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ABSTRACT  
Purpose- The aim of this study is modelled by examining the trading volumes of the tourism companies located in the high-risk tourism 
sector and traded in BIST. This modelling will gain point of view for the tourism firms as well as make an important contribution to the 
decision making of investors who want to invest in this sector. 
Methodology- The study is conducted for a sample of 2803 daily trading volumes over the period 01.01.2007-28.09.2017. Then, it is used 
daily returns rather than daily trading volume data because it provides the ability to measure investment performance independently of 
the scale used.  Daily return data is modelled with stable distributions used with increasing interest in many application areas and that are 
well-suited to financial asset returns. Parameter estimates is made by using quantiles method which is one of the most known estimation 
methods.  
Findings-  By means of the Chi-square test and graphs, it is seen that normal distribution was not suitable for trading volume data. Stable 
distribution parameters for the log-returns data are estimated according to the quantiles method and obtained the stable parameters 
𝛼, 𝛽, 𝛾  and 𝛿.  Stable density function is obtained using the MATLAB STBL command according to estimated parameters. 
Conclusion- Estimated parameter values indicate that stable distributions can be used as a suitable model for modelling the transaction 
volume data of analysed index.  It has been concluded that it is more appropriate to use the scale parameter of the stable distribution 
instead of the standard deviation as the risk measure. 
 

Keywords: BIST Tourism, stable distributions, parameter estimation.  
JEL Codes: C13, C46, G00 
 

 

1. INTRODUCTION   

The tourism sector is a sector that contributes very much to the national economy. The development of such a sector 
contributes to meet the foreign currency needs, to create employment and to bring foreign investors to the country. Nature 
events, internal and external politics, economic relations of the country, socio-cultural differentiations, service quality, 
environmental factors and many other factors affect the sector (Inskeep,E., 1991; Özdemir, M. A., and Kervankıran, İ., 
2013).  As a result of these circumstances, the trading volumes of tourism companies which are located in this sector with 
high risk and traded in the BIST are examined and modelled. This modelling will gain a point of view for tourism firms as 
well as make an important contribution to decision making of investors who want to invest in this sector.  When the trading 
volume data were analysed, it was observed that normal distribution was not suitable for these data. In this study, daily 
trading volumes of XTRZM index traded in BIST will be tried to be modelled with Stable Paretian distributions. In the second 
part of the work, stability and stable distributions are discussed and parametrization of stable rules is mentioned. In the 
third part, trading volumes belong to the tourism sector are modelled with stable distributions. In the last section, the 
output of the model is given.   

2. STABLE DISTRIBUTIONS 

Stable distributions – also called 𝛼 −stable, Stable Paretian or Levy Stable -  are rich class that allow the features like heavy 
tail and skewness of events and probability distributions that occur as a result of many small effects. This class was 
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introduced by Paul Levy (1925) in his investigations of behaviour of sums of independent random variables. These 
distributions were then proposed as an alternative to normal distribution by Mandelbrot (1963) and Fama, & Roll (1968) 
because of enabled features like heavy tail and skewness of financial time series. Press (1972) also suggested the use of 
stable distributions in the process of creating a model for probability distributions related to price changes of instruments. 
Zolotarev (1986)  has also contributed greatly to this area. Stable distributions are widely used distributions in many 
systems with different properties, especially in economics.  This distribution has a stability characteristic and a class feature 
in addition to providing a very good fit to the empirical data.  If sums of independent, identically distributed random 
variables  have a limit distribution, the limit distribution will be a member of the stable class (Fama, E.F. and Roll,R., 1968). 
The Central Limit Theorem explains the growth of interest in stable distributions as data models, especially in the economy. 
The theorem expresses  the sum of the random variables with finite variance approximates a Gaussian random variable 
(Çekici, E.,  2003).  If the assumption that the variance is finite is removed, with an appropriate scaling, the one and only 
distribution for the sum of independent identically distributed random variables is stable distributions.  Normal distribution 
is a special case with finite variance of stable distributions. Infinite variance can be characterized by the tail distribution of 
probability distributions. If it is 𝑃(|𝑥| > 𝑘) > 1/𝑘2 for large 𝑘 values in any given 𝑓(𝑥) distribution, variance is infinite. 
When the total probability in the tails is greater than 1/𝑘2, the distribution is called as heavy tail (Önalan, Ö., 2010). 

2.1. Definitions  

One of the most important properties of Normal or Gaussian random variables is that the sum of two normal random 
variables is again a normal random variable. 𝑋 is stable random variable if there exist some positive 𝑐 and some 𝑑 ∈ 𝑅  for 
any positive constants 𝑎 and 𝑏 with 

                                                                                     𝑎𝑋1 + 𝑏 𝑋2   =
𝑑   𝑐 𝑋 + 𝑑                                                                                              (1) 

where 𝑋 is normal random variable, 𝑋1 and 𝑋2 are independent copies of 𝑋. The symbol  =
𝑑  means equality in distribution, 

that is, it indicates that both sides of the distribution have the same probability law (Nolan, 2016).  A random variable is 

symmetric stable if it is stable and symmetrically distributed around 0, e.g. 𝑋   =
𝑑  – 𝑋 (Nolan, 2016). 

Two random variables 𝑋 and 𝑌 are said to be of the same type if there exist constants 𝑎 > 0 and 𝑏 ∈ 𝑅   with  𝑋   =
𝑑  𝑎 𝑌 + 𝑏 

(Nolan, 2016). Non degenerate 𝑋 is stable if and only if for all  𝑛 > 1, there exist constants 𝑐𝑛 > 0 and 𝑑𝑛 ∈ 𝑅 such that  

                                                                                𝑋1 + ⋯ + 𝑋𝑛   =
𝑑    𝑐𝑛𝑋 + 𝑑𝑛                                                                                            (2) 

Where 𝑋1, 𝑋2, … , 𝑋𝑛 are independent , identical copies of 𝑋 (Zolotarev, 1986).     

A random variable 𝑋 is stable if and only if 𝑋   =
𝑑  𝑎 𝑍 + 𝑏,   𝑍 is a random variable with characteristic function  

                                                   𝐸 exp(𝑖𝑢𝑍) = {
exp (−|𝑢|𝛼 [1 − 𝑖 𝛽 tan

𝜋𝛼

2
 (𝑠𝑖𝑔𝑛 𝑢)]) ,           𝛼 ≠ 1

exp (−|𝑢| [1 + 𝑖 𝛽
2

𝜋
 (𝑠𝑖𝑔𝑛 𝑢) log|𝑢|]) ,          𝛼 = 1

                                           (3) 

where 0 < 𝛼 ≤ 2, −1 ≤ 𝛽 ≤ 1,   𝑎 ≠ 0, 𝑏 ∈ 𝑅  (Nolan, 2016). 

2.2. Parametrizations of Stable Laws 

The stable distributions requires four parameters to describe: an index of stability  𝛼 ∈ (0,2],  a skewness parameter 
𝛽 ∈ [−1,1], a scale parameter  𝛾 ≥ 0 and a location parameter 𝛿 ∈ 𝑅 .  The parameter 𝛼 called the tail index, tail exponent 
or characteristic exponent.  The tail exponent 𝛼 determines the rate at which the tails of the distribution taper off.  When 
𝛼 = 2 , the distribution is a normal distribution. When 𝛼 < 2, the variance is infinite. As the value of the 𝛼 parameter 
decreases, the peak gets higher, the region flanking the peak get lower and the tails get heavier. When 𝛽 = 0,  the 
distributon is symmetric around 𝜇.  When 𝛽 = 1,  the distribution is totally skewed to the right. When 𝛽 > 0,  the 
distribution is skewed to the right. Similarly when 𝛽 < 0, the distribution is skewed to the left by reflection (Fama, E. F., 
1965).  As 𝛼 approaches 2,  𝛽 loses its effect and the distribution approaches the Gaussian  distribution regardless of 𝛽.   
The parameter 𝛿 determines the width and the parameter 𝛿  determines the shift of the mode of the density.  Generally  
𝛾 > 0, although 𝛾 = 0 will sometimes be used to denote a degenerate distribution concerned at 𝛿 when it simplifies the 
statement of a result. Note that for any 𝛽>0, the mode goes to +∞ as 𝛼 ↑ 1, to +∞ as 𝛼 ↓1, and stays near 0 for 𝛼 = 1 
(Nolan, J., 1998). 

The family of stable distributions have relatively heavier distribution tails (except the case when  α = 2, the Gaussian 
distributions). They belong to the family of heavy-tailed distributions. The tail heaviness of stable distributions can be 
measured by using their stable index (Fan, Z., 2006). There is a large number parametrizations  in the literature for stable 
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rules and this situation leads to complexity. The variety of the parametrizations result from the historical evolution and the 
analysis of many problems using the specialized forms of stable distributions.   

In most of recent literature, the notation 𝑆𝛼(𝜎, 𝛽, 𝜇) is used for the class of stable laws. However we will use a modified 
notation of the form 𝑆(𝛼, 𝛽, 𝛾, 𝛿; 𝑘) due to three reasons.  First reason, the usual notation determine 𝛼 as different and 
fixed. In statistical applications, all four parameters (𝛼, 𝛽, 𝛾, 𝛿) are unknown and need to be estimated for these 
parameters. Second reason, the scale parameter is not the standard deviation (even Gaussian situation) and the location 
parameter is not generally the mean. Then we use 𝛾 for the scale instead of 𝜎 and use 𝛿 for the location instead of 𝜇. Third 
reason, there should be a clear distinction between the different parametrizations; the 𝑘 integer does that (Nolan, 2016). It 
is possible to change tail thickness and skewness in stable distributions. There are three cases. Closed form expression of 
probability density functions  for stable distributions except for Normal, Cauchy and Levy distribution does not exist. But the 
most concrete way to describe all possible of stable distributions can be expressed through the characteristic function.  

Example 1.  Normal or Gaussian distributions.  ,  𝑋~𝑁(𝜇, 𝜎2) if it has a density  

𝑓(𝑥) =
1

√2𝜋𝜎
exp (−

(𝑥 − 𝜇)2

2𝜎2 ) ,           − ∞ < 𝑥 < ∞. 

Gaussian distribution is stable with parameters  𝛼 = 2 and 𝛽 = 0. 

Example 2. Cauchy distributions. 𝑋~𝐶𝑎𝑢𝑠ℎ𝑦(𝛾, 𝛿) if it has density  

𝑓(𝑥) =
1

𝜋
  

𝛾

𝛾2 + (𝑥 − 𝛿)2  ,          − ∞ < 𝑥 < ∞. 

Cauchy distribution is stable with parameters  𝛼 = 1 and 𝛽 = 0. 

Example 3. Levy distributions. 𝑋~𝐿𝑒𝑣𝑦(𝛾, 𝛿)  if it has density  

𝑓(𝑥) = √
𝛾

2𝜋
  

1

(𝑥 − 𝛿)
3
2

  exp (−
𝛾

2(𝑥 − 𝛿)
) ,          𝛿 < 𝑥 < ∞. 

Levy distribution is stable with parameters  𝛼 = 1/2 and 𝛽 = 1. 

Figure 1: Graphs of probability density functions of special stable distributions  

 

Normal and Cauchy distributions are symmetric.  Main difference between these distributions is that Cauchy distribution 
has heavier tail than the others.  Figure 1 shows a plot of these tree densities.   A random variable 𝑋 is 𝑆(𝛼, 𝛽, 𝛾, 𝛿; 0) if  

                                                                       𝑋   =
𝑑  {

𝛾 (𝑍 − 𝛽 tan
𝜋𝛼

2
) + 𝛿    ,    𝛼 ≠ 1   

𝛾 𝑍 + 𝛿                              ,     𝛼 = 1  
                                                                         (4) 

where 𝑍 = 𝑍(𝛼, 𝛽) is given by Eq. (3).  𝑋 has characteristic function 
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                            𝐸 exp(𝑖𝑢𝑋) = {
exp (−𝛾𝛼|𝑢|𝛼 [1 + 𝑖 𝛽 (tan

𝜋𝛼

2
 ) (𝑠𝑖𝑔𝑛 𝑢) (|𝛾𝑢|1−𝛼 − 1)] + 𝑖𝛿𝑢)  ,   𝛼 ≠ 1

exp (−𝛾|𝑢| [1 + 𝑖 𝛽
2

𝜋
 (𝑠𝑖𝑔𝑛 𝑢) log(𝛾|𝑢|)] + 𝑖𝛿𝑢)                              ,   𝛼 = 1.

                      (5) 

When the distribution is standardized, that is, scale 𝛾 = 1 and location 𝛿 =  0, the symbol 𝑆(𝛼, 𝛽; 0) will be used as an 
abbreviation for 𝑆(𝛼, 𝛽, 1,0; 0) (Nolan, 2016). 

A random variable 𝑋 is 𝑆(𝛼, 𝛽, 𝛾, 𝛿; 1) if  

                                                                    𝑋   =
𝑑  {

   𝛾 𝑍 + 𝛿                                        ,    𝛼 ≠ 1   

  𝛾 𝑍 + (𝛿 + 𝛽
2

𝜋
  𝛾 log 𝛾)        ,     𝛼 = 1  

                                                                 (6) 

Where 𝑍 = 𝑍(𝛼, 𝛽) is given by Eq. (3).  𝑋 has characteristic function 

                                 𝐸 exp(𝑖𝑢𝑋) = {
exp (−𝛾𝛼|𝑢|𝛼 [1 − 𝑖 𝛽 (tan

𝜋𝛼

2
 ) (𝑠𝑖𝑔𝑛 𝑢)] + 𝑖𝛿𝑢) ,           𝛼 ≠ 1

exp (−𝛾|𝑢| [1 + 𝑖 𝛽
2

𝜋
 (𝑠𝑖𝑔𝑛 𝑢) log|𝑢|] + 𝑖𝛿𝑢)       ,          𝛼 = 1

                                       (7) 

When the distribution is standardized, that is, scale 𝛾 = 1 and location 𝛿 =  0, the symbol 𝑆(𝛼, 𝛽; 1) will be used as an 
abbreviation for 𝑆(𝛼, 𝛽, 1,0; 1) (Nolan, 2016). 

2.3. Densities and Distribution Functions 

Let {𝑋𝑡 ∶ 𝑡 ≥ 0} denote a Levy process.  Levy process {𝑋𝑡} is called semistable if there are 𝑎 > 1, 𝑏 > 0  and 𝑐 ∈ 𝑅 such that 

{𝑋𝑎𝑡} =
𝑑  {𝑏𝑋𝑡 + 𝑐𝑡} (or 𝛼 > 1  and 𝑏 > 0 such that {𝑋𝑎𝑡} =

𝑑  {𝑏𝑋𝑡}).  In the case of stable processes, for any nontrivial semi-
stable process, the index 𝛼 ∈ (0,2] is determined; this is the number such that, for any 𝑎 and 𝑏 standing in the relation 

above, 𝑏 = 𝑎1 𝑎⁄ . The notion of semi-stable distributions was introduced by Paul Levy in 1937. If 0 < 𝛼 < 2, then the class 
of semi-stable processes is strictly larger than the class of stable processes (Barndorff-Nielsen, O.E., Mikosh,T. and Resnik, 
S., 2012).  

Explicit formulas for general stable densities do not exist.  But lots are known about their theoretical properties. The most 
valid way to describe all possible stable distributions is by way of the characteristic function or Fourier transform. Stable 
distributions can be characterized by different forms.  The complex valued function  

                                                                                        𝜙(𝑢) = 𝐸 exp(𝑖𝑢𝑋)                                                                                                (8) 

is called the characteristic function (c.f.) of a real random variable  𝑋.   Here,  𝑢 is some real valued variable.   

If the density 𝑓(𝑥) exists, Eq.(8) is the Fourier transform  of that density and defined by, 

                                                                  𝜙(𝑢) = 𝐸 exp(𝑖𝑢𝑋) = ∫ exp(𝑖𝑢𝑥) 
∞

−∞

𝑓(𝑥)𝑑𝑥.                                                                       (9) 

Thus, the inverse Fourier transform 

                                                                           𝑓(𝑥) =
1

2𝜋
 ∫ exp(−𝑖𝑢𝑥)

∞

−∞

 𝜙(𝑢) 𝑑𝑢                                                                            (10) 

allows us reconstruct the probability density function of a distribution from a known characteristic function (Uchaikin & 
Zolotarev, 1999).  

It is necessary to distinguish between probability density function (pdf) and cumulative distribution function (cdf) in  
different parametrizations. f(𝑥|𝛼, 𝛽, 𝛾, 𝛿; 𝑘) and 𝐹(𝑥|𝛼, 𝛽, 𝛾, 𝛿; 𝑘)  denote the probability density function  and  the 
cumulative distribution function of a 𝑆(𝛼, 𝛽, 𝛾, 𝛿; 𝑘) distribution, respectively. Figure 2(a) and 2(b)  show plot of densities  
and  cumulative distribution functions  for different alpha values. The plots in Figure 3(a) and 3(b)  also show the densities  
and  cumulative distribution functions  for different beta values.   
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Figure 2: Stable Densities (a) and Cumulative Distribution Functions (b)  for  𝜶 = 𝟎. 𝟓, 𝜶 = 𝟏 and 𝜶 = 𝟐.  

 

(a) 

 

(b) 

Figure 3: Stable Densities (a) and Cumulative Distribution Functions (b) for  𝛃 = 𝟎, 𝛃 = 𝟎. 𝟓 ve 𝛃 = 𝟏.  

 

(a) 

 

(b) 

Density function can be organized as a polynomial function with infinite term. But in this case, the number of terms is 
infinite causes problems in using the maximum likelihood method. Thus, a standard parametrized integral expression of the 
density given by (Zolotarev, 1986) 

                                               𝑓(𝑥|𝛼, 𝛽, 𝛾, 𝛿) =
1

𝜋𝛾
 ∫ exp(−𝑢𝛼) cos (𝑢 (

𝑥 − 𝛿

𝛾
) − 𝛽 𝑢𝛼 tan (

𝜋𝛼

2
))

∞

0

𝑑𝑢.                                    (11) 

2.4. Tail Probabilities, Moments and Quantiles 

When 𝛼 = 2, the normal distribution has easily understandable asymtotic tail properties. Information about the tails of 
non-Gaussian (𝛼 < 2) stable laws will be given. In the 𝛼 < 2 case,  the tails of stable distributions are asymtotically fit to 
Pareto law. Let  𝑋~𝑆(𝛼, 𝛽, 𝛾, 𝛿; 0) with 0 < 𝛼 < 2  and  −1 < 𝛽 ≤ 1. Then as 𝑥 → ∞, 

                                                                           𝑃(𝑋 > 𝑥)  ~  𝛾𝛼  𝑐𝛼   (1 + 𝛽)𝑥−𝛼                                                                                (12) 

                                                                       𝑃(𝑋 < −𝑥)  ~   𝛾𝛼  𝑐𝛼   (1 − 𝛽)𝑥−𝛼                                                                               (13) 

where 𝑐𝛼 = sin (
𝜋𝛼

2
) 𝛤(𝛼) /𝜋.  When  𝛼 > 1, the mean of distribution exists and 𝐸(𝑋) = 𝜇.  In general, a stable random 

variable has the 𝑝th moment if and only if 0 < 𝑝 < 𝑎, e.q. 𝐸|𝑋|𝑝 < ∞. 

Stable distributed random variables have finite fractional absolute moments only of order less than the stable index,  𝛼 say. 
The traditional statistical methods cannot be used effectively in estimating the parameters of a stable distribution, since 
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densities of stable random variables do not exist closed form except for a few special case (Fan, Z., 2006). However, various 
methods have been proposed for parameter estimation of stable distribution in the literature. The most known of these 
methods include: Hill estimator (Hill, 1975), quantiles method (Fama and Roll, 1971; McCulloch, 1986), the logarithmic 
moments method (Kuruoğlu,E., 2001), the empirical characteristics method (Yang, 2012), and the Maximum likelihood  
method (Nolan, 2001). We will investigate their accuracy in the following. The most commonly used of these method is the 
quantiles method.  

The quantiles method 

The quantiles method was pioneered by Fama and Roll (1971) but was much more appreciated through McCulloch (1986) 
after its extension to include asymmetric distributions and for 𝛼 ∈ [0.6, 2] cases unlike the former approach that restricts it 
to 𝛼 ≥ 1 (Kateregga, M., Mataramvura, S. and Taylor, D., 2017). Although the method proposed by Fama and Roll is 
simpler, it leads to bias in the estimation of 𝛼 and 𝛾.  

Suppose we have 𝑛 independent drawings 𝑥𝑖  from the stable  distribution 𝑆(𝑥; 𝛼, 𝛽, 𝛾, 𝛿) , whose parameters are to be 

estimated. Let 𝑥𝑝 be the 𝑝th quantile of population  so that 𝑆(𝑥𝑝; 𝛼, 𝛽, 𝛾, 𝛿) = 𝑝  and �̂�𝑝 be the corresponding sample 

quantile, then �̂�𝑝 is a consistent estimator of 𝑥𝑝.  In this case, the estimatorss 𝛼 and 𝛽 are given by �̂� = 𝜓1(�̂�𝛼 , �̂�𝛽  ) ve 

�̂� = 𝜓2(�̂�𝛼 , �̂�𝛽  ) where 

�̂�𝛼  =
�̂�0.95 − �̂�0.05

�̂�0.75 − �̂�0.25
  ,           �̂�𝛽  =

�̂�0.95 + �̂�0.05 − 2 �̂�0.05

�̂�0.95 − �̂�0.05
 . 

These indexes in independent of both 𝛾 and 𝛿. The values of functions 𝜓1(�̂�𝛼 , �̂�𝛽  ) and 𝜓2(�̂�𝛼 , �̂�𝛽  )  given in Table III and IV 

in McCulloch (1986) by linear interpolation.  The scale parameter is given by 

𝛾 =
�̂�0.75 −  �̂�0.25

𝜓3(�̂�, �̂�)
 

where ψ3(α̂, β̂) is given by Table V in McCulloch (1986). A consistent estimator of γ is obtained through interpolation. 

Finally,  the location parameter 𝛿 is is estimated through a new parameter defined by  

𝜁 = {
𝛿 + 𝛾 tan (

𝜋 𝛼

2
) , 𝛼 ≠ 1

        𝛿                    ,          𝛼 = 1.
 

Further, the parameter ζ is estimated by    ζ̂ = x̂0.5 + γ̂  ψ5(α̂, β̂) where  is obtained from Table VII (McCulloch, 1986) by 

linear interpolation. The consistent estimator of location parameter is given by 

δ ̂ =   ζ̂ −  β̂  γ̂ tan (
π α

2
). 

2.5. Simulation of Stable Variables 

Difficulties of simulating sequence of stable results from the fact that analytic expressions for the inverse F−1  of the 
cumulative distribution function do not exist. However, the algorithm for constructing a standard stable random variable  
X~ Sα(1, β, 0) is the following (Weron, 1996): 

 Generate a random variable V uniformly distributed on (−
𝜋

2
,

𝜋

2
) and an independent exponential random variable W 

with mean 1. 

 For 𝛼 ≠ 1 compute, 

                                                        𝑋 = 𝑆𝛼,𝛽  
sin (𝛼 (𝑉 + 𝐵𝛼,𝛽))

(cos(𝑉))
1
𝛼

   [
cos (𝑉 − 𝛼(𝑉 + 𝐵𝛼,𝛽))

𝑊
]

(1−𝛼)/𝛼

                                            (14) 

            where 

𝐵𝛼,𝛽 =
arctan (𝛽 tan

𝜋𝛼
2

)

𝛼
  , 

𝑆𝛼,𝛽 =  (1 + 𝛽2 tan2 (
𝜋𝛼

2
))

1
2𝛼

. 

 For 𝛼 = 1 compute, 
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                                                                  𝑋 =
2

𝜋
  ((

𝜋

2
+ 𝛽𝑉) tan 𝑉 − 𝛽 ln (

𝜋
2

𝑊 cos 𝑉

𝜋
2

+ 𝛽𝑉
))                                                             (15) 

Then, given the formulas for simulation of a standard stable random variable, we can easily simulate a stable random 
variable for all admissible values of the parameters 𝛼, 𝛽, 𝛾 and 𝛿 using the following property:   if 𝑋~𝑆𝛼(1, 𝛽, 0), then 

                                                                     𝑌 = {
𝛾𝑋 + 𝛿                           ,            𝛼 ≠ 1

𝛾 𝑋 +
2

𝜋
 𝛽 𝛾 ln 𝛾 + 𝛿  ,             𝛼 = 1

                                                                        (16) 

is  𝑆(𝛼, 𝛽, 𝛾, 𝛿; 𝑘)  (Borak, Hardle and Weron, 2005). 

3. THE APPLICATION OF STABLE LAWS 

In this part of the study, daily trading volumes between 01.01.2007-28.09.2017 (2804 days) of XTRZM index traded in BIST 
were used. Data set used in this study was obtained from the Bloomberg database.  Analysed tourism companies in this 
study are traded  in the BIST with the codes  “AVTUR, MAALT, MARTI, METUR, NTTUR, TEKTU, UTPYA”.  

In this study, we worked with daily returns rather than daily trading  volume data because it provides the ability to measure 
investment performance independently of the scale used. Let 𝑌𝑡   be daily trading volume of index  and 𝑆𝑡 be the value of a 
financial asset or portfolio  at time 𝑡. Then, return values for [𝑡, 𝑡 + 1] is given by (Önalan, Ö., 2010):  

𝑋𝑡+1 = 𝑆𝑡+1 − 𝑆𝑡 =  ln 𝑌𝑡+1 − ln 𝑌𝑡. 

Figure 4 show the daily returns above stated period of XTRZM indexes. Table 1 also show descriptive statistics of daily 
returns related to stock. 

Figure 4: Graph of Daily Returns of XTRZM Index for the Period 01.01.2007-28.09.2017   

 

Table 1: Descriptive Statistics Related to XTRZM Index’s Daily Returns 

 Mean Std. 
deviation 

Skewness Kurtosis Min Max 

XTRZM 0.0003434 0.567 0.233 1.182 -2.462 2.498 

Firstly, BIST Tourism index’s daily return is considered and the suitability of these returns for normal distribution is 
examined. Chi-square test (goodness of fit) is used to perform to determine if normal distribution of observed data was 
appropriate.  First of all, the time series of XTRZM index is organised as a frequency series. Then, Chi-square value obtained 

from observed values and the calculated values is found as 𝜒𝑐𝑎𝑙
2 = 2802,92.  Hypotheses about the distribution of daily 

returns are given 

𝐻0 : The distribution of daily returns is suitable for normal distribution, 

𝐻1:  The distribution of daily returns is not suitable for normal distribution. 
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Degree of freedom is equal to 6, since number of class is equal to 9 and parameter number of estimated is equal to 2. Then, 

𝜒0.05,6
2 = 12,592.  In this case, 𝐻0 is rejected. Rejecting the assumption of normal distribution of daily returns supports the 

hypothesis that a stable distribution is suitable for this data. In addition to these information, Figure 6 show a normal  Q-Q 
plot for the daily returns.   

Figure 5: Histogram for Daily Returns of XTRZM Index 

 

Figure 6: A Normal  Q-Q Plot for the Daily Returns 

 

Stable distribution parameters for the log-returns data are estimated according to McCulloch method and obtained the 
stable parameters in Table 2.  �̂� = 1.21 is a value in the preferred range for stable distribution.  

Table 2: Stable Distribution Parameters Estimated from the Log-Returns Data 

Index\ Parameter �̂� �̂� �̂� �̂� 

XTRZM 1.21 1 0.0006 0.0038 
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Figure 7: Comparison of Standardized Actual Returns and Simulated Standard Stable Returns 

 

Figure 8 shows the stable density function obtained by using the MATLAB STBL command proposed by Veillette (2014) 

according to estimated parameters for �̂� = 1.21 , �̂� = 1 , 𝛾 = 0.0006  and  �̂� = 0.0038. Cumulative distribution function 
is also given Figure 9. Here, ıt should also be noted that Figure 8  shows a large similarity to the graph of the Levy 
distribution shown in Fig.1. 

Figure 8: The Stable Density Function for  𝜶 = 𝟏. 𝟐𝟏, 𝜷 = 𝟏, 𝜸 = 𝟎. 𝟎𝟎𝟎𝟔  and  𝜹 = 𝟎. 𝟎𝟎𝟑𝟖. 

 

 

 

 

 

 

 

 

 

 

 

-3

-2

-1

0

1

2

3

01.01.2007 15.05.2008 27.09.2009 09.02.2011 23.06.2012 05.11.2013 20.03.2015 01.08.2016

Real Simulated



 Journal of Business, Economics and Finance -JBEF (2017), Vol.6(4), p.364-374                                                    Basegmez, Cekici 

_________________________________________________________________________________________________ 

 DOI: 10.17261/Pressacademia.2017.769                                                373 

 
 

Figure 9: The Stable Cumulative Distribution Function 𝜶 = 𝟏. 𝟐𝟏, 𝜷 = 𝟏, 𝜸 = 𝟎. 𝟎𝟎𝟎𝟔  and  𝜹 = 𝟎. 𝟎𝟎𝟑𝟖. 

 

4. CONCLUSION 

In this study, it is investigated whether the trading volume data of XTRZM index traded in BIST are suitable for stable 
distributions. The XTRZM index traded in BIST is examined and the suitability of these volumes for normal distribution is 
searched. By means of the Chi-square test and graphs, it was seen that normal distribution was not suitable for these 
volumes. Using the 2804 daily trading volumes data, the parameters of stable distribution are estimated as 𝛼 = 1.21,   𝛽 =
1,   𝛾 = 0.0006 and  𝛿 = 0.0038. As a result, estimated parameter values show that Stable Paretian distributions can be 
used as an appropriate model for modelling trading volume data. It has been concluded that it is more appropriate to use 
the scale parameter of the stable distribution instead of the standard deviation as the risk measure.  
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