutually orthogonal, we have the relations  

           or          .i j i

ij ab aba b a b i
g U U U U = =          (10) 

Since i

a
U  is the cofactor of 

a i
U  in the determinant 

a i
U  divided by the value of that determinant, 

we have 

 
i i

ja a j
a

U U = .         (11) 

Definition 4. Let 
a

U , ( )1,...,a n= , be the unit tangents to the congruences of an 

orthogonal ennuple in a Weyl-Otsuki space ( ), , ,nM g   [17]. The derived vector of 
a

U  in the 

direction of 
c

U  has components ( )j k

k a c
U U ; and the projection of this vector on 

b
U  is a scalar 

invariant, denoted by abc , so that 

 ( )j k

abc k a b j c
U U U =  .           (12) 

 
3 In the other words a congruence is the set of integral curves determined by a vector field. 
4 These definitions are the generalizations of the definitions in Riemannian spaces, [17]. 
5 The subscript a , followed by a bar distinguishing one congruence from another, and having no significance of 

covariance. 
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The invariants abc  are called Ricci’s coefficients. 

Lemma 1. Let 
a

U , ( )1,...,a n= , be the unit tangents to the congruences of an orthogonal 

ennuple in a Weyl-Otsuki space ( ), , ,nM g   Then the Ricci’s coefficients abc  determine a 

classical affine connection ' . 

Proof. In virtue of (11) and (12) we have 

 
,

j j

k abca b c k
b c

U U U = .           (13) 

Multiplying this equation by k

c
U , and using (10), we get 

 
k j j

k abcc a b
b

U U U = .           (14) 

Now, if we multiply the equation (13) by 
a i

U , and use (1), then we obtain 

 ( ) ( )
, ,

'j j j l j

k k lk abca a i a a a i a i b c k
a a a b c

U U U U U U U U =  +  =   , 

by summing with respect to a . From the last equation we have 

 
, ,

' j j j

ik k abca i a a i b c k
a a b c

U U U U U = −  +  ,           (15) 

which yields us the result. ∎ 

Moreover, for a given isomorphism P  of ( )nT M , a regular general connection   can be 

determined by 'j j l

ki l kiP =  . Hence, using (15) we have the following theorem: 

Theorem 1. Let 
a

U , ( )1,...,a n= , be the unit tangents to the congruences of an orthogonal 

ennuple in a Weyl-Otsuki space ( ), , ,nM g  . Then, for any isomorphism P  of ( )p nT M , the 

Ricci’s coefficients abc  determine a regular general connection  . 
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We note that in Riemannian spaces, Ricci’s coefficients abc  are skew-symmetric in the 

indices a  and b  but this is not the case in Weyl-Otsuki spaces unless the co-recurrence condition 

holds. In fact, using (2), (4), and (9), we obtain 

( )
         .

j jl jl jl ji l

k k k k k ia a l a l a l a l

jl jl ji l

k k k ia l a l a l

U U g g U U g U g

g U g U U g



 

 =  =  +  − 

=  − − 
 

Substituting the last equation in (12), we have 

( )

( )      ,

jl jl ji l k

abc k k k ia l a l a l b j c

l i l k

k k ab k ib a l a l b c

g U g U U g U U

U U U U U

  

  

=  − − 

=  − − 
 

or equivalently 

.l i l

k abc k ab k ib a l c k a l b
c

U U U U U    = + +             (16) 

On the other hand, using (2) and (4), we have 

( ) 0.j j j i j

k ab k k k k ia b j b j a a b j a b j
U U U U U U U U  = =  +  −  =  

Multiplying the last equation by k

c
U , we get  

0

  

  

k j k j k i j

k k k ic b j a c a b j c a b j

k i l k i j

abc bad k ab k i k ic d k b l a c a b j
d

k

abc bac k ab c

U U U U U U U U U

U U U U U U U

U



     

   

=  +  − 

 
= + + +  −  

 

= + +

  

from (12) and (16). Hence, we obtain  

,k

abc bac k ab c
U   + = −                           (17) 

and the following result: 

Proposition 2. Let 
a

U , ( )1,...,a n= , be the unit tangents to the congruences of an 

orthogonal ennuple in a Weyl-Otsuki space ( ), , ,nM g  . If the co-recurrence equation is 
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satisfied, then Ricci’s coefficients abc  are skew-symmetric in the indices a  and b  with a b , 

i.e., 

abc bac = − , ( )a b .                          (18) 

Now, we can give another version of Ricci formulas using Ricci’s coefficients for Weyl-

Otsuki spaces. Let 
a

U , ( )1,...,a n= , be the unit tangents to the congruences of an orthogonal 

ennuple in a Weyl-Otsuki space ( ), , ,nM g  . Taking the basic covariant differentiation of (13) 

with respect to 
ku , and using (12), (2), (4), (8), we have  

( )

( )

, ,

, , , ,

,

            

            

j j j j j

i k i aef i aef aef i aef ia e f k e f k f k e e f k
e f e f

j j j l

i aef aef ers aef i lke f k f k r s i e f
e f e f r s e f

j j

i aef aef erse f k f k r s
e f

U U U U U U U U U

U U U U U U U g

U U U U U

   

   

  

 
  =  =  +  +  

 

 
=  + +  

 

=  +

 

   



( )
, ,

,

, , ,

,

                

            

                

i
e f r s

j l l h l

aef lk i i lk lk i he f f f
e f

j j

i aef aef erse f k f k r s i
e f e f r s

j l l h l

aef lk frs i lk lk i he r s i f f
r s

U g U U g U g

U U U U U

U g U U U g U g

 

  

   

 
 
 

+  +  − 

 
=  +  

 

 
+ + − 

 

 



  


,

, , ,

, ,

            

                .

e f

j j

i aef aef erse f k f k r s i
e f e f r s

j h l

aef frs i lk i he r k s i f k f
e f r s

U U U U U

U U U U U g

  

   



 
=  +  

 

 
+ + −  

 



  

   

If we compute j

k i a
U   and subtract it from the above equation, we obtain  
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, , ,

, ,

,

                                

                                

j j j j

i k k i i aef aef ersa a e f k f k r s i
e f e f r s

j h l

aef frs i lk i he r k s i f k f
e f r s

j

k aef aefe f i
e f

U U U U U U U

U U U U U g

U U

  

   

 

 
  −  =  +  

 

 
+ + −  

 

−  −

  

 



   

, ,

, ,

  
, , , ,

                                

                             2 2

               

j

ersf i r s k
e f r s

j h l

aef frs k li k he r i s k f i f
e f r s

j j

aef aef erse f k i r f k s i
e f e f r s

U U U

U U U U U g

U U U U U



   

  

 
 
 

 
− + −  

 

=  +

 

 

 

       
, ,

                 2 .j h l

aef frs he r k s i f k i f l k i
e f r s

U U U U U g   
 

+ + −  
 

 

 

Multiplying the last equation by k i

b j c d
U U U  and summing with respect to , ,i j k  we get 

( )  

 

 
,

 
, , ,

2

                                                   2

                                                   2

j j k i k i j

i k k i aefa a b j c d b j c d e f k i
e f

k i j

aef ersb j c d r f k s i
e f r s

k

b j c

U U U U U U U U U U

U U U U U U

U U U



 

  −  = 

+

+





 

    )

     

 
, ,

 

 

                                                   

                                                2 2 2

               

i j

aef frsd e r k s i
e f r s

h l

hf k i f l k i

i

i abfabc ae c ebd f cdd
e f

U U U

U U g

U

 

 

    





+ − 

=  + +

 

 

       
                                    2 2 .i h i l

i abf hab c f id c l d
f

U U U U   + − 

 

Consequently, if we write the Ricci formulas (7) in this equation, then we have 

( )      

    

 

   

1
' ''

2

                                                        2 .

j h h j k i i

hik ki h i abfa a b j c d abc ae c ebd f cdd
e f

i h i l

i abf hab c f id c l d
f

R U T U U U U U

U U U U

    

   

−  =  + +

+ − 

 


 

Now, we will give the condition for congruence of curves to be geodesic in Weyl-Otsuki 

spaces. Let as  be the arc-length parameter of one of the curves ( )au u s=  of the ennuple whose 

unit tangent is 
aa

U du ds= . Then, using (14), we have 
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( )
j k

a j k j j

k k abaa a a b
ba a

U du
U U U U

ds ds



=  =  = . 

Hence we obtain the following result: 

Theorem 2. Let 
a

U , ( )1,...,a n= , be the unit tangents to the congruences of an orthogonal 

ennuple in a Weyl-Otsuki space ( ), , ,nM g  . Then, the curves of the congruence are geodesics 

if and only if 0aba = , ( )1,...,b n= . 

4. Normal Orthogonal Ennuples 

In this section, we will express the condition of an orthogonal ennuple in a Weyl-Otsuki 

space in which the co-recurrence equation is satisfied to be normal regarding Ricci’s coefficients. 

Definition 5. [17] An orthogonal ennuple that intersects orthogonally with a family of 

hypersurfaces, .const =  is called a normal orthogonal ennuple. 

Let 
a

U  be the unit tangent to the congruences of an orthogonal ennuple in a Weyl-Otsuki 

space in which the co-recurrence equation is satisfied, and .const =  be a family of 

hypersurfaces. Then this ennuple is normal when the gradient of   at each point has the direction 

of the vector 
a

U . This condition is expressed as 

1 2

1 2

... n

a a a n
U U U

   
= = = . 

But the necessary and sufficient condition for the existence of such a function   is 

( ) ( ) ( ) 0i k j i k ja j a k a i a k a i a j a i a j a k
U U U U U U U U U − +  − +  − = . 

Now, let a congruence of an orthogonal ennuple with unit tangent 
n

U  be normal. Using (1) in 

the last equation, we have 

( )

( )

( )

'' ''

'' ''

'' '' 0.

h h

i ki k ikn j n k n h n i n h

h h

j ij i jin k n i n h n j n h

h h

k jk j kjn i n j n h n k n h

U U U U U

U U U U U

U U U U U

 +  − − 

+  +  − − 

+  +  − −  =
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If we multiply this equation by j i

a b
U U , ( ), 1,2,..., 1a b n= − , in virtue of (16), (3), and (6), we 

get 

( )

(

)

(

0 '' ''

  ''

              ''

  ''

        

j i h h

j ij i jia b n k n i n h n j n h

j i j h h j i

nba j nb j i ijn k a n h b a n h a b

i j i h j i h

nab i na i j jib n h a b a b n h

i j h h j i

nba j i ijn k n h b a n h a b

U U U U U U U

U U U U U U U U

U U U U U U U

U U U U U U U

   

   

 

=  +  − − 

= + +  + 

− − −  − 

= +  + 

)

( )

       ''

  ' .

j i h j i h

nab i j jin h a b a b n h

h j i

nba nab ijn k a b n h

U U U U U U

U T U U U

 

 

− −  − 

= − +

 

Hence, we have the following result: 

Theorem 4. In a Weyl-Otsuki space in which the condition (9) holds, the necessary and 

sufficient condition that the congruences 
n

U  of an orthogonal ennuple be normal is that 

( )' ,          , 1, 2,..., 1h j i

nab nba ij a b n h
T U U U a b n − = = − .                      (19) 

If all the congruences of an orthogonal ennuple are normal, all the invariants abc  with 

three distinct indices must be zero. Using the equation (18) in (19), we have 

( )

( )

' '

      ' '

      '

      ' '

      '

h j i h j i

abc acb ij cab ijb c a h b c a h

h j i h j i

cba ij ija b c h b c a h

h j i j i

bca ij b c a h a b c h

h j i h j i j i

bac ij ijc a b h b c a h a b c h

h j i

abc ij b c a

T U U U T U U U

T U U U T U U U

T U U U U U U

T U U U T U U U U U U

T U U U

  









= + = − +

= − − +

= + −

= + + −

= − + ( ).j i j i

h c a b h a b c h
U U U U U U+ −

 

Consequently, we obtain the following result: 

Theorem 5. In a Weyl-Otsuki space in which the condition (9) holds, the necessary and 

sufficient condition that all the congruences of an orthogonal ennuple be normal is that 

( )
( )

1
' ,

2

                                                   , , 1,2,..., ;  , ,  unequal .

h j i j i j i

abc ij b c a h c a b h a b c h
T U U U U U U U U U

a b c n a b c

 = + −

=
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5. Curl of an Orthogonal Ennuple 

In this section, we will give the condition for an orthogonal ennuple to be irrotational in 

Weyl-Otsuki spaces in terms of Ricci’s coefficients. We will also express the relationship between 

the geodesic, normal, and irrotational conditions of an orthogonal ennuple in Weyl-Otsuki spaces 

in which the co-recurrence equation is satisfied. 

Definition 6. [17] The curl of the unit tangent to an orthogonal ennuple is briefly called the 

curl of the orthogonal ennuple. If the curl of an orthogonal ennuple vanishes identically, the 

ennuple will be described as irrotational.  

Consider the n th congruence of an orthogonal ennuple whose unit tangent vector is 
n

U  in 

a Weyl-Otsuki space in which the condition (9) holds. Putting a n=  in (16), multiplying it by 

b i
U  and summing with respect to b , we obtain 

,

.lk nbc k k in i b i c k n i n l
b c

U U U U U   = + +                    (20) 

Since the curl of the unit tangent to the n th congruence of an orthogonal ennuple is the tensor, 

whose components are 
k jn j n k
U U − , then from (20), these components have the values 

( )    ( )
,

2 .l l

k j nbc ncbn j n k b j c k k j k j n l
b c

U U U U U     − = − +  +  

This double sum may be separated into two sums as follows. In the first, let b  and c  take the 

values 1, 2,..., 1n − ; and, in the second, let either or both take the value n . Then we have 

( ) ( )

( )    ( )

1 1

, 1 1

1

1

                           2 .

n n

k j nbc ncb nbn nnbn j n k b j c k b j n k
b c b

n
l l

nnc ncn n j c k k j k j n l
c

U U U U U U

U U U

   

    

− −

= =

−

=

 − = − + −

+ − +  +

 



        (21) 

Now, we will give the relationship between the geodesic, normal, and irrotational 

conditions of an orthogonal ennuple in Weyl-Otsuki spaces where the co-recurrence equation is 

satisfied. 
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Theorem 6. Let 
n

U  be the unit tangent to the n th congruence of an orthogonal ennuple 

in a Weyl-Otsuki space ( ), , ,nM g   in which the condition (9) holds. If this congruence 

satisfies  

   '' 2 ' 0,h h i h

kj i j n n k k j
T T U U  − + =                      (22) 

and any two of the following conditions, then it will also satisfy the other third one; 

i) that it be a normal congruence, ii) that it be a geodesic congruence, iii) that it be 

irrotational. 

Proof. Case 1. Suppose that the n th congruence is both normal and geodesic. Using (19), 

we can write the first term on the right-hand side of (21) as 

( )

( )( )

( )

1 1

, 1 , 1

'

                                '

                                '

     

n n
h l i

nbc ncb ilb j c k b c n h b j c k
b c b c

h l l i i

il j kn n j n n k n h

h l i l i i l l i

il j k j kn n k n n j n n j n n k n h

U U T U U U U U

T U U U U U

T U U U U U U U U U

 

 

   

− −

= =

− =

= − −

= − − +

 

( )

( )

 ( )

                           ' ' ' '

                                ' ' '

                                ' 2 ' .

h h i h l h l i

kj ij kl iln n k n n j n n j n n k n h

h h i h i

kj ij ikn n k n n j n h

h h i

kj i j n n k n h

T T U U T U U T U U U U U

T T U U T U U U

T T U U U

= − − +

= − +

= −

     (23) 

Since the congruence is also a geodesic curve, then we have 

0nbn ncn = = , 

from Theorem 2. So (21) can be written as  

 

 ( )

   ( )

   ( )

1

1

1

1

' 2 '

                            2

                        '' 2 ' 2

                            

n
h h i

k j kj nnbn j n k i j n n k n h b j n k
b

n
l l

nnc n j c k k j k j n l
c

h h i l

kj i j n n k k j n h

nnb

U U T T U U U U U

U U U

T T U U U



   

 



−

=

−

=

 − = − −

+ +  +

= − +

+





( )
1

1

.
n

n j b k b j n k
b

U U U U
−

=

−
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If we use (17) for the last term on the right-hand side of the above equation, then we have 

( ) ( )

( ) ( )

 

1 1

1 1

1

2

1 1
                                         

2 2

                                         .

n n
i

nnb in j b k b j n k b n j b k b j n k
b b

i i i i

i k i jn j n n k n k n n j

j n k

U U U U U U U U U

U U U U U U

U

 

   



− −

= =

− = − −

= − − + −

=

 

   (24) 

So we obtain 

 
   ( )'' 2' .h h i l

k j kjn j n k i j n n k k j n h
U U T T U U U  − = − +  

Hence, a normal and geodesic congruence that satisfies equation (22) is irrotational. 

Case 2. Let the n th congruence be both normal and irrotational. At first, if we substitute 

(23) in (21) and use (17), (24) as in case 1, then we get 

   ( ) ( )
1

1

'' 2 ' .
n

h h i l

k j kj nbnn j n k i j n n k k j n h b j n k n j b k
b

U U T T U U U U U U U  
−

=

 − = − + + −  

Now, since the congruence is irrotational and satisfies (22), then the last equation yields 

( )
1

1

0.
n

nbn b j n k n j b k
b

U U U U
−

=

− =  

Then, this congruence is geodesic by Theorem 2. 

Case 3. Let the n th congruence be both geodesic and irrotational. By the definition of 

irrotational curve and Theorem 2, (21) takes the form 

( ) ( )    ( )
1 1

, 1 1

2 0.
n n

l l

nbc ncb nnbb j c k n j b k b j n k k j k j n l
b c b

U U U U U U U     
− −

= =

− + − +  + =   

If we use (3), (6) and (24) in the last equation, then we have 

( )  ( )
1

, 1

' '' 0.
n

l l l

nbc ncb jk jkb j c k k j n l
b c

U U T T U   
−

=

− + − + =  

Since the congruence satisfies (22), we obtain 
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( )  ( )
1

, 1

' 2 ' 0.
n

l l i

nbc ncb jkb j c k i j n n k n l
b c

U U T T U U U 
−

=

− + + =  

Finally, by multiplying the last equation by i j

b c
V V  we get 

 ( )

 ( )

' 2 '

               ' 2 '

               ' .

l l i j k

nbc ncb jk i j n n k n l b c

l j k l i j

jk b c i j n c k b n l

l j i

ji b c n l

T T U U U U U

T U U T U U U U

T U U U

 − = − +

= − +

=

 

Hence, this congruence is normal by Theorem 4. ∎ 
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