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Abstract—In this paper, an efficient PID tuning method for 

stable, unstable and integrating systems with time delay is 

introduced. The presented method is based on shaping the 

transient response of the two-degrees of freedom closed-loop 

system according to the performance specifications determined 

before the design. This method gives explicit tuning formulae in 

terms of plant model parameters and two design parameters 

which are used to shape the transient response. A graphical 

optimization technique for tuning of the PID parameters is also 

introduced. Illustrative examples are given to demonstrate the 

performance of the method. Significant improvement is provided 

in comparison with some previous methods.  

 
Index Terms— Time Delay, PID Control, Transient Response 

Control, Settling Time, Overshoot. 

 

I. INTRODUCTION 

YSTEMS with energy storage cannot respond 

instantaneously and exhibit transient responses in the time 

domain whenever they are subjected to inputs or disturbances. 

In many practical cases, the performance characteristics of the 

control systems are described in terms of transient response 

specifications. The most significant specifications are settling 

time (ts) and maximum overshoot (Mp) [1, 2].  

It is a very important specialty for a control method to 

design the control system providing the target performance 

specifications. The design of controller which results only the 

desired transient response is called as transient response 

control. Although good transient response is one of the most 

significant requirements for the control system design, there 

are very few results dealing with the transient response control 

in the literature [3]. Hauksdóttir [4] pointed out that the 

analytical expressions of transient responses can be obtained if 

the poles of the transfer function are all real, negative, and 

distinct. It was also shown that these formulae in closed form 

can be used to determine the zeros that result in minimum 

transient time. Jung et al [5] and Goodwin et al [6] found 

some limitations on transient response in terms of poles and 

zeros of the system. An interesting result was also reported by 

Leon de la Barra [7] who has shown that there are some 

relations between the nonminimum phase zeros and the case 

of undershooting [3]. The transient response control studies 

 
S. E. HAMAMCI is with the Department of Electrical-Electronics 

Engineering Department, Inonu University, Malatya, Turkey (e-mail: 
serdar.hamamci@inonu.edu.tr).  

considered in these methods entirely deal with the relation 

between the transient response specifications and the 

poles/zeros of the characteristic polynomial. However, there is 

a different approach on this topic based on certain 

relationships between transient response specifications and 

coefficients of the characteristic polynomial. At first, these 

relations were introduced by Graham and Lathrop [8] in 1953. 

They proposed ITAE (Integral Time Absolute Error) standard 

form method which gives the different forms for each order of 

characteristic polynomial. This is very inconvenient when the 

order varies in the course of design [9]. To improve the 

control system response, a standard form with less oscillation 

and overshoot was given by Kessler [10]. The control system 

designed by “Kessler canonical form” is more stable than the 

ITAE form and has the overshoot of 8% in the unit step 

response. In addition to these previous forms, various standard 

forms such as ITSE (Integral Time Squared Error) form [11] 

and ISTE (Integral Squared Time Error) form [12] which give 

more successful time domain responses have been proposed 

recently. However, it is not possible to design the closed loop 

systems by these methods according to the transient response 

specifications which are specified prior to the design. In 1969, 

Naslin [13] observed empirically that the step response of all-

pole systems of various orders remains essentially unchanged 

provided that the coefficients of the characteristic polynomial 

satisfy certain relationships. Thus, Naslin obtained the explicit 

formulae between the performance specifications and the 

coefficients of characteristic polynomial [3, 14]. Using the 

Naslin’s relations, an important contribution in this regard was 

presented by Manabe [15] who proposed a new control 

technique, namely Coefficient Diagram Method (CDM), for 

the linear time-invariant control systems. The most important 

properties of this method are adaptation of the polynomial 

representation in the design methodology, use of the two-

degrees of freedom (2DOF) control system structure and 

utilization of Standard Manabe form for obtaining of a unit-

step response without overshoot. Furthermore, determination 

of the desired settling time at the start is another significant 

feature of the CDM. This is a major advantage which guides 

to the designer in his design [15, 16]. For the time delay 

systems, however, Manabe’s method is ineffective to obtain 

the desired transient response. The obtained transient response 

does not meet the specified settling time value and non-

overshooting property because of the time delay element [16]. 

As a result of this problem, a modification on the CDM 

technique is needed.  
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In this study, the results of the CDM which has been 

successfully applied to the linear time-invariant systems are 

generalized to the case of time delay systems. Since the CDM 

gives the higher order polynomial controllers whose degrees 

depend on the degree of the system, a methodology to design 

the fixed and lowest order controllers as possible such as PID 

controllers for time delay systems is considered. A new PID 

tuning method is proposed to achieve the desired settling time 

and maximum overshoot values which are determined in 

advance of the design. To achieve this, the first-order plus 

time delay (FOPTD) model of the stable, integrating or 

unstable plant is used. Using the 2DOF control system 

structure, an extra feedforward controller is designed to 

provide the better closed loop performance focusing on both 

tracking the desired reference signal and disturbance rejection. 

This extra controller is tuned in terms of the PID controller. 

This is an important advantage of the proposed method 

because the main controller and the extra feedforward 

controller in other methods are tuned separately [17, 18]. 

Furthermore, a graphical optimization step is included for 

modifying the standard Manabe form values to obtain the 

closed loop response which meets the transient response 

specifications determined before the design.  

II. PID CONTROLLER DESIGN 

A. 2DOF PID Control System Structure 

A general form of the 2DOF control system is shown in Fig. 

1 where G(s) is the plant to be controlled, Cf(s) is the 

feedforward controller and C(s) is the main controller [20]. 

Successful reference input tracking and the disturbance 

rejection are provided if  

 

                      ⁄      (1) 

 

imposes conditions on the controller. The most important 

result satisfying (1) are that C(s) must contain an integrator 

and Cf(s) must not. Thus, C(s) can be chosen as  

 

       (  
 

   
    )   (2) 

 

in the form of classical PID controller and Cf(s) is a controller 

satisfying (1).  

 The polynomial based CDM block diagram [15] is shown in 

Fig 2. In this figure, N(s) is the numerator and D(s) is the 

denominator polynomials of the plant transfer function. B(s) 

and F(s) are the feedback and reference numerator 

polynomials while A(s) is the forward denominator polynomial  

 

 

 

 

 

 

 
Fig. 1.  Two-degrees of freedom control system structure (r: reference input 
signal, y: output signal, u: control signal, d: external disturbance signal). 

 

 

 

 

 

 

 

 
Fig. 2.  The block diagram of the CDM control system. 

 

of the controller transfer function. This controller transfer 

function with two numerators points to a 2DOF system 

structure. A(s) and B(s) are represented in the polynomial form 

 

     ∑    
  

     and       ∑    
  

    (3) 

 

where p and q are the orders of the polynomials. The 

polynomial F(s) is in fact a proportional controller and used to 

eliminate the steady-state error. The output equation of the 

control system in Fig. 2 is 

 

  
        

    
  

        

    
  .     (4) 

 

The characteristic polynomial, P(s) is described by 

 

                       ∑    
  

    ,      ai > 0 .   (5) 

 

where n is the order of P(s). 

If the 2DOF control system structure in Fig. 1 is compared 

with the CDM control system in Fig. 2, it is clearly seen that 

N(s) and D(s) in Fig. 2 are the polynomials of G(s) in Fig. 1. 

Similarly, A(s), B(s) and F(s) in the CDM control system 

structure shown in Fig. 2 are the polynomials of Cf(s) and C(s) 

in Fig. 1. Therefore, C(s) is expressed by B(s)/A(s) and Cf(s) 

have the form of F(s)/B(s). From (1), B(s)/A(s) can be chosen 

as the PID controller. The controller polynomials then must be 

chosen as  

 

        ,      (6a) 

        
         .      (6b) 

 

Comparing (2) with (6a) and (6b), the parameters of the PID 

controller are simply obtained as  

 

        ,              and           .      (7) 

 

B. Modeling 

The most encountered model for the time delay systems is 

the FOPTD model whose transfer function is given by 

 

      
 

      
          (8) 

 

where K is the gain,  is the time delay and T1 is the time 

constant. The value of T0 in the model is equal to 1 for the 

stable processes, 0 for the integrating processes, and -1 for the 
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unstable processes. Many experimental identification 

techniques for the stable, unstable and integrating FOPTD 

models has been reported in the literature [21-23].  

Since the CDM technique considers the transfer function of 

the plant as the ratio of two independent polynomials, the LTI 

dynamical model of the plant over a desired operating range 

should be chosen. Therefore, first order Pade approximation of 

the term e
-s

  

 

                        .      (9) 

 

is used. The first order approximation is compulsory to obtain 

PID controller because their higher number results more 

complex controllers. The simulation results show that the first 

order approximation for the time delay gives good results. 

Substituting (9) into (8), the equivalent LTI model is obtained 

as 

 

                                              (10) 

 

Remark 2.1: For unstable time delay systems, the condition 

of T10.5  must be fulfilled to not occur pole-zero 

cancellations in the equivalent LTI model in (10). 

C. Tuning the PID Controller  

From (10), the polynomials of the equivalent LTI model are 

obtained as 

 

                 (11a) 

                               (11b) 

 

Replacing these polynomials and the controller polynomials in 

(6a-b) into (5), the characteristic polynomial depending on 

unknown controller parameters (ki and li) is obtained. Then, 

selecting the CDM design parameters a target characteristic 

polynomial Ptarget(s) is obtained. According to Manabe [15], 

the CDM design parameters are stability indices (i) and 

equivalent time constant () which are specified prior to the 

design [16].  

The equivalent time constant which is defined as a measure 

of time response speed of the control system in the CDM is 

given as 

 

       ,      (12) 

 

The equivalent time constant is related by the settling time. If 

 is increased, ts is also increased.  

The Stability indices indicating the relative stability 

measure of the control system is described by 

 

   
  

 

        
,             ,            ,      (13) 

 

The stability index 1 in all indices is much effective on the 

overshoot. Bigger 1 results more relative stability and less 

overshoot.  

For the stability indices, we make use of standard Manabe 

values in the CDM design. Standard Manabe form [15] is the 

closed-loop performance measure that gives a unit step 

response without overshoot and with desired settling time. To 

achieve this, Manabe proposes the values of the stability 

indices as follows 

 

   {             }                   (14) 

 

The choosing of these values gives the unit-step response 

without overshoot. When the Manabe’s standard values are 

used, the relation between ts and  is obtained as 

 

             (15) 

 

From (12) and (13), the coefficients ai of P(s) in (5) can be 

written as 

 

       ∏     
    

   ⁄      .      (16) 

 

Thus, the coefficients of the P(s) in (5) can be expressed in 

terms of  and i as  

 

             [{∑ (∏
 

    
 

   
   )       

   }      ].      (17) 

 

Placing the chosen design parameters into Ptarget(s) above and 

equating (5) with (17),  

 

                                  (18) 

 

is obtained. Assuming a0=1 in (17) and solving this equation, 

the parameters of CDM controller are found as 

 
      

    
      

    
                   

              ⁄  , 

      
                

      ⁄  ,
 

                 ⁄  , 

     ⁄  .     (19) 

 

Note that the proposed design method needs only two stability 

indices, 1 and 2. Finally, the PID controller parameters are 

obtained from (7). 

The numerator polynomial F(s) which is described as a 

proportional controller is determined to be 

 

             ⁄ |            ⁄    ⁄  .      (20) 

 

In this case, any steady-state error occurring in the time 

response is reduced to zero. Finally, the feedforward controller 

in Fig. 1 is turned into 
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Remark 3.2: In this method, the designer does not need to 

make extra calculations for the feedforward controller. 

Because the parameters of Cf(s) depend on the PID parameters 

directly as shown in (21). 

D. Graphical Optimization  

The main purpose of the transient response control is to 

design the controller ensuring the unit step response with 

desired settling time and maximum overshoot requirements, 

which are specified prior to design, for the closed loop system. 

As mentioned in Section 2, using the CDM and standard 

Manabe form, this purpose can be achieved for the LTI 

systems easily. However, for the time delay systems, transient 

response results may not meet the specified performance 

because of the time delay in the plant. Furthermore, some 

stability index values which are different from the values of 

standard Manabe form can give the better performance results. 

Unfortunately, a certain rule for the selection of the stability 

indices for the time delay systems has not reported in the 

literature until now. Therefore, a graphical optimization 

technique is incorporated to the proposed PID tuning method.  

The graphical optimization technique uses two colored 

figures which are obtained from the colored contour of their 3-

D figures. The abscissa of the figures is the first stability index 

(1) and the ordinate is the equivalent time constant (). In the 

first figure, the maximum overshoot (Mp) values of the closed 

loop unit step responses calculated by using (7) and (21) 

versus 1 for the interval of (1min, 1max) and  for the interval 

of (min, max) are plotted. Here, 1min, 1max, min, max are the 

minimum and maximum values of the 1 and . The internal 

(1min, 1max) for the first stability index are chosen so that the 

standard Manabe values are in the middle of this interval. The 

recommended initial interval is (2, 3) and this interval can be 

modified according to design requirements. The selection of 

the interval (min, max) depends on the settling time needs of 

the designer. In the second figure, the settling time (ts) values 

of the closed loop unit step responses using (7) and (21) versus 

1 and  are plotted for the same interval in the first figure. 

These two figures are called as transient response-map        

(tr-map). Since the proposed method has three design 

parameters (1, 2 and ) for the FOPTD system, to consider 

the second stability index 2 on the same figures is difficult. 

However, it is noted that different choices of 2 lead to 

different transient response performances. By changing 2 in 

the range of (2, 3) with 0.1 steps, the set of tr-maps is 

obtained.  

The most important advantage of the graphical optimization 

technique is that the PID controller parameters which are 

calculated according to the FOPTD model are optimized in 

consideration of the real plant. Furthermore, an important 

advantage of this graphical optimization on the mathematical 

optimization procedures is that the designer can make a 

decision for the desired performance in a wide performance 

range visually. It is possible to change the selections of the 

design parameters according to various transient response 

alternatives. 

In order to show the effectiveness of the graphical 

optimization, we consider a first-order plus time delay system 

                 . When 2=2 is chosen as in the standard 

Manabe form, the tr-map of the control system designed by 

the proposed method is obtained as shown in Fig. 3a. As can 

be seen from this figure, the standard Manabe form values 

i={2.5, 2} gives the unit-step response without overshoot and 

with the shortest settling time at the value of =3.3. If  is 

decreased for obtaining the less settling time, the overshoot of 

the unit step response exceeds the limit of 2%. From Fig. 3a, 

however, the shorter settling time without overshoot can be 

obtained at 1=2.65 and =2.5. Note that the chosen 1 is 

different from the value in the standard Manabe form in this 

case. Furthermore, the better performances can be obtained by 

changing 2. For the various 2 values in the range of (2, 3), 

new tr-maps can be plotted. For example, a tr-map for 2=2.6 

is shown in Fig. 3b. From this figure, it can be seen that the 

values 1=2.5 and =2.2 give the shorter settling time. 

For three cases, the unit step responses of the closed loop 

system are shown in Fig. 4. This figure shows that the last 

case (i={2.5, 2.6}, =2.2) gives the shortest settling time. For 

all cases, the unit step responses are without overshoot.  

The presented PID tuning algorithm for stable, unstable or 

integrating time delay system is summarized as follows: 

 
 

 
(a) 

 
(b) 

Fig. 3.  The tr-maps for various 2 values a) 2=2, b) 2=2.6. 
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Fig. 4.  Unit step responses: (Case 1:        i={2.5 2.6}, =2.2; Case 2:         

i={2.65 2}, =2.5; Case 3:          i={2.5 2}, =3.3 ) 

 
 

1. Determine a FOPTD model of the time delay system 

using the methods given in [21-23]. 

2. Obtain the set of tr-maps by using various values of 2: 

a) For a first value of 2 (2=2), plot the tr-map using (7) and 

(21) (The abscissa of the tr-map is 1 in the range of (1min-

1max) and the ordinate is  in the range of (min-max)). 

b) Repeat the same process for the 2 values in the range of 

(2, 3) with 0.1 steps. 

3. Specify the optimal values of 1, 2 and . 

4. Calculate the PID parameters using 1, 2 and .  

III. SIMULATION EXAMPLES 

In this section, three simulation examples containing 

systems of different dynamics are given to demonstrate the 

wide applicability of the introduced PID control method. The 

first example which considers an unstable FOPDT plant shows 

the improved performance of the proposed PID tuning method 

compared to the performances of some methods in the 

literature. The second example takes into account an 

integrating FOPDT plant, where it is observed that the 

proposed method yields significantly improved results relative 

to recent two PID control methods. In the third example, a 

higher order system are controlled.  

A. Example 1 

Consider a first order unstable system with a time delay 

                 . The PID controller parameters 

calculated by ISTE optimization method of Visioli [24] are 

Kp=0.652, Ti=8.261, Td=0.9671 and Taylor series expansion 

method of Sree et al [25] are Kp=0.548, Ti=11.117, Td=1.024. 

Simulation results show that the best settling time for these 

PID control systems is about 25 s. Therefore, a smaller settling 

time than this value is aimed to obtain the better performance 

for the proposed method. First of all, a set of tr-maps 

computed for the various values of 2 in the range of (2, 3) are 

plotted. From these tr-maps, the choice of 2=2.2 gives the 

shortest settling time without overshoot as shown in Fig. 5. 

Also seen from this figure that =5.7 and 1=2.4 values for 

2=2.2 is the best selection. Therefore, the PID controller 

parameters are calculated as Kp=0.5384, Ti=12.5086, 

Td=0.6891 and the feedforward controller is obtained as                                

                            .  

The unit step responses of the proposed PID control system 

and two PID control systems designed by Visioli and Sree et 

al are shown in Fig. 6a while the control signals produced by 

these control systems are shown in Fig. 6b. It is apparent that 

the proposed PID controller produces a unit step response 

without an overshoot and with the smallest settling time, and 

this is achieved by a control signal having a smaller 

magnitude.  

 
 

 
Fig. 5.  The optimal tr-map for Example 1. 

 
 

 
(a) 

 
(b) 

Fig. 6.  a) Unit step responses, b) Control signals (Example 1). 
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B. Example 2 

An integrating plant transfer function             is 

considered in this example. The PID controller parameters for 

ISTE optimization method of Visioli [24] are obtained as 

Kp=6.7, Ti=1.83, Td=0.49 and for the frequency response 

method of Wang and Cluett [26] are calculated as Kp=4.794, 

Ti=3.043, Td=0.391. The Wang and Cluett’s method gives the 

best settling time which is 7.5s.  

For the proposed method, the optimal tr-map which is 

obtained for 2=2.3 is shown in Fig. 7. In accordance with this  

 
 

 
Fig. 7.  The optimal tr-map for Example 2. 

 
 

 
(a) 

 
(b) 

Fig. 8.  a) Unit step responses, b) Control signals (Example 2). 

map, the PID controller parameters obtained by using the 

graphical optimization method with the design parameters 

=2.3 and i={2.4, 2.3} are Kp=5.1461, Ti=2.8 and Td=0.3156. 

The feedforward controller is                          .  

The unit step response of the proposed PID control system 

is compared with those of control systems using the previous 

PID controllers are shown in Fig. 8a for a step load-

disturbance change with magnitude of d=-0.5 applied at time 

20 s. From this figure, the proposed design method results in 

an improved performance with shorter settling time and 

without overshoot. Fig. 8b illustrates the control signals, 

which show that the introduced design method requires less 

effort for the improved control action, for all PID methods. 

C. Example 3 

A high order plant transfer function of              , 

which was given in Wang and Shao [29], is taken into account 

in this example. The FOPDT model for this plant was given as 

                      in [27]. The PID parameters were 

determined as Kp=0.677, Ti=4.3314 and Td=1.6489 using the 

method of Wang and Shao and estimated as Kp=0.716, 

Ti=5.4589 and Td=1.3380 through the method of Cluett and 

Wang [28]. For the improved performance, the design 

parameters of the proposed method are chosen as =8.4 and 

i={2.05, 4.2} for the optimal tr-map shown in Fig. 11. The 

PID parameters with these values are calculated as Kp=1.0012, 

 
 

 
Fig. 11.  The optimal tr-map for Example 3. 

 
 

 
Fig. 12.  Unit step responses (Example 3). 
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Ti=5.4782 and Td=1.9411 and the feedforward controller is 

obtained as                              . The outputs 

to a unit step input and step load disturbance of magnitude -

0.5 introduced at time 50s. are shown in Fig. 12 for all the 

design studies. It can be shown from this figure that the 

proposed method provides excellent control for the high-order 

plant in terms of settling time and overshoot. 

IV. CONCLUSIONS 

In this paper, the earlier results on transient response control 

which was successfully applied to the control of linear time-

invariant systems using higher order polynomial controllers 

have been extended to the case of the control of linear time 

delay systems using PID controllers. The solution to the 

problem of PID transient response control presented here is 

based on first obtaining the explicit PID tuning formulae using 

the FOPTD model of the plant. To achieve this, the design 

parameters which are called as the stability indices and the 

equivalent time constant are considered. Then, the optimal 

PID controller is obtained by the graphical optimization 

technique which makes use of transient responses maps (tr-

maps). The dominant merit of the proposed method is that the 

numerical quantities of the desired settling time and maximum 

overshoot values for the unit step response of the closed-loop 

system are specified before starting the design. As evidenced 

by the simulation results, it can be concluded that the proposed 

method gives reliable and accurate results for the stable, 

integrating and unstable time delay systems.  
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