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ABSTRACT 
This study investigates the impact of production parameters on the quality of 3D-printed polyetherimide 
(PEI) samples using a custom-made 3D printer. In contrast to traditional optimization approaches, this 
research emphasizes the variability of outcomes despite maintaining fixed parameters such as nozzle 
and bed temperatures and slicer options. The study involves real-time monitoring of factors including 
nozzle, bed, and chamber temperatures, as well as relative humidity during the production process. Each 
layer was photographed individually to analyze its impact on the final product. Detailed physical and 
mechanical analyses revealed significant deviations in dimensions and flexural modulus, with a 10% 
loss in density and nearly 25% loss in flexural modulus in lower-performing samples compared to the 
best results. Results show correlations between critical parameters and product quality, underscoring the 
necessity for proper preparation and precise control. Furthermore, the research proposes a new method 
to geometrically represent the manufacturing process in a time-independent way using collected sensor 
data in 3D printing. This approach provides valuable insights for future studies aimed at optimizing 
additive manufacturing processes and enhancing the application of high-performance thermoplastics in 
high-tech fields such as aerospace and defense industries. 
 
Keywords: Additive Manufacturing, Material Extrusion, Fused Filament Fabrication, Polyetherimide, 
DMA. 

 
 

1. INTRODUCTION 
Additive manufacturing (AM) has 
revolutionized industrial production processes 
in recent years, providing flexibility and cost 
savings in both the design and production 
stages. The advantages of AM technologies are 
not only evident in prototyping but also extend 
to final product manufacturing. In particular, 
AM methods enable the rapid and precise 
production of parts with complex geometries, 
thereby making production processes more 
adaptable and economical [1-3]. Among the 
various AM technologies, Fused Filament 
Fabrication (FFF), classified under Material 
Extrusion (MEX), has struggled to gain traction 
in high-tech sectors due to disadvantages such 
as limited material diversity and lower 
mechanical strengths compared to traditional 
manufacturing techniques. However, recent 
advancements have begun to address these 

challenges. The advent of high-performance 
thermoplastics like polyetherimide (PEI) and 
polyether ether ketone (PEEK), along with 
composites enhanced with various nano- and 
micro-additives, has paved the way for the 
application of FFF technology in high-tech 
areas, including aerospace and defense 
industries. These materials offer superior 
thermal stability, mechanical strength, chemical 
resistance, and multifunctional properties, 
making them suitable for demanding 
applications [4-6]. In sectors with stringent 
requirements, maintaining consistent quality 
control and physical and mechanical properties 
throughout the additive manufacturing process 
is crucial [7-8]. Consequently, monitoring and 
controlling relevant parameters during the 
production of high-performance thermoplastics 
has become vital for both production efficiency 
and product reliability. 
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In FFF, extensive analytical, numerical, and 
experimental studies have examined the 
fundamental production parameters, general 
characteristics, and limitations of all production 
stages [9-12]. Additionally, optimization 
studies employing parametric and statistical 
approaches for various additive manufacturing 
technologies are well-documented in the 
literature [13,14]. On the other hand, research 
focused on high-performance materials such as 
PEI and PEEK has consistently demonstrated 
their superior thermal stability and mechanical 
strength, particularly under optimal printing 
conditions [15]. The influence of nozzle 
temperature and structural orientation on the 
performance of PEEK and PEI is well-
documented, showing significant 
improvements in mechanical properties when 
these parameters are carefully controlled [16]. 
Additionally, it has been shown that optimal 
infill parameters play a minimal role in the 
mechanical performance of PEI parts, which is 
particularly beneficial for weight-sensitive 
applications in the aerospace industry [17]. 
Furthermore, detailed investigations into 
process parameters that enhance print quality by 
optimizing the thermal and mechanical 
properties of PEEK and PEI blends have 
provided valuable insights into the production 
of high-quality components using FFF [18-20]. 
These studies underscore the critical role of 
temperature control, structural orientation, and 
material blends in achieving superior part 
quality in additive manufacturing. 
 
Several studies have emphasized the 
importance of monitoring and controlling key 
parameters that influence the quality and 
physical properties of the final product. For 
instance, Vanaei et al. [21] highlighted the 
critical role of temperature control in optimizing 
the crystallinity and mechanical integrity of 3D 
prints produced via the FFF process. Their 
research demonstrated that monitoring filament 
temperature profiles is essential for enhancing 
interlayer adhesion and overall print quality. 
Similarly, Sgrulletti et al. [22] investigated the 
effects of bed temperature on the microstructure 
and tensile properties of FFF prints made from 
polyamide 6, utilizing thermal and optical live 
monitoring techniques. Their findings revealed 
that precise control of bed temperature 
significantly improves mechanical properties 
and morphology, with the use of integrated live 
monitoring systems resulting in a 70% increase 

in Young's modulus and a 79% improvement in 
tensile strength. Alatefi et al. [23] assessed the 
benefits of multivariate statistical quality 
monitoring in additive manufacturing. Their 
research demonstrated that the MEWMA 
(Multivariate Exponentially Weighted Moving 
Average) control chart reduces production 
defects, thereby improving the quality and 
stability of the FFF process. A transformation 
algorithm was employed to normalize data 
distribution, and MEWMA parameters were 
optimized using a novel heuristic technique, 
proving effective in maintaining process 
stability. Özsoy and Aksoy [24] investigated the 
effectiveness of artificial intelligence and image 
processing techniques in FFF printing. Their 
study showed that these techniques 
substantially enhanced the accuracy and quality 
control of the printing process, achieving a 
prediction accuracy of 92.5% for process 
parameters. By employing AI algorithms and 
image processing techniques, defects were 
swiftly identified, thereby increasing process 
efficiency. 
 
Researchers investigating the critical effects of 
production parameters on the final product 
naturally aim to identify the optimal settings. 
The general assumption is that end users will 
apply these optimal parameters to achieve the 
best possible results. However, the production 
mechanism in AM is highly complex, 
influenced by multiple factors, many of which 
are non-linear. Parameters that are expected to 
remain constant may vary for various reasons, 
leading to deviations from the expected 
outcomes. As highlighted in the literature, real-
time monitoring during production enhances the 
understanding and control of these complex 
processes. Therefore, further research is 
essential to optimize quality in the additive 
manufacturing of high-performance 
thermoplastics such as PEI. This includes 
developing systematic approaches for 
monitoring and controlling these parameters 
throughout the production process to ensure 
consistent and high-quality outputs. 
 
This study intends to contribute to both 
academic literature and industrial practices by 
critically examining the FFF production process 
for high-performance thermoplastics, 
specifically PEI, under controlled yet naturally 
fluctuating environmental conditions. Unlike 
previous research that focuses primarily on 
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optimizing fixed production parameters, this 
work addresses the complexities that arise from 
variable chamber conditions, such as 
temperature and relative humidity, which 
inherently impact the production process. By 
systematically tracking and analyzing these 
parameters throughout the 3D printing process, 
this study provides a novel perspective on how 
real-time environmental monitoring influences 
the physical and mechanical properties of the 
final product. The adoption of ASTM D790 
standard sample geometry, combined with 
advanced data collection techniques, enhances 
the robustness and applicability of this 
approach. This study not only deepens the 
understanding of FFF technology in the context 
of high-performance materials but also lays the 
foundation for future research aimed at 
improving the reliability and quality control of 
additive manufacturing processes in highly 
demanding sectors such as aerospace and 
defense. 
 
2. MATERIAL AND METHODS 
2.1. Filament Production 
The polyetherimide (PEI - ULTEM™ RESIN 
1010) granules was sourced from Sabic. The 
chemical formula of PEI is C37H24O6N2, with a 
density of 1.27 g/cm³ and a molecular weight of 
592 g/mol. The glass transition temperature (Tg) 
of this material is 217 °C. 
 
The PEI granules were subjected to a drying 
process in an oven at a temperature of 150 °C 
for a duration of eight hours. This was done to 
remove any residual moisture present, thereby 
preventing any undesirable conditions from 
occurring during the extrusion process. A lab-
scale co-rotating twin-screw extruder was 
utilized to fabricate neat PEI filaments with a 
diameter of 1.75 mm. The extruder, 
manufactured by Kökbir Import & Export, 
features a screw diameter of 12 mm and a 
length-to-diameter (L/D) ratio of 22 [5]. The 
temperature gradient from the feed to the nozzle 
was meticulously controlled within the range of 
310–360 °C, with a maintained screw speed of 
210 rpm.  
 
2.2. Custom-Made 3D Printer 
The 3D printer (ARC-Beta) developed at the 
ITU Aerospace Research Center was designed 
to handle high-performance thermoplastics and 
includes several advanced features. Controlled 
by Marlin firmware on RAMPS 1.4, the printer 

employs a direct drive extruder, DyzEND-X & 
DyzeXtruder GT 1.75 mm kit with high-
temperature sensors, compatible with a range of 
thermoplastic filaments, including PLA, ABS, 
nylon, PEEK, and PEI. Its Core-XY motion 
system enables precise extruder positioning. 
The printer is constructed with all-metal 
components and 3D-printed PEI parts, allowing 
it to reach print nozzle temperatures of up to 500 
°C and bed temperatures of up to 200 °C. The 
device offers a print area of 25 × 25 cm and a 
print volume of 25 × 25 × 30 cm, housed within 
an 80 × 80 × 80 cm enclosed chamber. The 
chamber can reach temperatures up to 85K °C 
while maintaining a relative humidity of 10% or 
lower. Furthermore, the printer is equipped with 
remote control capabilities via OctoPrint 
software and integrated cabin temperature and 
humidity measurement. The design of the 3D 
printer can be seen in Figure 1. 
 

 
Figure 1. The custom-made 3D Printer ready for 
high-performance thermoplastics. 
 
To understand the effects of production 
parameters on the printed product, the objective 
was to collect visual and real-time signal data 
during printing. Consequently, additional 
features were incorporated into the 3D printer 
cabinet. One key enhancement is a camera 
mounted above the printing bed, allowing it to 
capture images of each entire layer during 
printing. The Raspberry Pi Camera Module V2 
was selected for this purpose and integrated 
with the 3D printer using a Raspberry Pi 3 
control board, which enables remote control of 
the printer and the incorporation of mechanisms 
to capture images. To ensure optimal layer 
imaging, LED strips were installed for in-
cabinet lighting. Another feature added to the 
3D printer is the BME280 sensor. This sensor 
complements the monitoring of bed and nozzle 
temperatures by measuring the instantaneous 
chamber temperature and humidity, considering 
the bed temperature and cabinet insulation. This 
setup allows for the simultaneous capture of 
each layer’s image and real-time recording of 
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nozzle, bed, and chamber temperatures, as well 
as chamber humidity, throughout the printing 
process. 
 
2.3. 3D Printed Sample Production 
For the test specimens printed using a 3D 
printer, the ASTM D790 standard was adopted. 
Specimens measuring 65 × 13 × 3 mm were 
produced in accordance with this standard, 
which is designed to determine dynamic 
mechanical properties (Dynamic Mechanical 
Analysis - DMA) by the three-point bending 
method for plastics. Based on experience [25], 
the optimal parameters for printing the test 
specimens are as follows: 
 
• Nozzle diameter: 0.4 mm 
• Nozzle temperature: 375°C 
• Bed temperature: 160°C. 
• Layer height: 0.2 mm 
• Number of layers: 15 
• Number of perimeter lines: 3 
• Infill: 100% with a ±45° rectangle pattern 
• Outline overlap:15% 
• Skirt (First layer): 10 outlines without offset 
• Speed: 30 mm/ s, %50 reduced for 1st layer  
 
Figure 2 illustrates the sample dimensions and 
the specimen prepared for 3D printing using the 
slicing program. 
 

 
Figure 2. (a) Dimensions and (b) layered (sliced) 
view of a DMA specimen conforming to ASTM 

D790 Standard prepared for 3D printing using the 
Simplify3D slicing program. 

 
Each printing process followed a specific 
protocol. First, the glass surface on the bed was 
thoroughly cleaned with alcohol. The bed was 
then carefully aligned to be exactly 
perpendicular to the nozzle plane (or parallel to 
the ground). The distance between the nozzle 
and the bed was checked at a minimum of three 
points using a feeler gauge for the z-end point 
to ensure precise positioning. A very thin layer 
of Nano Polymer Adhesive from Vision Miner 
was applied to the surface using a brush. Both 

the nozzle and the bed were preheated, and after 
a designated waiting period, the print-specific 
protocol (gcode) prepared with Simplify3D 
software was initiated. During printing, at the 
end of each layer, the extruder was moved to the 
side using a command added to the gcode, and 
photographs with a resolution of 3280 × 2464 
were taken using the camera module, capturing 
the entire sample. Upon completion of the 
printing process, the bed and chamber were 
allowed to cool, and the sample was carefully 
removed. The production steps described were 
then repeated for the next print. 
 
2.4. Characterization 
Geometric measurements of the samples 
included width, thickness, and length. Using 
precision calipers, measurements were taken at 
three different points: the center and near both 
edges of the relevant surfaces (Figure 3). These 
values were then averaged with standard 
deviations to obtain the final dimensions. 
 

 
Figure 3. Measurement points for (a) width, 
thickness and (b) length on each specimen. 

 
The mass of the samples was measured using an 
analytical balance. Density calculations were 
then performed using the mass data and the 
averages of the dimensions of the relevant 
sample. 
 
Flexural modulus measurements were 
performed using a TA Instruments DMA 850 
(New Castle, DE) following the ASTM D790 
standard. The test utilized a 3-point bending 
fixture with a span of 50 mm. The measurement 
parameters included a crosshead speed of 0.05 
mm/min and an initial force of 0.1 N. 
 
2.5. Collecting Sensor Data from 3D Printer 
In the study, in addition to the photographs 
taken during the production of each layer, a data 
processing algorithm was developed in Python 
to collect and organize data by processing log 
files generated by the OctoPrint and Marlin 
Control software. The algorithm, written in 
Python, reads data from two different log files 
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(octoprint.log and serial.log), parses the 
information, and structures it into a pandas 
DataFrame. The resulting data is then made 
available for analysis. 
 
The contents of the log files are as follows: 
Octoprint.log: 
- This log file, generated by OctaPrint software, 
contains information about the printer's state 
changes (e.g., 'Starting', 'Printing'), events and 
enclosure temperature and humidity readings 
from the BME280 sensor. 
- Each line includes a timestamp, the type and 
detailed information about the event. 
 
Example Lines: 
2024-01-10 07:58:17,267 – 
 octoprint.util.comm - INFO - Changing monitoring 
state from 'Starting' to 'Printing' 
2024-01-10 07:58:17,276 – 
 octoprint.filemanager.analysis - DEBUG - Pausing 
analysis 
2024-01-10 08:10:15,387 – 
octoprint.plugins.enclosure - DEBUG - BME280 
result: 79.2 | 4.6 
 
Serial.log: 
- This log file, generated by Marlin firmware, 
contains serial communication commands and 
feedback between the printer and the software. 
- It includes sent and received commands, 
temperature readings, layer and coordinate 
information, and sensor data (e.g., nozzle and 
bed temperature). 
 
Example Lines: 
2024-01-10 07:58:17,257 – 
 Changing monitoring state from 'Starting' to 'Printing' 
 
2024-01-10 07:58:17,309 –  
Send: N1 G90*17 
2024-01-10 07:58:17,377 –  
Recv: ok T:375.1 /375.0 B:160.0 /160.0 @:87 B@:55 
2024-01-10 07:58:19,285 –  
Recv: X:0.00 Y:220.00 Z:0.00 E:3663.27 Count A: 
17600 B:-17600 Z:0 
 
The algorithm designed to systematically 
retrieve data from these two documents works 
through the following steps: 
 
 
 
 

1. The log files are read line by line using the 
command ‘with open(filepath, 'rt') as in_file:’ and 
each line is appended to a list. This process is 
performed separately for both `octoprint.log` 
and `serial.log` files. 

 
2. Regular expressions (regex) are used to 

extract the necessary data from each line. For 
example, timestamps are parsed using the 
‘pd.to_datetime()’ function. The ‘re.compile()’ and 
‘re.search()’ functions are used to find lines that 
match specific patterns. 

 
3. Sensor data in "serial.log" and 

"Octoprint.log" are extracted from specific 
command and feedback lines in two separate 
locations. 

 
4. The timestamps are converted to seconds 

and normalized, enabling the seamless 
integration of data from different sensors for 
comprehensive analysis. 

 
5. The parsed data is converted into a pandas 

DataFrame and then exported as a csv file. 
 

As a result, X-Y position of extruder, nozzle, 
bed and chamber temperatures, and relative 
humidity data were collected for 10 different 
samples, with 3,375 data points each. 
 
2.6. Data Analysis Methodology 
Python was employed extensively for data 
preparation, visualization, and statistical 
analyses, including correlation and ANOVA in 
this study. The data processing workflow 
utilized a combination of Python libraries to 
ensure thorough and accurate analysis. The 
pandas library was used for data manipulation, 
cleaning, and structuring, while numpy 
facilitated numerical operations and data array 
management. The scipy library provided tools 
for statistical computations, including 
correlation and ANOVA, whereas the 
statsmodels library was used for advanced 
statistical modeling and hypothesis testing. For 
visualization, matplotlib and seaborn libraries 
were used for initial data visualization and 
exploratory analysis, although these figures are 
not included in the article to save space. All 
final graphs presented in this article were 
generated using Origin Pro to ensure 
publication-quality figures. 
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3. RESULTS AND DISCUSSION 
3.1. Dimensional Analysis of 3D-Printed 
Samples 
The results of the geometric measurements of 
PEI samples produced with the 3D printer using 
the same parameters can be seen in the Figure 4 
with deviation values. 
 
The average dimensions of the 65×13×3 mm 
samples were 64.51 ± 0.10 mm for length, 12.87 
± 0.09 mm for width, and 2.91 ± 0.04 mm for 
thickness. Although the differences are at the 
micron level, the targeted dimensions were not 
fully achieved, resulting in slightly smaller 
product sizes than expected. On the other hand, 
considering the density value of 1.27 g/cm³ for 
PEI, mass values of 2.68 ± 0.15 g were 
measured, whereas the expected mass is 
approximately 3.22 g (Figure 4d). The average 
density value, calculated based on all relevant 
measurements, was determined to be 1.11 ± 
0.06 g/cm³ (Figure 4e). 
 

 
Figure 4. (a) Thickness, (b) Width, (c) Length, (d) 
Mass values, and (e) Density calculations of 3D-

printed samples. The dimensional plots (a-c) 
present values with deviation lines. In all plots, the 
target values (red) and average values (black) of all 
samples are indicated by horizontal dashed lines. 

 
 

The slightly lower than expected average values 
can be attributed to the Extrusion Multiplier, a 
production parameter that can vary for each 
filament type. This parameter addresses the 
issue where the filament is not extruded to the 
correct length due to various physical properties 
such as diameter and viscosity. For instance, if 
10 mm of thermoplastic is expected to be 
extruded from the nozzle by feeding a certain 
amount of filament into the extruder, but the 
actual extrusion falls short, a simple multiplier 
value (e.g., 1.05) can be applied to push the 
filament further, achieving the required 10 mm. 
This adjustment allows the average dimensions 
of the produced parts, whether above or below 
the target, to be brought to the desired 
specifications. Although achieving these 
targeted values was confirmed in additional 
studies, the focus of this study is not on the 
absolute values themselves, but rather on 
examining the reasons for the deviations 
observed around the average values.  
 
3.2. Flexural Moduli Results 
The flexural moduli of the 3D-printed 
specimens were determined from the slope of 
the stress (σE) and strain (ε) curves. After 
applying linear curve fitting, moduli values 
were obtained for all specimens. It should be 
noted that these values are independent of the 
specimen geometry. In the measurements, the 
geometric dimensions of each specimen were 
entered into the TA Instrument’s TRIOS 
software and the specimen lengths were fixed at 
50 mm due to the span value of the fixture.  
 
Table 1. The flexural moduli of 3D-Printed PEI 
samples. 

Sample #  Flexural Modulus (MPa) 
Sample 1 1808.8 
Sample 2 1797.4 
Sample 3 1967.1 
Sample 4 2387.6 
Sample 5 2381.6 
Sample 6 2530.4 
Sample 7 1816.2 
Sample 8 2550.0 
Sample 9 2328.9 

Sample 10 1941.4 
 
The flexural moduli values with an average 
value of 2150.93 ± 295.97 MPa are presented in 
Table 1 for the samples. The distribution of 
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relatively low, geometry-independent values 
clearly highlights the anisotropic and complex 
nature of additive manufacturing and 
underscores the motivation for this study. 
 
3.3. Relationship Between Flexural Moduli 
and Physical Properties 
Pearson, Spearman, and Kendall correlation 
analyses were employed to investigate the 
relationships between Flexural Moduli (FM) 
and other physical properties, including 
Thickness, Width, Length, Mass, and Density. 
Prior to the analysis, the data distribution and 
adherence to normal distribution were assessed 
through histograms and Q-Q Plots. However, 
these visualizations were omitted from the 
article to conserve space. The distribution of 
FM, Width, Mass, and Density variables closely 
approximated a normal distribution, while 
Thickness and Length variables exhibited some 
deviations. Scatter plots (Figure 5) were used to 
visually represent the relationships between FM 
and other physical characteristics, revealing 
negative correlations between FM and 
Thickness and positive correlations between 
FM and Width, Length, Mass, and Density. 
 

 
Figure 5. Flexural Moduli plots vs (a) Thickness, 
(b) Width, (c) Length, (d) Mass and (e) Density. 

 

The correlation analysis results, conducted 
using three different methods, are presented in 
Table 2, with corresponding p-values in 
parentheses. 
 

Table 2. Results of correlation analysis between 
flexural moduli (FM) and physical properties using 
Pearson, Spearman, and Kendall methods, with p-

values in parentheses. 
Variable Pearson Spearman Kendall 

Thickness -0.4346 
(0.2095) 

-0.5079 
(0.1340) 

-0.3581 
(0.1679) 

Width 0.7853 
(0.0071) 

0.6991 
(0.0245) 

0.4944 
(0.0482) 

Length 0.6455 
(0.0438) 

0.6383 
(0.0470) 

0.5394 
(0.0311) 

Mass 0.8346 
(0.0027) 

0.6485 
(0.0425) 

0.4222 
(0.1083) 

Density 0.9428 
(4.36e-5) 

0.8268 
(0.0032) 

0.6293 
(0.0119) 

 
Pearson's correlation, which measures linear 
relationships between FM and other physical 
characteristics, showed a negative relationship 
between FM and Thickness, and positive 
relationships with Width, Length, Mass, and 
Density, with strong positive correlations for 
Density (0.942811) and Mass (0.834605). 
Spearman correlation, less sensitive to outliers 
of data, mirrored these results, with significant 
relationships for Width, Length, Mass, and 
Density (p < 0.05), but not Thickness (p > 0.05). 
Kendall correlation, robust to outliers, also 
showed positive relationships, with significant 
results for Width, Length, and Density (p < 
0.05), but not for Thickness and Mass (p > 
0.05). Overall, the strongest associations 
between FM and other physical properties were 
observed with Density and Mass. Given that the 
data were mostly normally distributed and 
exhibit linear relationships, Pearson analyses 
were more appropriate for revealing the 
relationships between variables. However, 
Spearman and Kendall correlations should also 
be considered, particularly for non-linear 
relationships or those deviating from normal 
distribution, such as Thickness and Length. 
 
The observed relationships between physical 
properties and FM provide valuable insights 
into the additive manufacturing process. The 
positive correlation between FM and width, 
alongside the negative correlation between FM 
and thickness, suggests that specimens tend to 
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be relatively flattened and edge-spread. These 
characteristics indicate denser specimens with 
better interlayer adhesion when fully filled. 
Such findings imply that the pre-production 
distance between the nozzle and the bed may 
not have been uniformly adjusted across all 
samples, and/or the bed was not aligned 
perpendicularly (or parallel to the ground) to the 
nozzle plane. Additionally, the adhesive used to 
fix the samples to the bed might contribute to 
this issue. Uneven application of the adhesive 
with a brush after cleaning the surface with 
alcohol before each production can lead to 
adhesion problems to the bed and varying 
thicknesses. 
 
These problems were particularly evident in the 
thickness measurements of the first five 
samples, where the thickness decreased toward 
one end, albeit by microns. The variations in 
thickness values shown in Figure 4 represent 
this observation. Furthermore, improperly set 
nozzle-to-bed spacing exacerbates anisotropy in 
printed products by causing road distortion, as 
noted by Turner et al [9]. In some cases, this can 
also lead to blockages, interrupting material 
flow and compromising print quality. 
 
On the other hand, the relationship between FM 
and densities, along with the varying mass 
distributions, raises questions about the amount 
of polymer extruded. Two scenarios can lead to 
this situation: insufficient material being 
extruded or completely cutoff. The lower 
material output could result from a localized 
reduction in filament diameter used in the feed 
and/or fluctuations in production parameters 
that are expected to remain constant (such as the 
sensors monitored in this study), affecting the 
extrusion flow. Layer photographs were 
examined to identify these issues in the 
products. 
 
3.4. Analysis of Layer Photographs 
A total of 150-layer photographs, 15 from each 
sample, were collected at the end of production. 
Each layer was meticulously examined to check 
for proper production. Particular attention was 
paid to any deficiencies in layer production and 
the specific areas where they occurred. The FM 
values were considered during the examination 
of the layers, using the segregation observed in 
the FM values provided in Table 1 as a basis for 
analysis. The FM values of the samples 
exhibited a clear division, with values above 

and below 2000 MPa. Samples 1, 2, 3, 7, and 10 
belonged to the low-FM class, averaging 
1866.15 ± 72.16 MPa, while Samples 4, 5, 6, 8, 
and 9 belonged to the high-FM class, averaging 
2435.70 ± 87.94 MPa. Layer photographs were 
categorized and analyzed based on these low 
and high-value FM groups, respectively. 
 
In all but one of the low-FM specimens, 
deformations and deficiencies incurred during 
layer production were evident. With an average 
density of 1.06 ± 0.01 g/cm³, these defects, 
typically observed across multiple layers, were 
most noticeable in the middle and edge regions 
of the samples. Examples of these defective 
layers are illustrated in the Figure 6. 
 

 
Figure 6. Examples of defective layers in low-FM 
samples. In the upper left corner of each image, the 
specific layer number of the sample (S) is indicated. 
 
The most notable sample in this cluster is 
Sample 7, which exhibits no issues across any 
of its layers. Remarkably, this nearly flawless 
specimen has the lowest density and an above-
average thickness. This anomaly can be 
attributed to a relatively high nozzle-to-bed 
distance and a consistent reduction in filament 
diameter during printing. Consequently, despite 
the production process being executed 
correctly, the low density and weak interlayer 
adhesion of this sample likely result in a lower 
FM value. 
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The samples in the High-FM cluster either 
exhibit very minor defects or are entirely 
flawless. Samples 8 and 9 show no issues at all. 
Sample 4 has only small imperfections in the 
last layer, and Sample 6 displays a slight mark 
in the tenth layer. Sample 5 is distinct from the 
others as it has defects in a few layers; however, 
these imperfections are located near the edges, 
well outside the 50 mm span used for FM 
measurements. Figure 7 illustrates the layer 
photographs of these High-FM samples, 
highlighting the minor defects where present. 
 

 
Figure 7. Defective layers in High-FM samples. In 

the upper left corner of each image, the specific 
layer number of the sample (S) is indicated. 

 
The case observed in Sample 5 underscores that 
anisotropy resulting from additive 
manufacturing can lead to varying mechanical 
properties depending on the specific use and 
purpose of the fabricated product. This 
observation further emphasizes the critical 
importance of maintaining high production 
quality. In this context, the next section 
discussed the impact of production parameters, 
monitored via sensors, on the final products. 
 
3.5. Sensor Data Analysis 
Sensor data was collected for four different 
physical quantities. Two of these are the nozzle 
temperature and bed temperature, which were 
obtained from the log records of Marlin, the 3D 
printer's control software, and were entered as 
fixed values. The other two measurements are 
the chamber temperature and relative humidity, 
recorded by the BME280 sensor and collected 
from the log records of the OctoPrint software. 
Unlike the fixed nozzle and bed temperatures, 
these values vary and reflect the in-cabinet 

conditions during printing, particularly in 
relation to the bed temperature.  
 
For the four monitored quantities, the mean 
values obtained across all samples were 
375.062 ± 0.203 °C for nozzle temperature, 
160.004 ± 0.009 °C for bed temperature, 80.544 
± 0.937 °C for chamber temperature, and 3.952 
± 0.106 % for relative humidity. 
 
Sensor data from the production of 3D printed 
PEI samples can be seen in the Figure 8 as box 
charts. The graphs in the figure visualize the 
distributions of nozzle temperature, bed 
temperature, chamber temperature, and relative 
humidity data. Each plot displays the median, 
quartile values (25%-75%), mean values, and 
outliers identified according to the 1.5 IQR 
method. The green boxes represent the central 
tendency and spread of each sample, circle 
symbols denote the mean values, and the 
whiskers indicate the range of the data, 
including outliers. 
 

 
Figure 8. Box charts of sensor data from the 

production of 3D printed PEI samples: (a) Nozzle 
temperature, (b) Bed temperature, (c) Chamber 

temperature and (d) Relative Humidity. 
 
When analyzing the nozzle temperature data, it 
was observed that the temperature remained 
stable around the target value of 375 °C. Both 
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the median and mean values were remarkably 
close to 375 °C, with the data distribution 
concentrated within a narrow range. This 
indicates that the Nozzle temperature was well-
maintained. However, some samples contained 
outliers, identified using the 1.5 IQR method, 
suggesting occasional temperature fluctuations. 
 
For the bed temperature data, the values were 
centered around the target temperature of 
160°C. The median and mean values were 
generally close to 160°C, with minor 
deviations. Outliers in some samples indicated 
unexpected fluctuations in temperature control. 
 
Analysis of the chamber temperature data 
revealed a range of 70 – 80 °C across samples. 
Differences between the median and mean 
values suggested potential asymmetries in the 
data distribution. The data spread over a wide 
range, with outliers indicating that chamber 
temperature might fluctuate due to 
environmental factors or equipment condition 
during the production process. 
 
Relative humidity data showed variation 
between 3.9% and 4.8% among samples. The 
median and mean values were remarkably 
close, with a narrow distribution range, 
indicating general stability in moisture levels. 
However, outliers were detected in certain 
samples according to the 1.5 IQR method, 
indicating occasional unexpected fluctuations 
in humidity levels. In conclusion, the analyzed 
physical quantities were generally stable, but 
certain samples exhibited unexpected 
fluctuations and outliers. 
 
3.6. Relationship Between Sensor Data, 
Physical Properties and Flexural Moduli 
For the correlation analysis between sensor data 
and physical measurements, the distribution and 
relationships of the data were first assessed to 
determine the most appropriate correlation 
methods. A preliminary examination using 
scatter plots, which were not included here to 
save space, revealed mostly non-linear 
relationships and the presence of some outliers. 
Consequently, Pearson correlation was deemed 
unsuitable due to its assumption of linearity. 
Instead, Spearman and Kendall correlations 
were identified as more appropriate for this 
analysis. 
 

The results of the Spearman and Kendall 
correlation analyses are presented in Table 3, 
which includes both correlation values and p-
values for each pair. The Spearman correlation 
analysis showed significant results for the 
variable pairs nozzle temperature and width, 
and nozzle temperature and length, suggesting 
potential monotonic relationships between 
these pairs. Both Spearman and Kendall 
correlations indicated significant results for bed 
temperature and mass, and bed temperature and 
density, implying consistent order-based 
relationships in these pairs. Additionally, the 
Spearman correlation revealed a significant 
result for the enclosure temperature and length 
pair, indicating a potential monotonic 
relationship. 
 

Table 3. Correlation Analysis Results between 
Sensor Data and Physical Dimensions with p-values 

in parentheses. 

Coor. Feature Nozzle 
Temp. 

Bed 
Temp. 

Cham. 
Temp. Hum. 

Sp
ea

rm
an

 C
or

re
la

tio
n 

Thickness -0.204 
(0.571) 

0.215 
(0.551) 

0.180 
(0.620) 

-0.099 
(0.785) 

Width 0.498 
(0.143) 

-0.471 
(0.169) 

0.298 
(0.403) 

-0.182 
(0.614) 

Length 0.559 
(0.093) 

-0.550 
(0.099) 

0.517 
(0.126) 

-0.116 
(0.751) 

Mass 0.539 
(0.108) 

-0.622 
(0.055) 

0.103 
(0.777) 

0.152 
(0.676) 

Density 0.552 
(0.098) 

-0.634 
(0.049) 

0.309 
(0.385) 

-0.079 
(0.829) 

K
en

da
ll 

C
or

re
la

tio
n 

Thickness -0.167 
(0.520) 

0.220 
(0.405) 

0.119 
(0.646) 

-0.072 
(0.783) 

Width 0.405 
(0.106) 

-0.322 
(0.205) 

0.180 
(0.473) 

-0.135 
(0.590) 

Length 0.449 
(0.072) 

-0.414 
(0.103) 

0.315 
(0.209) 

-0.135 
(0.590) 

Mass 0.333 
(0.216) 

-0.432 
(0.087) 

0.067 
(0.862) 

0.156 
(0.601) 

Density 0.422 
(0.108) 

-0.523 
(0.038) 

0.156 
(0.601) 

-0.022 
(1.000) 

 
To accurately evaluate the relationship between 
sensor data and flexural modulus (FM), an 
appropriate method must be employed. FM, an 
intrinsic property of the material, was measured 
individually for each sample, independent of 
physical dimensions. However, the analyses 
revealed that FM values were distributed into 
two distinct clusters, which were strongly 
correlated with the density of the samples. 
Defects such as filament diameter fluctuations, 
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bed and nozzle misalignment, and incomplete 
layer production were identified as contributing 
factors. To address this issue, although not a 
complete solution, the relationship between 
sensor data and FM was analyzed using 
normalized FM values, obtained by dividing the 
FMs by the density values. 
 
For the correlation analysis between the sensor 
data and FMNorm (normalized flexural moduli), 
the distribution and relationships of the data 
were first analyzed using scatter plots, which 
are not presented here. Preliminary examination 
showed that the data showed mostly non-linear 
relationships and some outliers were present. 
This once again showed that Pearson's 
correlation may not be suitable due to the 
linearity assumption, whereas Spearman and 
Kendall correlations may give more meaningful 
results. 
 
Table 4 presents Spearman and Kendall 
correlation coefficients alongside their 
respective p-values for the relationships 
between sensor data (nozzle, bed and chamber 
temperatures, and humidity) and FMNorm. 
Significant monotonic relationships were 
identified between the nozzle and bed 
temperatures and FMNorm. The Spearman 
correlation for nozzle temperature is 0.685 (p = 
0.029), and for bed temperature, it is -0.744 (p 
= 0.014), indicating medium strength and 
significant correlations. 
 

Table 4. Spearman and Kendall Correlation 
Analysis between sensor data and normalized 

flexural moduli (FMNorm) with p-values in 
parentheses. 

Sensor Spearman 
Correlation 

Kendall 
Correlation 

Nozzle Temp. 0.685 (0.029) 0.511 (0.047) 
Bed Temp. -0.744 (0.014)  -0.568 (0.024) 

Chamber Temp. -0.200 (0.580) -0.111 (0.727) 
Humidity  0.285 (0.425) 0.156 (0.601) 

 
Similarly, the Kendall correlation analysis 
shows significant relationships for nozzle and 
bed temperatures. The Kendall correlation for 
nozzle temperature is 0.511 (p = 0.047), and for 
bed temperature, it is -0.568 (p = 0.024). These 
findings confirm that nozzle and bed 
temperatures are significantly correlated with 
FMNorm in terms of ranking consistency. No 
significant correlations were found for chamber 

temperature and humidity data, as both 
Spearman and Kendall correlations and p-
values indicate no significant relationships with 
FMNorm. 
In addition to correlation analyses, ANOVA 
was performed to investigate the relationships 
between the FMNorm and the sensor data. Despite 
the lack of strong correlations, one-way and 
several multivariate ANOVA models were 
examined, the models of which are given below: 
 
1) FMNorm ~ Nozzle 
2) FMNorm ~ Bed 
3) FMNorm ~ Chamber 
4) FMNorm ~ Humidity 
5) FMNorm ~ Nozzle + Bed + Chamber + 

Humidity 
6) FMNorm ~ Nozzle × Bed × Chamber × 

Humidity 
7) FMNorm ~ Nozzle × Bed × Chamber 
8) FMNorm ~ Nozzle × Bed × Humidity 
9) FMNorm ~ Nozzle × Bed 
10) FMNorm ~ Nozzle + Bed + Chamber + 

Humidity + Nozzle2 + Bed2 + Chamber2 + 
Humidity2 

 
ANOVA results were obtained for all models 
except the sixth model, which produced infinite 
values and could not be analyzed. To save 
space, only the key findings are presented here, 
as many results were not statistically 
significant. 
 
The one-way ANOVA analyses (models 1-4) 
examined the effects of nozzle, bed and 
chamber temperatures, and humidity on FMNorm 
individually. The effect of nozzle temperature 
on FMNorm (F=1.887653, p=0.206729) was not 
statistically significant. Similarly, the effects of 
bed temperature (F=3.866159, p=0.084834), 
chamber temperature (F=0.124862, 
p=0.732950), and humidity (F=0.233881, 
p=0.641621) were also found to be non-
significant. 
 
In the multivariate model (model 5), which 
included all sensor variables, none of the 
variables exhibited a significant effect on 
FMNorm: nozzle temperature (F=1.044978, 
p=0.346102), bed temperature (F=1.714087, 
p=0.238357), chamber temperature 
(F=0.078238, p=0.789092), and humidity 
(F=0.147595, p=0.720394). 
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When analyzing the interaction between nozzle, 
bed, and chamber temperatures (model 7), the 
interaction term Nozzle:Bed (F=1.805673, 
p=0.250190) and other main effects remained 
non-significant. 
However, in the model examining the 
interaction between nozzle and bed 
temperatures, and humidity (model 8), a 
significant interaction was found for the 
temperature term (F=9.576104, p=0.036414), 
while the other interaction terms were not 
significant. 
 
Further analysis of the interaction between 
nozzle and bed temperatures (model 9) also 
revealed no significant results for the nozzle 
temperature interaction term (F=2.418823, 
p=0.170884). 
 
Finally, the relationship between FMNorm and 
the variables nozzle, bed and chamber 
temperatures, and humidity, along with their 
squared terms (model 10), was analyzed. None 
of these variables were found to have a 
statistically significant effect in this model. 
 
In summary, while some individual and 
interaction terms approached significance, most 
of the ANOVA results did not indicate 
statistically significant relationships between 
FMNorm and the sensor data. This suggests that 
other factors or more complex interactions may 
influence FM, or that the variability in the 
measurements was too high to detect significant 
effects with the current dataset. The lack of 
significance in many results underscores the 
complexity of additive manufacturing processes 
and the need for further investigation into other 
potential influencing factors. 
 
The most significant challenge encountered in 
these analyses is that the average values of the 
sensors do not accurately represent the 
production process. In fact, for a sample 
production that takes an average of 14.6 
minutes, sensor data comprising 3,375 values 
each are more meaningful when analyzed on a 
layer-by-layer basis. For a layer that takes an 
average of 52.3 seconds to complete (excluding 
the first layers, which take an average of 144 
seconds, about 2 and a half minutes, due to the 
inclusion of skirts and 50% speed reduction), 
each sensor records approximately 200 different 
values (an average of 554 values for the first 
layers). Therefore, an accurate representation of 

the sensor data must be provided on a per-layer 
basis. 
Within the scope of this study, conclusive 
results based on mathematical models were not 
obtained from analyzing sensor data on a layer-
by-layer basis to uncover their relationships in 
physical specifications or production quality. 
However, a novel method was developed that 
can geometrically represent a layer's production 
using sensor data and completely independent 
of time constraints, which could lead to more 
precise results with more extensive studies in 
the future. 
 
3.7. Representative Layer Figures by Sensor 
Data 
A method was developed to correlate the sensor 
data with the extruder positions (X and Y) and 
to compare the layer photographs taken during 
printing for each layer. The algorithm, utilizing 
the numpy and svgwrite libraries, processes the 
collected data and generates SVG visualizations 
that illustrate sensor values across different 
layers. The primary steps of the algorithm are as 
follows: 
 

1. The algorithm reads the dataset 
containing X-Y coordinate data along with 
sensor values such as nozzle temperature, bed 
temperature, enclosure temperature, and 
humidity created by the log files. 

 
2. A function maps the sensor values to RGB 

color values, which are used to visually 
represent the different sensor readings in the 
SVG. For instance, nozzle temperature, with 
minimum and maximum values of 363.3 °C and 
379.3 °C respectively, 379.3 °C is defined as 
full red (RGB: 255, 0, 0) and 363.3 °C as full 
black (RGB: 0, 0, 0). For intermediate values, 
the corresponding red value is determined by 
linear interpolation between 0 and 255 (e.g., 
370°C → RGB: 107, 0, 0).  

 
3. For each layer in the dataset, an SVG file 

is created. The X and Y coordinates are used to 
draw lines representing the movements of the 
3D printer nozzle, with the line colors indicating 
the sensor values at those points. 

 
4. The code iterates through all layers, 

generating individual SVG files for each layer 
and sensor type. These individual SVGs are 
then combined into a comprehensive SVG file, 
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providing a visual representation for a single 
sample. 
 
An example of the visualization of data 
collected from a single sensor during the 
production of a layer is shown in Figure 9. For 
Sample 1, this visualization clarifies the 
significant deviation in nozzle temperature 
observed in Figure 8a. The deviation was a 
momentary issue during the printing of the first 
layer, causing the temperature to drop to 363.3 
°C and rise to a maximum of 376.3 °C. In fact, 
this fluctuation occurred only in specific parts 
of the layer and did not impact the entire layer. 
 

Figure 9. (a) Extruder paths generated from the X-
Y coordinates of the first layer without skirt lines, 
with (b) photograph belongs to the relevant layer 

and (c) nozzle temperature values along these paths 
during the production of Sample 1. 

 
The optimal approach for further research 
involves examining the representative layer 
figures produced using sensor data alongside 
the layer photographs. Figure 10 presents the 
layer photographs and corresponding sensor 
data layers for Sample 6, which exhibited the 
lower flexural modulus (Low-FM) value.  
 
Figure 10 clearly demonstrates that the nozzle 
temperature, a critical parameter, deviated from 
the target value during the production of the first 
and fifth layers. Correspondingly, the layer 
photographs exhibit printing defects within this 
range. It appears that the initial defect originates 
from a gap in the first layer, subsequently 
affecting the layers above it. This imperfection 
may be related to the temperature variation, 
although conclusive evidence is lacking. 
Additionally, faded surfaces on the left side of 
the first five-layer photographs can exist 
because of the temperature drop in the first 
layer. This temperature variation could have 
resulted in weaker adhesion to the bed, causing 
the observed color difference. Alternatively, the 

bed may not have been perfectly parallel to the 
nozzle. In both scenarios, thickness variation 
across the sample is evident, as shown by the 
standard deviation plots in Figure 4a. 
 
On the other hand, instantaneous fluctuations in 
humidity are particularly significant for PEI, a 
thermoplastic highly sensitive to moisture. 
Notably, a marked decrease in humidity is 
observed in the fifth layer. This reduction may 
contribute to the production of relatively higher-
quality layers following this point. 
 
Although these interpretations can be made 
through straightforward observation, the high 
resolution of the images and the narrow 
oscillation range of the fixed parameters make 
these conclusions highly speculative. To 
establish such relationships with greater 
precision, a larger number of samples is 
required. Comprehensive studies with 
parameters taking multiple values, similar to 
classical optimization approaches, are essential. 
By employing advanced data analysis methods 
such as machine learning and neural networks, 
these relationships can be more robustly 
determined. 
 
Finally, to facilitate a comparison between 
specimens in the Low-FM and High-FM 
clusters, Figure 11 presents the layer 
photographs of Sample 8 alongside their 
corresponding representative layers. 
 
4. CONCLUSION 
In this study, a comprehensive critique of the 
3D printing process for PEI filament produced 
in a domestically developed extrusion park 
using a custom-made 3D printer were 
conducted. The investigation focused on the 
diverse outcomes produced by fixed printing 
parameters under complex influences, without 
eliminating or selecting specific samples. 
 
The results clearly demonstrated the significant 
impact of production parameters on the final 
product quality. In addition to examining 
physical attributes such as dimensions and 
density, the study also evaluated the mechanical 
properties of each specimen through flexural 
modulus tests, as determined by the chosen 
specimen geometry. The findings revealed the 
formation of two distinct clusters (Low- and 
High-FM). The Low-FM cluster exhibited a 
10% reduction in density and a 25% reduction 
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in flexural modulus compared to the High-FM 
cluster. These results underscore the necessity 
for precise control of production parameters, 
considering the complex and anisotropic nature 
of additive manufacturing. Correlation analyses 
between sensor data collected during 
production and mechanical properties 
highlighted the critical role of nozzle and bed 
temperatures in determining product quality. 
However, none of the variance analyses 
(ANOVA) models yielded significant results. 
 
The main findings of this study highlight 
several critical considerations that differentiate 
this research from previous works in the field. 
Unlike many studies that focus on parameter 
optimization by eliminating outliers or selecting 
specific conditions, this study uniquely explores 
the variability in outcomes when parameters are 
kept constant yet subjected to complex and 
uncontrolled influences. This approach 
provides a more realistic insight into the 
challenges of maintaining consistency in 
additive manufacturing. The detailed analysis 
of each layer, including photographing and 
examining potential defects, further 
distinguishes this study by providing practical 
methods for improving quality control. 
Moreover, while some studies have not fully 
explored the subtle impacts of the nozzle and 
bed temperature adjustments and fluctuations, 

this research highlights their role in determining 
product quality, providing new insights into the 
importance of these parameters. In addition to 
temperature control, precise alignment of the 
nozzle and bed, along with proper surface 
preparation, especially when using adhesives, 
has also been identified as essential for 
achieving optimal production outcomes. 
 
The findings from this study will form the basis 
for more extensive future research. Further 
exploration into real-time monitoring with more 
precise sensors and control of production 
parameters promises to enhance process 
efficiency. The use of machine learning and 
advanced data analysis techniques, supported 
by the representative layer algorithm, has the 
potential to reveal complex relationships within 
manufacturing processes. These innovative 
approaches will be instrumental in enhancing 
the consistency of additive manufacturing 
processes. By demonstrating that varying 
outcomes can arise in manufacturing processes, 
even with fixed parameters, this study opens up 
new avenues for quality control and 
optimization in additive manufacturing 
technologies. Future research will build on 
these findings to enable more effective use of 
high-performance thermoplastics in industrial 
applications. 

 

 
Figure 10. Layer photographs and corresponding sensor data-generated representative layers for Sample 1. The 

color scale for each sensor is provided below the respective representative layers. 
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Figure 11. Layer photographs and corresponding sensor data-generated representative layers for Sample 8. The 

color scale for each sensor is provided below the respective representative layers. 
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